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Abstract

Background—Recent studies have demonstrated the utility of polygenic risk scores (PRSs) for 

exploring the genetic etiology of psychiatric phenotypes and the genetic correlations between 

them. To date, these studies have been conducted almost exclusively using participants of 

European ancestry, and thus, there is a need for similar studies conducted in other ancestral 

populations. However, given that the predictive ability of PRSs are sensitive to differences in 

linkage disequilibrium (LD) patterns and minor allele frequencies across discovery and target 

samples, the applicability of PRSs developed in European ancestry samples to other ancestral 

populations has yet to be determined. Therefore, the current study derived PRSs for cigarettes per 

day (CPD) from predominantly European-ancestry samples and examined their ability to predict 

nicotine dependence (ND) in a Native American (NA) population sample.

Method—Results from the Tobacco and Genetics Consortium’s meta-analysis of genome-wide 

association studies of CPD were used to compute PRSs in a NA community sample (N=288). 

These scores were then used to predict ND diagnostic status.
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Results—The PRS was not significantly associated with liability for ND in the full sample. 

However, a significant interaction between PRS and percent NA ancestry was observed. Risk 

scores were positively associated with liability for ND at higher levels of European ancestry, but 

no association was observed at higher levels of NA ancestry.

Conclusion—These findings illustrate how differences in patterns of LD across discovery and 

target samples can reduce the predictive ability of PRSs for complex traits.
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1. INTRODUCTION

Tobacco use and nicotine dependence (ND) remain highly prevalent in the United States. 

Approximately 16.8% of the U.S. adult population self-identified as current smokers in 

2014, and the majority of these individuals reported smoking at least once daily (Centers for 

Disease Control and Prevention [CDC] 2015). Estimates from nationally representative 

samples of past-year daily smokers indicate that over 60% meet criteria for ND (Donny and 

Dierker, 2007). Continued use of tobacco is the leading cause of preventable disease and 

mortality in the U.S. (U.S. Department of Health and Human Services [USDHHS], 2014), 

and thus represents a significant public health concern (USDHHS, 2010).

Of additional note, epidemiological studies suggest rates of tobacco use and ND differ 

across racial and ethnic groups, indicating that this serious public health issue has a 

disproportionate effect on certain minority groups. Smoking rates in the U.S. are highest 

among American Indian and Alaska Native populations; in 2014, 29.2% of non-Hispanic 

American Indian and Alaska Native individuals smoked cigarettes versus 16.8% in the U.S. 

overall (CDC, 2015). Although prevalence rates differ across tribes within these populations, 

and many sociocultural and economic factors influence these prevalence rates, the high 

proportion of American Indian individuals who report smoking puts this group at a uniquely 

high risk for disease and related negative consequences (USDHHS, 1998).

Quantitative genetics studies estimate that a substantial proportion of variance in the 

diagnosis of nicotine dependence and smoking behavior is due to genetic factors. At a 

population level, twin and family studies have indicated that genetic factors account for 

approximately 44% of the variance in smoking initiation (Vink et al., 2005), 50% of the 

variance in smoking quantity (Mackillop et al., 2010), and 33–75% of the variance in the 

liability for ND (Agrawal and Lynskey, 2008; Agrawal et al., 2012). In Native American 

(NA) populations, the heritability estimates (h2) for regular and persistent tobacco use 

approach similar levels and range from 0.37–0.53 and 0.34–0.46, respectively (Ehlers and 

Wilhelmsen, 2006). As a result, published evidence suggests that these phenotypes are 

similarly heritable across European and NA populations (Ehlers and Gizer, 2013).

