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Abstract

The causes of population differentiation can provide insight into the origins of early barriers to gene

flow. Two key drivers of population differentiation are geographic distance and local adaptation to di-

vergent selective environments. When reproductive isolation arises because some populations of a

species are under selection to avoid hybridization while others are not, population differentiation and

even speciation can result. Spadefoot toad populations Spea multiplicata that are sympatric with a con-

gener have undergone reinforcement. This reinforcement has resulted not only in increased reproduct-

ive isolation from the congener, but also in the evolution of reproductive isolation from nearby and dis-

tant conspecific allopatric populations. We used multiple approaches to evaluate the contributions of

geographic distance and divergent selective environments to population structure across this regional

scale in S. multiplicata, based on genotypes from six nuclear microsatellite markers. We compared

groups of populations varying in both geographic location and in the presence of a congener.

Hierarchical F-statistics and results from cluster analyses and discriminant analyses of principal com-

ponents all indicate that geographic distance is the stronger contributor to genetic differentiation

among S. multiplicata populations at a regional scale. However, we found evidence that adaptation to

divergent selective environments also contributes to population structure. Our findings highlight how

variation in the balance of evolutionary forces acting across a species’ range can lead to variation in

the relative contributions of geographic distance and local adaptation to population differentiation

across different spatial scales.
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Elucidating the causes of genetic differentiation between popula-

tions of a single species can provide important insight into the speci-

ation process, because the origins of early barriers to gene flow may

often be concealed by evolutionary divergence after speciation (Via

2009). Even though incompletely isolated populations may not all

proceed to complete reproductive isolation and species status (Nosil

et al. 2009b), the mechanisms underlying population differentiation

are key for explaining biological diversity. Further, understanding

the relative contributions of geographic distance and divergent selec-

tion, two potential factors underlying genetic differentiation, can

shed light on longstanding questions about the importance of gen-

etic drift versus selection in speciation (Coyne and Orr 2004).

Local adaptation is an important driver of population differenti-

ation and speciation (Shafer and Wolf 2013; Sexton et al. 2014). When
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populations adapt to different environments, gene flow between them

may be reduced for multiple reasons (Schluter 2001; Rundle and Nosil

2005). When migrants mate with residents, any offspring that are

phenotypically intermediate or otherwise mismatched to the environ-

ment are likely to be selected against, resulting in extrinsic postzygotic

reproductive isolation (Hatfield and Schluter 1999; Pfennig and Rice

2007; Fuller 2008; Arnegard et al. 2014). Local adaptation may also

reduce the likelihood of such matings. If migrants from alternate envir-

onments are maladapted to local conditions, they are less likely to sur-

vive to successfully reproduce (“immigrant inviability,” sensu Nosil

et al. 2005). Likewise, when local adaptation results in the divergence

of sexual signals or mating preferences, premating isolation can arise

(Jiggins et al. 2004; Snowberg and Benkman 2007; Pfennig and Rice

2014).

Such mating trait divergence can not only arise when populations

adapt to divergent ecological environments, but also when populations

vary in the presence of an interacting species (Hoskin and Higgie

2010; Pfennig and Rice 2014). For instance, when some populations

of a species co-occur with a closely related species while other popula-

tions do not (i.e., sympatric and allopatric populations, respectively),

selection will act differently in these two environments. As a result of

selection to avoid interspecific mating interactions or hybridization,

sympatric populations might undergo reproductive character displace-

ment (RCD) or reinforcement (Pfennig and Pfennig 2012); allopatric

populations, on the other hand, do not. When the resulting divergence

in mating traits between allopatric and sympatric populations results

in reproductive isolation, speciation can occur. This process has been

called both “RCD speciation” (Hoskin and Higgie 2010) and “cas-

cade reinforcement” (Ortiz-Barrientos et al. 2009), and recent empir-

ical and theoretical results suggest it may be an important initiator of

speciation (Hoskin et al. 2005; Jaenike et al. 2006; McPeek and

Gavrilets 2006, Pfennig and Ryan 2006, Svensson et al. 2006,

Lemmon 2009, Porretta and Urbanelli 2012; Bewick and Dyer 2014;

Pfennig and Rice 2014).

The reduction in gene flow because of adaptation to divergent se-

lective environments has been called both “isolation by ecology”

(IBE; Edelaar et al. 2012) and “isolation by adaptation” (IBA; Nosil

et al. 2008). Yet, although IBE is an important and widespread pat-

tern of gene flow (Shafer and Wolf 2013; Sexton et al. 2014), levels

of gene flow are often affected by geographic distance as well (“‘iso-

lation by distance” or IBD; Wright 1943). If dispersal is limited,

then the likelihood of mating should be inversely related to the geo-

graphic distance separating individuals. In such a scenario, genetic

drift alone can lead to population genetic differentiation.

Understanding the relative contributions of divergent selective envir-

onments and geographic distance to population differentiation is

further complicated by the fact that the two factors are often con-

founded; populations separated by large distances are more likely to

experience different selective environments than are populations

separated by small distances. Further, the relative roles of contribu-

tors to population structure may fluctuate across the landscape, due

to variation in demographic parameters, the strength of divergent se-

lection, or other factors.

Here, we examine the relative contributions of geographic distance

and divergent selective environments to population differentiation at a

regional scale in a system that exhibits both limited dispersal and

reinforcement—the spadefoot toad Spea multiplicata. Premating isola-

tion is present in this species between populations that have and have

not undergone reinforcement, at both local and regional scales (Pfennig

2000; Pfennig and Rice 2014). At the local scale, population

differentiation is associated with this difference in selective environ-

ment (Rice and Pfennig 2010; Pfennig and Rice 2014); however,

whether divergent selective environments contribute strongly to popu-

lation structure at the regional scale remains unknown. To address

this topic, we used multiple approaches to estimate population struc-

ture between groups of populations that varied in both selective envir-

onment and geographic location.

Materials and Methods

Study system
The overall goal of this study was to evaluate the contributions of

geographic distance and divergent selective environments to popula-

tion differentiation at a regional scale in the spadefoot toad Spea

multiplicata. This species ranges from the southwestern United

States into Mexico (Stebbins 2003). In the southwestern United

States, S. multiplicata’s range overlaps broadly with the range of a

congener, S. bombifrons (Stebbins 2003). During much of the year,

individuals hibernate underground, emerging only during the sum-

mer months to breed and to feed (Bragg 1944, 1945). These species

are explosive breeders in ephemeral ponds, formed during the sum-

mer rainy season (Bragg 1945). Where the ranges of the two species

overlap, ponds vary locally in species composition: Some ponds con-

tain only one species, while others contain both (Pfennig and

Murphy 2000, 2002).

In ponds where the two species co-occur, they occasionally hy-

bridize (Simovich and Sassaman 1986; Pfennig and Simovich 2002;

Pfennig et al. 2012). This hybridization is costly for S. bombifrons in

certain environments and always costly for S. multiplicata (Pfennig

and Simovich 2002). As an indirect effect of selection against hy-

bridization in sympatry, female S. multiplicata in sympatry versus

allopatry with S. bombifrons experience divergent selective pressure

on mate preferences. Allopatric S. multiplicata females can obtain

fitness benefits by choosing males with faster calls (Pfennig 2000).

In contrast, because the fast calls of S. multiplicata are similar to the

calls of S. bombifrons males, sympatric S. multiplicata females

lessen their risk of hybridizing by preferring males with slower call

rates (Pfennig 2000). Consistent with the occurrence of reinforce-

ment in sympatric populations, hybridization frequency has declined

over time (Pfennig 2003). As a result of this divergent selection on

female preferences between sympatric and allopatric S. multiplicata,

premating reproductive isolation has evolved at both local (Pfennig

and Rice 2014) and regional scales (Pfennig 2000): Females from

both distant and nearby allopatric ponds prefer the calls of males

from their own environments over the calls of males from sympatric

ponds, and vice versa. Reinforcement has therefore led indirectly to

the evolution of reproductive isolation in this species.

As a result of the reproductive isolation that has evolved between

S. multiplicata populations in sympatry and allopatry with S. bombi-

frons, populations from the different selective environments should

show signs of differentiation, relative to populations from the same se-

lective environment. This prediction has been supported at a local

scale by population genetic analyses of southeastern Arizona sympat-

ric and allopatric populations (i.e., “East” populations, Figure 1,

Table 1; Rice and Pfennig 2010, Pfennig and Rice 2014). At this scale,

divergent selection contributes more to population differentiation than

geographical distance (Pfennig and Rice 2014). Yet, although premat-

ing reproductive isolation has also been demonstrated between sym-

patric and more distant western allopatric populations (Pfennig 2000),
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the extent of population differentiation between populations at this

larger scale, and the relative contributions of divergent selection versus

geographic distance, remain unknown.

Sampling and genotyping
We analyzed genetic differentiation among 13 populations of S. mul-

tiplicata (Figure 1, Table 1) at 6 previously published microsatellite

loci: Sb8 (Pfennig & Rice 2014), Spea C7, Spea D111, Spea D103

(Van Den Bussche et al. 2009), Sm14, and Sm25 (Rice et al. 2008).

Each population was categorized based on its relative geographical lo-

cation (Table 1, Figure 1; West, Central, or East) and its selective

environment (Table 1, Figure 1; Sympatry ¼ S. bombifrons present,

Allopatry ¼ S. bombifrons absent). Genotypes from 11 of the 13

populations were generated for another study (Pfennig and Rice

2014; Table 1) and were reanalyzed for this study. We extracted

DNA from S. multiplicata tissues that were collected from two add-

itional populations located at least 65 km west of the S. bombifrons

range edge (Figure 1; Table 1; tissues collected by K. and D. Pfennig).