Evidence from meta-analyses of genome-wide association studies (GWASs) have identified 

common variants associated with number of cigarettes smoked per day (CPD), including 

those within the nAChR genes on chromosome 15q24-q25 (Chen et al., 2012; David et al., 
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2012; Liu et al., 2010; Saccone et al., 2010; Thorgeirsson et al., 2010; Tobacco and Genetics 

Consortium, 2010; Ware et al., 2011), and variants in regions that contain CYP2A6 and 

CYP2B6 on chromosome 9q13 and CHRNB3 and CHRNA6 on chromosome 8p11 

(Thorgeirsson et al., 2010). Though most of the genome-wide approaches have focused on 

quantitative measures of smoking behavior, ND has also been associated with variants 

within the nAChR genes (Rice et al., 2012; Thorgeirsson et al., 2008) and may account for 

the robust relationships observed between higher levels of self-reported cigarette smoking 

and variants within this region (Rice et al., 2012). Despite these initial successes, it is 

important to note that these efforts have focused almost exclusively on participants of 

European ancestry, thus limiting the generalizations that can be drawn from these studies in 

relation to other ancestral groups, including NA populations.

It is also notable that the amount of variance explained by each SNP identified in the 

described studies fails to approach the heritability estimates reported by quantitative genetics 

studies. This is because complex traits such as smoking behaviors and ND are thought to be 

highly polygenic in nature with hundreds of variants, each of small individual effect (e.g., 

R2<0.005) contributing to the development of the phenotype. Therefore, modeling the 

additive or cumulative effects of associated variants has the potential to explain a higher 

proportion of variation in a trait relative to a single variant. To this effect, methods were 

developed to calculate and test the association of polygenic risk scores (PRSs) with a 

phenotype of interest (The International Schizophrenia Consortium [ISC], 2009; Wray et al., 

2007). Notably, GWASs of common variants suggest that many, if not most, of the variants 

involved in complex trait etiology have too small an effect size to reach genome-wide 

significance levels even when sample sizes are large (∼40,000). Thus, PRSs are typically 

created by selecting variants that achieve a pre-designated significance level (e.g., p<0.01 

rather than p<5 × 10−8) from a large-scale ‘discovery’ GWAS with the assumption that their 

cumulative effect will reduce the influence of spurious associations. Once variants are 

selected, the number of risk alleles at each marker are tallied, weighted by their respective 

regression beta weight or log odds ratio, and summed to create a risk score for each 

individual in an independent replication sample. These risk scores are then used to determine 

the proportion of variation in the trait that can be explained by their cumulative effects.

The application of PRSs to the study of psychiatric phenotypes has been met with a fair 

amount of success. For example, PRSs were able to explain 6% of the variation in 

schizophrenia diagnostic rates, a considerable improvement compared to the variation 

explained by individual variants, which was less than 1% (Ripke et al., 2011). Other 

psychiatric phenotypes (e.g., de Moor et al., 2015; de Zeeuw et al., 2014; Hamshere et al., 

2013a; 2013b; ISC, 2009; Ruderfer et al., 2013; Sklar et al., 2011) have demonstrated 

similar results using cumulative measures of genetic risk, including tobacco and other 

substance use phenotypes (Salvatore et al., 2014). PRSs for variants associated with CPD in 

the Tobacco and Genetics Consortium (TAG) meta-analysis (Tobacco and Genetics 

Consortium [TAG], 2010) significantly predicted tobacco use at ages 20 and 24 (Vrieze et 

al., 2012), and in another study, explained a small but significant proportion of the variation 

in number of drinks consumed per week (0.4–0.5%) and age of cannabis initiation (0.6–

0.9%; Vink et al., 2014). These findings demonstrate the potential of PRS approaches to 

further our understanding of how genetic influences contribute to risk for individual 
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substance use phenotypes, as well as how these genetic influences might contribute to shared 

risk across substances.

Despite these promises, limitations exist in the application and interpretation of findings 

from studies employing PRS methods, including aspects of the discovery sample. Adequate 

sample size is necessary for precise score estimation in the discovery population, and the 

optimal p-value threshold used for selecting score variants from the initial genome-wide 

analysis depends on the size of the discovery sample. With adequately powered discovery 

samples, one can lower the threshold for variant inclusion, as these are more likely to reflect 

true positive associations with the phenotype (Wray et al., 2014). Additionally, disparate 

patterns of linkage disequilibrium (LD) and differences in marker allele frequencies between 

discovery and target samples are thought to attenuate effects in PRS analyses (ISC, 2009; 

Wray et al., 2007).