The DNA was extracted using a Qiagen (Valencia, California, USA)

DNeasy Blood & Tissue Kit, following the manufacturer’s instruc-

tions. We used a three-primer system to amplify the microsatellite

markers, following Pfennig & Rice (2014). Sample sizes ranged from

10 to 25 per population (Table 1), similar to or greater than sample

Figure 1. Map of Spea multiplicata population locations. Inset at upper left indicates map region. Black circles, west allopatric populations; white circle, central/

west allopatric population; triangles, east populations. Triangle color indicates selective environment, with blue triangles as allopatric, and orange triangles as

sympatric. Populations labeled following Table 1.

Table 1. Sampling and location information

Population code N UTM Northing (m) UTM Easting (m) Geographical category Selective environment category

FT 12 3,513,168.81 680,005.47 East Sympatry

SD 16 3,521,287.58 684,419.76 East Sympatry

BP 18 3,529,290.03 679,851.46 East Allopatry

HC 10 3,513,359.11 680,335.65 East Sympatry

JC 10 3,534,202.38 676,772.4 East Allopatry

PO 13 3,515,338.54 682,464.08 East Sympatry

RT 19 3,535,263.87 677,991.59 East Allopatry

SH 11 3,516,255.27 681,712.24 East Sympatry

TR 10 3,534,235.32 677,745.99 East Allopatry

YW 19 3,502,192.61 680,817.35 East Allopatry

SRV 16 3,475,853.35 538,989.31 West Allopatry

ELa 25 3,501,820.85 541,362.27 West Allopatry

HEa 25 3,477,602.55 585,843.69 Central/Westb Allopatry

aNew genotypic data presented in this study. Genotypes from the other eleven populations were previously generated for Pfennig and Rice (2014) and re-analyzed

for this study.
bThis population is classified as Central in the three geographic grouping scheme, and West in the two geographic grouping scheme.
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sizes used in previous studies of population structure in this system

(Rice and Pfennig 2008, 2010; Pfennig and Rice 2014; Rice et al.

2009). Although small sample sizes per population can decrease abil-

ity to accurately estimate allele frequencies, they are still useful for

measuring genetic distance (Kalinowski 2005; Pruett and Winker

2008). Our choice to sample more populations over increasing sample

sizes per population maximized our power to detect structure be-

tween groups of populations (Fitzpatrick 2009). Additionally, all of

the genotypes from populations in sympatry with S. bombifrons were

previously verified to be from pure-species S. multiplicata (Pfennig

and Rice 2014). Thus, population differentiation cannot be explained

by introgression with S. bombifrons.

Analyses
We used probability tests in Genepop 4.2 (Raymond and Rousset

1995; Rousset 2008) as implemented by Genepop on the Web (http://

genepop.curtin.edu.au), to test for Hardy Weinberg Equilibrium and

for genotypic linkage disequilibrium between all locus pairs across all

populations. We also ran global tests for Hardy Weinberg for each

locus across all populations using Fisher’s method. The default

Markov chain parameters were used for both linkage disequilibrium

and Hardy Weinberg Equilibrium tests (i.e., 1,000 step dememoriza-

tion, 100 batches, and 1,000 iterations per batch). Because only one

locus was in Hardy Weinberg Equilibrium (see Results), we used

Micro-Checker (van Oosterhout et al. 2004) to test whether the devi-

ations from Hardy Weinberg were consistent with the presence of

null alleles, using 1,000 randomizations and Bonferroni correction

for multiple testing. Null alleles can affect estimates of population

structure (Chapuis and Estoup 2006; Carlsson 2008; Guillot et al.

2008), so the Oosterhout correction algorithm was implemented in

Micro-Checker (van Oosterhout et al. 2004) to estimate null allele

frequencies and to generate corrected allele frequencies and genotypes

for use in subsequent analyses where possible (see below).

We used several approaches to test for contributions of geographic

distance and divergent selective environments on conspecific popula-

tion differentiation in S. multiplicata. First, we assigned the populations

to groups based on either geography or selective environment (Figure

1; Table 1). If geographic distance contributes more to the observed

population differentiation than divergent selective environments, then

the geographic population grouping should explain a greater propor-

tion of the variation in genotype frequencies than the selective environ-

ment grouping. If the different selective environments make a greater

contribution to population differentiation, however, then the opposite

should be true.

To do this, we first used Analyses of Molecular Variance

(AMOVA) in Arlequin 3.5 (Excoffier and Lischer 2010) to estimate

population structure for our entire dataset. The 13 populations were

grouped in three ways (Figure 1; Table 1), and hierarchical F-statis-

tics were calculated to test which grouping explained the greatest

percentage of variation in microsatellite genotypes (Crispo et al.