This last consideration has important implications. Population stratification and differential 

patterns of LD across racial and ethnic groups are well-known confounds that can bias 

results from genetic association studies (Price et al., 2006). The vast majority of GWASs are 

conducted with individuals of European descent, and given that methods for computing 

PRSs depend on summary statistics from GWASs, risk alleles identified from these studies 

may be specific to that ancestral group or include tag single nucleotide polymorphisms 

(SNPs) not found in other populations (Domingue et al., 2014). In addition, a standard 

practice in the construction of PRSs involves the LD-based pruning of GWAS results, so that 

only a single SNP from a given genomic region is included in the PRS. This is accomplished 

by selecting an initial set of SNPs that meet a predefined p-value, and then, beginning with 

the most highly associated SNP and proceeding in order of descending strength of 

association, using LD statistics to iteratively remove correlated markers from the set (e.g., 

R2<0.2 across 500kb; Wray et al., 2014). This procedure ensures that only independent 

association signals are included, and thus, protects against overestimating the explanatory 

power of the PRS (ISC, 2009; Wray et al., 2007).

The existing literature on PRSs for psychiatric phenotypes has been almost exclusively 

restricted to discovery and target samples composed of individuals of European descent. 

Because LD-based clumping procedures are employed in order to restrict the PRS to a set of 

independent signals, one disadvantage to this approach is the reliance on a single SNP to 

effectively tag a region based on its LD with other nearby markers. The extent to which 

these findings would replicate in a sample with different patterns of LD and minor allele 

frequencies is unknown. Given epidemiological data indicating that NA populations have the 

highest rates of smoking and ND of any U.S. ethnic group and the heritability of these traits 

in this population (Wilhelmsen and Ehlers, 2005), validating the predictive ability of PRSs 

for smoking phenotypes in this population is important for understanding the genetic 

contributions to these behaviors. In addition, the availability of larger consortium datasets 

mainly composed of European-ancestry individuals highlights a growing need to address 

disparities in the racial and ethnic populations represented in the psychiatric genetics 

literature. Thus, the current study aimed to evaluate whether a PRS derived from a large-

scale GWAS of CPD conducted in a predominantly European-ancestry sample would 

generalize to, and thus predict tobacco use phenotypes, in a NA population sample.
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2. METHODS

2.1. Discovery Sample from Tobacco and Genetics (TAG) Consortium

The TAG consortium’s GWAS meta-analysis of CPD was composed of European-ancestry 

individuals (N=38,131) drawn from 16 studies (TAG, 2010). Participants who endorsed 

smoking 100 cigarettes in their lifetime were asked to report on either average or maximum 

CPD. Each of the 16 studies performed their own genotyping, quality control, and 

imputation. Further details on the methods and summary statistics for the approximately 2.5 

million markers in common across the 16 studies are reported in the published meta-analysis 

and available for download (http://www.nature.com/ng/journal/v42/n5/full/ng.571.html; 

TAG, 2010).

2.2. Target Sample from Native American (NA) Community Population

Participants were recruited from eight geographically contiguous reservations and eligible 

for participation if they reported at least 1/16th NA heritage, and were between 18 and 82 

years old. The full sample included 775 participants nested within 161 families ranging in 

size from 1 to 319 individuals. Quality control procedures excluded 78 individuals from 

analyses. Sixty-seven samples could not be sequenced due to insufficient or low-quality 

deoxyribonucleic acid (DNA), and 11 samples could not be successfully identified when 

matching kinship coefficients to self-reported pedigree structure. Of the 697 individuals 

remaining, 288 individuals with available sequence and smoking phenotype data were 

selected for the current study. At least 50% NA heritage was reported by 39.6% of 

participants (median percent NA heritage=44.4), based on federal Indian blood quantum. 

Average age of the final sample was 32.7 years (SD=14.9), and predominantly female 

(55.6%; N=160). ND was reported by 37.5% of participants (N=108), and the average CPD 

was 14.1 (SD=12.7).

2.3. Measures

The Semi-Structured Assessment for the Genetics of Alcoholism (SSAGA) was 

administered to assess for CPD and DSM-IV ND, as well as demographic information. The 

SSAGA is an empirically validated semi-structured psychiatric interview with high test-

retest reliability (kappas=0.70–0.90) for specific substance dependence diagnoses (Bucholz 

et al., 1994), and has been used successfully in studies with NA populations (Wall et al., 

2003). The SSAGA uses a screening question asking whether participants have smoked 100 

cigarettes in their lifetime. Participants who respond negatively are designated as non-

smokers, not administered the full tobacco use section, and classified as not meeting criteria 

for ND. Thus, while ND diagnoses could be assigned to all participants, regardless of 

smoking history, CPD was only assessed in the limited number of individuals who endorsed 

smoking at least 100 cigarettes in their lifetime. Nonetheless, previous studies have reported 

substantial genetic correlations between ND and CPD (Vink et al., 2009), and thus, the ND 

diagnosis (coded 0/1) was used as the primary phenotype in the present study.
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2.4. Sequencing

Blood derived DNA was sequenced using Illumina low-coverage whole genome sequencing 

using HiSeq2000 sequencers (Illumina, San Diego, CA). Approximately 80% of the samples 

were sequenced at a coverage depth between 3X and 12X (full range of coverage depth: 1X 

- 31X) with coverage depth evenly distributed across the genome. Sequence reads were 

aligned using blocked multiple-sequence alignment (BMA), and realigned near indels with 

the Genome Analysis Toolkit (GATK). Variants were called using the LD-aware variant 

caller Thunder (Li, 2011) to increase the accuracy of the variant calls. Variant call quality 

was assessed through comparison of the sequencing results to exome array genotypes 

(Affymetrix Exome 1A microarray) for all subjects, resulting in a 97.5% concordance rate. 

The general methodology for the sequencing and advantages of using the LD-aware variant 

calls in this sample have been reported previously (Bizon et al., 2014).

The TAG consortium meta-analytic data corresponded to build 36 (hg18) of the NCBI 

reference assembly (TAG, 2010), and chromosomal coordinates for these SNPs were 

converted to assembly build NCBI37 (hg19) by using the UCSC liftOver tool (http://

genome.ucsc.edu/cgi-bin/hgLiftOver). The appropriate tables provided by dbSNP were used 

to confirm strand orientation across builds, as well as identify and merge variants with 

multiple dbSNP rsIDs (RsMergeArch; http://www.ncbi.nlm.nih.gov/SNP/

snp_db_table_description.cgi?t=RsMergeArch) or remove variants identified as having 

mapping errors (SNPChrPosOnRef: http://www.ncbi.nlm.nih.gov/SNP/

snp_db_table_description.cgi?t=SNPChrPosOnRef). Concordance of strand alignment and 

allele coding was then confirmed by comparing the hg19 liftOver results for the non-

ambiguous TAG consortium SNPs (i.e., excluding A/T and C/G SNPs) with the European 

cohort of the 1000 Genomes Project (1KGP) and with the NA target sample whole-genome 

sequence data. This comparison did not identify any errors in strand alignment or allele 

codings across datasets, indicating the conversion from build hg18 to hg19 was successful. 

Thus, all SNPs from the TAG consortium GWAS meta-analysis (including A/T and C/G 

SNPs) were retained for PRS construction.

2.5. Ancestry estimations

Ancestry proportions in the sample were analyzed using a supervised clustering approach 

that combined the algorithm implemented in the ADMIXTURE software (Alexander et al., 

2009) in conjunction with a reference panel containing genotype information at about 300k 

strand-unambiguous SNPs. The ancestry estimates were then further refined through a noise 

reduction approach via bootstrapping (Libiger and Schork, 2012) and identified as 

corresponding to the four major continental populations: African, East Asian, European, and 

NA.

2.6. Data Analysis

The data analysis process was composed of three steps: (1) calculate LD statistics for SNPs 

included in the TAG meta-analysis using genotype data from the European cohort of the 

1KGP (The 1000 Genomes Project [1KGP] Consortium, 2012), and use these statistics to 

create a set of independent markers, (2) match resulting independent TAG SNPs with NA 

sequence data, and (3) calculate CPD-based PRSs in the NA sample and conduct association 
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analyses to predict ND using linear mixed models in the lrgpr software package (Hoffman et 

al., 2014) as described below.