2006). We calculated FST and other F-statistics throughout instead

of RST because simulations have shown that FST outperforms RST in

conditions of moderate to small sample sizes and numbers of loci

(Gaggiotti et al. 1999). The populations were placed either in three

geographic groups (i.e., West, Central, East), in two geographic

groups (i.e., West, East), or in two selective environment groups

(i.e., Sympatric, Allopatric). In each of these cases, we calculated

global FST and FCT as weighted averages across loci. FST values indi-

cate the proportion of the total variation in allele frequency that is

explained by variation among the 13 populations, while FCT values

indicate the proportion of the total variation in allele frequency that

is explained by the geographic or selective groupings. We also calcu-

lated the same F-statistics for each locus individually. Because null

alleles were likely present in our data (see “Results” section), we cal-

culated FST and FCT for each locus a second time using corrected al-

lele frequencies. Global F-statistics were not calculated for the null

allele-corrected data because corrected data could only be input in a

format that does not allow multi-locus analyses in Arlequin.

Significance of the F-statistics was estimated using 10,000 permuta-

tions of the data.

We next used the adegenet package (Jombart 2008; Jombart and

Ahmed 2011) in R version 3.2.1 (R Core Team 2015) to assess the

genetic population structure present among our different population

groupings using Discriminant Analyses of Principal Components

(DAPC) (Jombart et al. 2010). DAPC does not rely on assumptions

of Hardy Weinberg Equilibrium (Jombart et al. 2010). It first trans-

forms multi-locus genetic data into a set of fewer, uncorrelated vari-

ables using a principal components analysis; a discriminant analysis

is then applied to a set of retained principal components, such that

the variation between defined groups is maximized. In addition to

allowing graphical assessment of population structure, DAPC also

calculates the proportion of successful reassignment of individuals

to their previously defined groups, based on the discriminant func-

tions. A high proportion of successful reassignment indicates that

the groups are genetically distinct, while a lower proportion suggests

little structure between the groups. To test for contributions of geo-

graphic distance and selective environment on population structure

in S. multiplicata, we performed DAPC analyses using the three pre-

viously described population groupings. If geographic distance con-

tributes more than divergent selective environments to population

structure in S. multiplicata, then we expected higher proportions of

successful reassignment to geographic groups than to selective envir-

onment groups. Alternatively, if divergent selective environments

contribute more, then higher proportions of successful reassignment

to selective environment groups were expected. Because retaining

too many principal components can lead to inflated reassignment

success, we followed the recommendations of the DAPC tutorial

and performed an a-score optimization to determine the optimal

number of principal components to retain for each DAPC analysis.

We then ran DAPC three times for each population grouping, retain-

ing different numbers of principal components: 1) the optimal num-

ber based on a-score optimization; 2) the minimum optimal number

across all groupings (i.e., 7; see “Results” section); and 3) the max-

imum optimal number across all groupings (i.e., 41; see “Results”

section). Based on our results, we performed an additional DAPC

analysis on a combined geographic and selective environment

grouping (Figure 1; Table 1; i.e., West/Central allopatry, East

allopatry, and Sympatry), and retained only the optimal number of

principal components based on a-score optimization.

We also assessed evidence of population structure without prior

groupings, and asked whether genetic clustering corresponded more

clearly with geography or selective environment. To do this, we esti-

mated the number of genetic clusters present in our microsatellite

dataset using a spatially explicit Bayesian model implemented by the

program Geneland (Guillot et al. 2005, 2008; Guillot 2008), version

4.0.5. If divergent selective environments contribute more to popu-

lation differentiation in S. multiplicata than distance, then we ex-

pected to find two clusters corresponding to the selective

environments. Likewise, if geographic distance is a stronger con-

tributor, then we expected two or three clusters corresponding with

the geographic groupings. Geneland defines genetic clusters by
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assuming Hardy Weinberg Equilibrium within populations (Guillot

et al. 2005); however, it also incorporates an optional algorithm to

improve the accuracy of inferences when null alleles are present

(Guillot et al. 2008). To estimate the number of genetic clusters pre-

sent in our data, we ran ten independent runs of Geneland under

each of two different sets of modeling parameters. Both parameter

sets included the spatial model (incorporating 100 m coordinate un-

certainty), the null allele filtering algorithm, a maximum of 13

populations, 1,000,000 Markov chain Monte Carlo (MCMC) itera-

tions with every 1,000th iteration saved, and 200 saved iterations

discarded as burn-in. The spatial coordinates were expressed in the

Universal Transverse Mercator (UTM) coordinate system (Table 1).

The first parameter set used the uncorrelated allele frequency model,

and the second set used the correlated allele frequency model. Even

though the correlated allele frequency model is likely to be a more

accurate reflection of the biology of S. multiplicata, and may have

more power to detect subtle population differentiation (Guillot

2008), it may also be less robust to deviations from model assump-

tions. For this reason, we followed the suggestions of the Geneland

manual, and ran both correlated and uncorrelated allele frequency

models. We checked that the 10 independent runs under each para-

meter set inferred similar numbers of clusters, in order to ensure that

we ran Geneland for enough iterations. We then ran longer, single

runs of Geneland under each parameter set, with 2,000,000 MCMC

iterations, every 1,000th iteration saved, and 400 saved iterations

discarded as burn-in, to obtain final estimates of cluster number. We

visualized probability of population assignment to genetic clusters

using the program distruct 1.1 (Rosenberg 2004).