The initial TAG dataset contained 2,459,119 markers with summary statistics, including p-

values, beta coefficients, and risk alleles for each marker. After removing markers with p-

values >0.50, the remaining 1,257,959 SNPs were matched to the European-ancestry cohort 

of the 1KGP (1KGP Consortium, 2012), yielding 1,244,893 SNPs. Genotype data for these 

SNPs from the 1KGP were used along with the p-values from the TAG consortium GWAS to 

conduct LD-based pruning in PLINK 1.07 in order to extract the most highly significant, 

independent TAG markers from groups of correlated SNPs. This pruning procedure was 

conducted with seven different significance thresholds for index SNPs, ranging from p ≤ 

0.01 to p ≤ 0.5. In this way, the most highly significant independent SNPs with a p-value less 

than or equal to each of the specified LD thresholds were identified and selected for the 

calculation of PRSs.

The resulting dataset of TAG SNPs following the LD-based clumping procedures contained 

255,762 SNPs when the p-value threshold was set to ≤ 0.5; matches for these SNPs in the 

NA sample were identified, yielding a final dataset of 240,040 SNPs. PRSs were then 

generated using these markers in the NA sample for each of the seven significance 

thresholds used to run the LD-based clumping procedures. Individual PRSs were calculated 

by summing the number of TAG risk alleles (0, 1, or 2) at each marker included in the 

significance threshold, weighted by the SNP’s regression coefficient from the TAG meta-

analysis. These seven sets of PRSs were then used in family-based genetic association 

analyses in lrgpr (Hoffman et al., 2014) to predict ND in the NA target sample. Similar to 

many packages that conduct genetic association analyses, lrgpr uses a linear mixed model 

approach that includes the pairwise genetic similarity between all participant pairs 

approximated from genotyped markers as a random effect to account for population 

structure and genetic relatedness. Covariates included sex, age, age-squared, and ancestry 

estimates. The main effects of PRS and percent NA ancestry were tested first for association 

with liability for ND. Subsequent models included the interaction of PRS and percent NA 

ancestry in order to evaluate whether NA ancestry moderated the effects of PRS on liability 

for ND.

3. RESULTS

The variance in ND explained by the seven sets of risk scores ranged from 0.0–0.3% (see 

Table 1 for complete results). Notably, the main effect of the PRS created using a p-value 

inclusion threshold of 0.01 on ND was qualified by a significant interaction with percent NA 

ancestry (p=0.019; Table 2), and this model accounted for 2.2% of the variation in liability 

for ND, which is similar in magnitude to previous reports investigating PRSs for smoking 

phenotypes (Meyers et al., 2013; Vink et al., 2014). In order to evaluate the direction of 

effect for this interaction, secondary analyses were conducted on the top and bottom thirds 

of the sample after partitioning on percent NA ancestry. Specifically, the sample was divided 

into three groups based on increasing percentages of NA ancestry: 0 to 33% (“low”), 34–

66% (“medium”), and 67–100% (“high”) NA ancestry. Results from these analyses indicated 

that, for individuals with the smallest proportion of NA ancestry (and therefore higher 
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proportion of European ancestry), the PRS for TAG SNPs associated with CPD at p ≤ 0.01 

was positively associated with liability for ND (BPRS=18.9, SE=2.18). In contrast, this 

association did not hold for individuals with the highest proportion of NA ancestry, and 

therefore the smallest proportion of European ancestry (BPRS=−1.97, SE=2.98; Fig. 1).

In order to assess whether variants included in the PRS showed differences in LD with 

surrounding variants as a function of proportion NA ancestry, a paired samples t-test was 

conducted to compare levels of LD between each SNP (with p<0.01) included in the PRS 

and its correlated SNPs that were identified and removed during the clumping procedure. 

These LD statistics were calculated separately within the top and bottom thirds of the NA 

sample. Mean levels of LD were significantly lower for individuals with the highest percent 

NA ancestry (M=0.041, SD=0.043), compared to individuals with the lowest percent NA 

ancestry (M=0.055, SD=0.078; t(65,534)=46.33, p<0.001).

4. DISCUSSION

The current study examined the ability of PRSs computed from a GWAS meta-analysis of 

CPD in European-ancestry individuals to predict liability for ND in a NA community 

sample. Risk scores for seven significance thresholds were derived from GWAS test 

statistics for CPD from the TAG Consortium (TAG, 2010). Each set of scores was used to 

predict liability for ND in a sample of individuals with varying proportions of NA ancestry. 

Though no significant main effects were observed, these negative findings were qualified, 

however, by a significant interaction between the PRS and percent NA ancestry in predicting 

ND diagnostic status. Specifically, PRSs for CPD were positively associated with liability 

for ND in higher European-ancestry individuals, and who were therefore more similar in 

ethnic composition to the discovery sample. In contrast, this relation was not observed in 

higher NA-ancestry individuals, suggesting that the predictive ability of PRSs derived in a 

predominantly European-ancestry population may not generalize to individuals with higher 

proportions of NA ancestry. These findings underscore the need to validate measures of 

cumulative genetic risk generated from European-ancestry individuals in other racial and 

ethnic minority populations. If—as observed in the present study—European-ancestry risk 

scores do not generalize to other ancestral groups, adequately powered primary studies (i.e., 

GWASs) conducted in these other ancestral groups will be necessary to identify the 

contributions of individual variants and their patterns of LD with nearby markers before 

valid PRSs can be constructed for these groups. Given that substance use rates differ across 

ancestral groups, and health consequences may disproportionately affect specific 

individuals, these primary studies will also help reduce disparities in what is known about 

genetic risk factors that contribute to these behaviors in the larger population.

Notably, the lack of predictive power for the PRS among individuals with high NA ancestry 

appears to have resulted from differences in patterns of LD between NA and European-

ancestry individuals. As described, an initial step in creating PRSs involves pruning markers 

in high LD, so that each locus is tagged by a single variant. If the pattern of LD differs 

between the discovery sample and the validation sample, a selected variant that tags a 

specific region in the discovery sample may not effectively tag that region in the validation 

sample. Consistent with this interpretation, our results demonstrated that in the subset of 
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participants with the highest degree of NA ancestry (compared to the subset with the highest 

degree of European ancestry), SNPs included in the PRS showed lower LD with the 

corresponding markers they were shown to tag during the pruning procedure. This reduced 

LD was likely responsible for the lack of association between the PRS (for SNPs with 

p<0.01) and liability for ND in the highest percent NA-ancestry individuals. Thus, the 

present study lends support to arguments suggesting critical information is lost when a 

pruning approach is used to create PRSs (Vilhjálmsson et al., 2015; Wray et al., 2014).

Alternative methods have recently been developed in order to address this limitation. These 

include MultiPRS, which improves prediction accuracy by conducting LD pruning 

separately in discovery samples of different ancestral groups and then creating a PRS in the 

target sample that is the linear combination of these ancestry-specific PRSs conditional on 

the individual’s own ancestral background (Márquez-Luna et al., 2016). A second method, 

LDpred, allows for correlated loci in the discovery sample and improves prediction accuracy 

in two ways: it models the underlying genetic architecture and estimates causal effects sizes 

for each variant using Bayesian priors, and uses a reference panel to account for LD between 

associated markers (Vilhjálmsson et al., 2015). The applicability of LDpred for the current 

study was limited by the small size and extent of admixture present in the target sample, but 

simulations have demonstrated it represents an improvement over pruning approaches 

(Vilhjálmsson et al., 2015). The present report provides an empirical demonstration of why it 

is critical to consider the impact of differences in LD between discovery and target datasets.