It is important to note that although the preceding analyses allow

us to test predictions about the relative contributions of geographic

grouping versus selective environment on population differentiation,

they do not allow us to directly compare the relative contributions

of these effects in a single analysis. This is unfortunate, because eco-

logical differences will often be confounded with geographic dis-

tance (Sexton et al. 2014), which is the case in our system (Figure 1).

In recent years, a number of approaches have been developed to ad-

dress this problem (e.g., Bradburd et al. 2013; Wang 2013b). Here,

we employed three approaches in an effort to address this issue.

First, we performed a two-factor AMOVA to simultaneously es-

timate the effects of geography and selective environment on genetic

variation. We used the PopGenReport package (Adamack and

Gruber 2014) in R version 3.2.2 (R Core Team 2015) to calculate

pairwise genetic distances among all individuals, based on Kosman

and Leonard’s (2005) genetic distance measure. We then used the

adonis function in the vegan package (Oksanen et al. 2015) to run a

two-factor AMOVA. As factors, we used geographic group (two lev-

els: West, East) and selective environment (two levels: Sympatric,

Allopatric). Significance was estimated with F-tests based on sequen-

tial sums of squares, using 1,000 permutations of the raw data.

The two-factor AMOVA tests the explanatory power of categorical

variables; therefore, it does not include an explicit test for a linear rela-

tionship between geographic and genetic distance. Thus, we also per-

formed a multiple matrix regression with randomization (MMRR) in

R version 3.2.2 (R Core Team 2015) using the script supplied by Wang

(2013a, 2013b) to simultaneously estimate the contributions of geo-

graphic distance and divergent selective environments to population

differentiation. Our response matrix for this analysis was population

pairwise FST, calculated in Arlequin 3.5 (Excoffier and Lischer 2010)

without correcting for the presence of null alleles. We included all com-

binations of three predictor matrices: 1) a binary selective environment

contrast matrix, with 0 representing a comparison between two

populations from the same selective environment, and 1 representing a

comparison between two populations from different selective environ-

ments; 2) a Euclidean (i.e., straight line) geographic distance matrix,

with pairwise distances calculated from the population UTM coordin-

ates (Table 1); and 3) an environmental cost distance matrix (following

Wang and Summers 2010). An environmental cost path analysis, also

known as least-cost path analysis, determines the length of the most

likely dispersal path by weighting potential dispersal paths between

populations by predicted climate and elevation requirements for the

species.

To calculate the environmental cost distance matrix, we first per-

formed species distribution modeling to predict the environmentally

suitable range for S. multiplicata. We extracted contemporary cli-

mate and elevation data (averages for years 1950–2000) from the

WorldClim database (worldclim.org, Hijmans et al. 2005) at 30 arc-

second resolution, and cropped the climate and elevation layers to

include areas between latitudes 23�N–40�N and longitudes

96�W�113�W. We used all 19 bioclimatic variables, representing

trends in temperature and precipitation, seasonality, and extreme or

limiting environmental factors, plus elevation for our species distri-

bution modeling. We obtained 268 georeferenced species occurrence

locations from across the entire range of S. multiplicata based on the

samples from this study (Table 1) plus records from 22 museums

(data provided by A. Chunco; Chunco et al. 2012). After filtering

out any samples occurring in the same grid cell, 236 records were

left for building our distribution model. We used MAXENT version

3.3.3k (Phillips et al. 2006) to predict habitat suitability at each grid

cell of the study area, with values ranging from 0 (unsuitable habi-

tat) to 1 (fully suitable habitat). We then inverted the suitability val-

ues to create friction landscapes (i.e., cost values), and calculated

pairwise environmental cost distances (i.e., least-cost paths) among

our 13 populations using SDMtoolbox (Etherington 2011; Brown

2014) in ArcMap (ver. 10.2.2; ESRI, Redlands, CA, USA).

All matrices were standardized by subtracting the matrix mean

from each value and dividing by the matrix standard deviation, as

recommended in the MMRR tutorial (Wang 2013a). P-values were

calculated using 10,000 permutations of the data. The predictor ma-

trix with the largest significant regression coefficient contributes the

most to population differentiation at this regional scale (Wang 2013b;

Nanninga et al. 2014).

Thirdly, we performed one final DAPC analysis on the subset of in-

dividuals within the East geographic group, grouped by selective envir-

onment (Figure 1; Table 1). We retained only the optimal number of

principal components based on a-score optimization. With this ana-

lysis, we examined the assignment of individuals from the YW popula-

tion, which experiences an allopatric selective environment (Table 1),

but is geographically nearer to the sympatric populations (Figure 1). If

selective environment contributes to population structure, then individ-

uals from the YW population should be correctly assigned to the allo-

patric selective environment grouping; however, if geographic distance

is the sole contributor to population structure, then individuals

from the YW population should instead be assigned to the sympatric

selective environment grouping.