A number of limitations of the current study warrant consideration. First, our target sample 

size was fairly small, and although we were able to represent a wide range of NA ancestry 

proportions, the relatively small number of individuals may have limited power to detect 

effects across all p-value thresholds. Nonetheless, the PRS explained a proportion of 

variance in liability for ND comparable to other smoking phenotypes previously reported 

using larger samples (Meyers et al., 2013; Vink et al., 2014), and a power analysis indicated 

the current study was adequately powered (0.82) to detect comparable effect sizes (i.e., 

R2=0.03). The final model, which included the interaction of the PRS for SNPs with p<0.01 

and percent NA ancestry, explained 2.2% of the variance in liability for ND. A post-hoc 

power analysis indicated that with a sample size of N=288, there was still reasonable power 

(0.72) to detect an effect size equivalent to that of the current study (R2=0.022). Second, the 

present report relied on ND diagnosis rather than CPD to evaluate the predictive power of 

the PRS. It is possible that the results may have differed if we were able to use the same 

CPD phenotype was used to generate the PRS. Nonetheless, previous studies have 

demonstrated a strong genetic correlation between ND and CPD (Vink et al., 2009), 

suggesting the results would likely be similar across phenotypes.

Despite these limitations, the present study is the first study to apply PRSs derived from 

SNPs in a predominantly European-ancestry cohort to a sample composed of individuals 

with varying proportions of NA ancestry. The results suggested that the PRSs might not hold 

as much predictive accuracy in target samples whose patterns of LD differ from the 

discovery cohort. This has important implications for future studies that intend to use 

cumulative measures of risk to predict phenotypes, given that individuals of European 

ancestry are overrepresented in most large-scale GWASs that typically serve as SNP 
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discovery datasets. Future investigations might employ newer methods that are able to 

incorporate more accurate measures of LD from the target population, (MultiPRS; Márquez-

Luna et al., 2016), or data from all markers rather than relying on LD-based pruning, 

(LDpred; Vilhjálmsson et al., 2015), and evaluate how these methods perform across 

different ancestral populations that differ in their pattern of linkage disequilibrium.
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Highlights

• Polygenic risk scores (PRS) represent additive effects of common 

genetic variants

• PRS for cigarettes per day (CPD) were derived from European ancestry 

GWAS data

• PRS predicted liability for nicotine dependence (ND) in European 

ancestry subjects

• PRS did not predict liability for ND in Native American ancestry 

subjects

• Model linkage disequilibrium when creating PRS with different 

ancestral populations
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Fig. 1. 
Moderating effect of percent Native American ancestry on the relation between polygenic 

risk score (for SNPs with p ≤ 0.01) and nicotine dependence diagnosis
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Table 2

Linear mixed model analysis of the effects of polygenic risk score and percent Native American ancestry on 

liability for nicotine dependence diagnosis.

Variable Β SE t p

Model with main effects of percent Native American ancestry and polygenic risk score
(SNPs with p ≤0.01)

Sex −0.11 5.61e-02 −1.96 0.0500

Age 0.02 9.09e-03 2.59 0.0096

Age-squared −2.66e-04 1.12e-04 −2.39 0.0170

European ancestry 0.56 4.44e-01 1.26 0.2083

African ancestry 0.13 6.37e-01 0.20 0.8423

Native American ancestry 0.11 4.48e-01 0.24 0.8085

PRS for SNPs p ≤ 0.01 11.56 1.17 0.99 0.3208

Model with main effects of percent Native American ancestry and polygenic risk score and
their interaction (SNPs with p ≤ 0.01)

Sex −9.83e-02 5.58e-02 −1.76 0.0783

Age 2.34e-02 9.00e-03 2.59 0.0095

Age-squared −2.64e-04 1.11e-04 −2.39 0.0168

European ancestry 5.07e-01 4.40e-01 1.15 0.2495

African ancestry −2.04e-02 6.34e-01 −0.03 0.9743

Native American ancestry −5.64 2.49 −2.26 0.0237*

PRS for SNPs p ≤ 0.01 7.05 2.77 2.55 0.0109*

Native American ancestry x PRS
(p ≤ 0.01)

−1.31 5.60 −2.34 0.0191*

PRS: polygenic risk score; SNPs: single nucleotide polymorphisms

*
p<0.05
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