Results

Linkage disequilibrium and Hardy Weinberg

equilibrium
Of 195 possible population–locus pair combinations, only six

showed significant departures from linkage equilibrium at P<0.05.

When combined across populations, all locus pairs were in linkage
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equilibrium (P>0.19). Our six loci therefore provided independent

data on population structure, and we retained genotypes from all six

loci for subsequent analyses. Of the 78 possible population–locus

combinations, five could not be tested for departure from Hardy

Weinberg Equilibrium, either because the locus exhibited no poly-

morphism in a particular population (three of five cases, all Sb8), or

because the locus failed to amplify in all individuals of a particular

population (two of five cases, all SpeaD103). A majority of the re-

maining 73 population–locus combinations showed evidence of de-

parture from Hardy Weinberg equilibrium at P<0.05 (Table 2). In

most cases, the pattern of departure from Hardy Weinberg equilib-

rium was consistent with the presence of a null allele (Table 2).

Allele frequencies and genotypes corrected for the presence of null

alleles using the Oosterhout algorithm in Micro-Checker (van

Oosterhout et al. 2004) were therefore used when possible in our

analyses of population structure.

Population structure
Results from the AMOVAs comparing different groupings of the

full dataset are presented in Table 3. FST values were significantly

greater than zero for individual loci and for the global weighted

average across loci. Although individual locus FST values tended to

decrease after correction for the presence of null alleles, they re-

mained significantly greater than zero. Additionally, FST values were

universally higher than corresponding FCT values. Global weighted

average FCT values were significantly greater than zero for two of

the population grouping schemes (Table 3), with a higher global FCT

for two geographic groups versus two selective environment groups.

This suggests that grouping the populations into two geographic

groups explains a higher proportion of the total genotypic variation

than does grouping by selective environment. At the individual locus

level, only one to three loci exhibited significant FCT values,

Table 2. Summary of tests for Hardy Weinberg Equilibrium and

null alleles

Sb8 SpeaC7 SpeaD111 Sm25 Sm14 SpeaD103

FT N/A X X N/A

SD X X X N/A

BP X X X X

HC X X X

JC X X X X

PO X X X X X

RT N/A X

SH X X X X

TR X X X

YW X X X X X

SRV N/A X X

EL X X

HE X X

Gray shading: significant evidence of null allele; X: significant deviation from

Hardy Weinberg Equilibrium; N/A: no information because allele is fixed or

failed to amplify.

Table 3. AMOVA results comparing different groupings of the full dataset

Sb8 SpeaC7 SpeaD111 Sm25 Sm14 SpeaD103a Globalb

A. Three geographic groups (West, Central, East)

FST, uncorrected (P-value) 0.13333 (0.000) 0.08004 (0.000) 0.08016 (0.000) 0.10425 (0.000) 0.05578 (0.000) 0.05090 (0.002) 0.08520 (0.000)

FST, corrected (P-value) 0.15638 (0.000) 0.04704 (0.004) 0.04671 (0.000) 0.07942 (0.000) 0.01982 (0.013) 0.03702 (0.017)

FCT, uncorrected (P-value) �0.05181 (0.741) 0.01057 (0.233) 0.00271 (0.340) 0.05371 (0.027) 0.01729 (0.115) 0.02763 (0.056) 0.01364 (0.133)

FCT, corrected (P-value) 0.01320 (0.371) 0.03602 (0.038) 0.01385 (0.183) 0.06412 (0.005) 0.00056 (0.442) 0.01102 (0.236)

B. Two geographic groups (West, East)

FST, uncorrected (P-value) 0.15561 (0.000) 0.08981 (0.000) 0.09075 (0.000) 0.11507 (0.000) 0.05258 (0.000) 0.05877 (0.003) 0.09391 (0.000)

FST, corrected (P-value) 0.17967 (0.000) 0.05445 (0.003) 0.05525 (0.000) 0.08758 (0.000) 0.02103 (0.015) 0.04619 (0.018)

FCT, uncorrected (P-value) 0.00572 (0.248) 0.02772 (0.052) 0.02458 (0.076) 0.07073 (0.011) 0.00960 (0.201) 0.04074 (0.012) 0.03023 (0.003)

FCT, corrected (P-value) 0.06468 (0.097) 0.04713 (0.011) 0.02961 (0.054) 0.07366 (0.004) 0.00284 (0.283) 0.02883 (0.043)

C. Two selective environment groups (Sympatry, Allopatry)

FST, uncorrected (P-value) 0.14488 (0.000) 0.08158 (0.000) 0.09652 (0.000) 0.09318 (0.000) 0.05983 (0.000) 0.03564 (0.002) 0.08898 (0.000)

FST, corrected (P-value) 0.14756 (0.000) 0.03341 (0.003) 0.05564 (0.000) 0.06817 (0.000) 0.02471 (0.013) 0.03690 (0.017)

FCT, uncorrected (P-value) �0.01786 (0.612) 0.01520 (0.085) 0.03528 (0.015) 0.02409 (0.092) 0.02378 (0.029) �0.00566 (0.620) 0.02043 (0.003)

FCT, corrected (P-value) �0.00801 (0.407) 0.00684 (0.217) 0.02881 (0.021) 0.03036 (0.058) 0.00953 (0.118) 0.00747 (0.279)

aLocus for which two populations (FT and SD) failed to amplify, so F-statistics calculated with only 11 populations.
bWeighted average over five loci (not including SpeaD103), for 13 populations.

Boldfaced values indicate statistical significance at P< 0.05.

Table 4. Summary of DAPCs

Population grouping scheme Number of discriminant

functions

Optimal

number PCs

Proportion of overall correct assignment

Optimal

number PCs retained

7 PCs

retaineda

41 PCs

retaineda

Mean

for 7 and 41

PCs retained

A. Three geographic groups 2 41 0.887 0.721 0.887 0.804

B. Two geographic groups 1 7 0.804 0.804 0.917 0.861

C. Two selective environment groups 1 8 0.775 0.784 0.887 0.836

aData used to calculate mean proportion of overall correct assignment.
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depending on the grouping scheme and whether the data had been

corrected for null alleles. Unlike for FST, many individual locus FCT

values actually increased upon correction for the presence of null al-

leles, particularly for the two geographic grouping schemes (Table

3, Panels A and B). Thus, although the global weighted average FCT

values were of similar magnitude for the two geographic groups

(Table 3, Panel B) and the two selective environment groups (Table

3, Panel C), the presence of null alleles likely affected estimates of

FCT for individual loci in opposite directions for these two groups.

The optimal number of principal components to retain in our

DAPC analyses varied among the population grouping schemes,

with a minimum of seven principal components retained, and a

maximum of 41 (for two and three geographic groups, respect-

ively; Table 4). DAPC scatter plots indicated that the eastern

populations were relatively distinct from the western and central

populations along the first discriminant function axis, while the

western and central populations exhibited more subtle structure

along the second discriminant function axis (Figure 2A). When

grouping the populations into either two geographic or two select-

ive environment groups, some separation was evident along the

first discriminant function axis, but in both cases, substantial

overlap remained (Figs. 2B and 2C). Likewise, the proportion of

overall correct assignment to original groups was higher for the

three geographic groups than for the two geographic or two select-

ive environment groups (Table 4). However, as expected, the rela-

tive values of the proportion of overall correct assignment were

dependent on the number of principal components retained in

each DAPC (Table 4). To allow direct comparisons of correct as-

signment proportions among the population grouping schemes,

we calculated a mean proportion of overall correct assignment

Figure 2. Scatterplots of DAPC for each of four different population grouping schemes. Each panel depicts DAPC results when the optimal number of principal

components was retained, as determined by a-score optimization (see text, Table 5). A) Three geographic groups, with black circles indicating the west group,

white circles indicating the central group, and gray triangles indicating the east group. Inertia ellipses are labeled with the group name. B) Two geographic

groups, with the dark gray distribution indicating the west group and the light gray distribution indicating the east group. C) Two selective environment groups,

with the blue distribution indicating the sympatric group and the orange distribution indicating the allopatric group. D) Three combined geographic and environ-

mental groups, with black circles representing West/Central allopatry, orange triangles representing East allopatry, and blue triangles representing sympatry.

Inertia ellipses are labeled with the group name.

Rice et al. � Distance and selective environment to contribute to structure 199

Deleted Text: &amp;
Deleted Text:  


based on assignments using the minimum and maximum optimal

numbers of principal components (7 and 41 PCs, respectively;

Table 4). This mean value was highest for the two geographic

groups (Table 4). Breaking down the proportion of correct assign-

ment by group when retaining the optimal number of principal

components shows that the East geographic group is genetically

distinct (Figure 3A and 3B) because of its accurate assignment.

The proportion of correct reassignment to the West geographic

group was higher when the Central population (HE) was not

lumped in with the two populations farther west (SRV and EL;

Figure 3A and 3B), suggesting that the HE population is slightly

differentiated from EL and SRV. The higher proportion of correct

reassignment for the Allopatry versus the Sympatry selective envir-

onment groups (Figure 3C) is likely because the Allopatry group

contains both West/Central and East populations, which are genet-

ically distinct from each other (Figure 2A). The scatter plot for the

combined geographic and selective environment grouping shows

some separation between the Sympatry and Allopatry selective en-

vironments along the first discriminant function axis (Figure 2D).

This structure combined with the subtle separation between the

West/Central allopatry populations and the remaining populations

along the second discriminant function axis (Figure 2D) suggests

that both geography and selective environment contribute to popu-

lation differentiation.

The two sets of 10 independent Geneland runs, using either the

uncorrelated or the correlated allele frequency models, were consist-

ent in the number of clusters inferred, with the uncorrelated allele

frequency model inferring two clusters in all ten runs, and the corre-

lated allele frequency model inferring either five or six clusters

(Table 5). The consistency of inferred cluster number suggested that

Geneland runs of at least 1,000,000 MCMC iterations were of ap-

propriate length. In a single run of 2,000,000 MCMC iterations, the

uncorrelated allele frequency model again inferred two genetic clus-

ters (Figure 4). These clusters corresponded to the West and East

population groups (Figs. 1 and 4). The correlated allele frequency

model inferred the presence of six genetic clusters after a run of

2,000,000 MCMC iterations (Figure 5). However, the five clusters

showed no clear correspondence to any geographic or selective en-

vironment grouping (Figure 5).

Consistent with the DAPC results (Figure 2D), the two-factor

AMOVA also indicated that both geographic grouping and selective

environment explain the observed genetic variation (Table 6), but

the higher partial R2 value for geographic group suggested that this

factor explains a greater proportion of the genetic variation than

does selective environment. When the order of the factors is

switched, both remain significant, and the partial R2 remains higher

for geographic group (data not shown). The overall MMRR model,

however, was not significant (R2¼0.007, F¼0.179, P¼0.961),

Figure 3. Percent correct reassignment to original population group by DAPC, for each of four different population grouping schemes. Each panel depicts DAPC

results when the optimal number of principal components was retained, as determined by a-score optimization (see text, Table 4). In each panel, the group names

are on the left. Colors correspond to Figure 2. A) Three geographic groups; B) two geographic groups; C) two selective environment groups; and (D) three com-

bined geographic and selective environment groups.
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suggesting that none of the three explanatory matrices—selective en-

vironment contrast, Euclidean geographic distance, or environmen-

tal cost distance—explained a significant amount of the variation

in population pairwise FST at this scale. With the DAPC reassign-

ment of YW population individuals to selective environments, we

found that 16 of 19 YW individuals were assigned to the allopatric

selective environment (84.2%). This result was consistent with se-

lective environment contributing to population structure at a more

local scale.

Discussion

We evaluated the extent of population differentiation present at a re-

gional scale among populations of S. multiplicata that are allopatric

and sympatric with the congener, S. bombifrons. We then examined

the relative contributions of divergent selective environments

and geographic distance for explaining the observed population

differentiation. To do this, we used multiple approaches to estimate

population structure based on microsatellite genotypes from 13

populations, varying in selective environment and geographic loca-

tion. Our hierarchical AMOVA (Table 3), DAPC (Table 4), two-fac-

tor AMOVA (Table 6) and Geneland (Figure. 4) results indicate that

geographic distance contributes more strongly to moderate popula-

tion differentiation across a regional scale. However, evidence from

both the hierarchical (Table 3) and two-factor AMOVAs (Table 6),

and the DAPC analyses (Figure 2D) also support a role for divergent

selective environments, particularly at a more local scale.

Our estimates of FST indicate the presence of moderate popula-

tion differentiation, with estimates significantly higher than zero

globally (FST � 0.09) and for each individual locus (Table 3). There

was variation between FST estimates that were and were not cor-

rected for the presence of null alleles, as expected based on

simulation results (Chapuis and Estoup 2006) and our own previous

work in this system (Rice and Pfennig 2010; Pfennig and Rice

2014). However, even after correcting for null alleles, FST remained

significantly greater than zero at every locus. Our finding of popula-

tion differentiation at this regional scale was consistent with our ex-

pectations, based on S. multiplicata’s limited opportunities for

dispersal and on previous research in this system at a smaller spatial

scale (Rice and Pfennig 2008, 2010; Rice et al. 2009, Pfennig and

Rice 2014). However, the level of differentiation present among our

populations was lower than expected for two reasons. First, a previ-

ous study of local population structure among the East S. multipli-

cata populations (Figure 1, Table 1) resulted in FST values that were

only slightly lower than estimates from this study (Pfennig and Rice

2014), even though the populations in this study span nearly six

times the distance. Second, at similar or even smaller spatial scales,

amphibian species often exhibit higher levels of population structure

than what we found (Burns et al. 2004; Arens et al. 2006).

Several nonmutually exclusive factors can explain why the level of

population differentiation in S. multiplicata was lower than expected.

First, the microsatellite markers we chose for this study were a subset

of those used in Pfennig and Rice (2014), which renders the FST esti-

mates not directly comparable between the two studies. Additionally,

the high variability of microsatellite markers can result in underesti-

mates of population differentiation (Hedrick 1999). Second, it is pos-

sible that S. multiplicata have a greater capacity for dispersal than

many amphibian species. Although a moderate level of dispersal is

likely among several of our East ponds because of the small distances

separating them (< 5 km), we think this is unlikely as a general ex-

planation for our findings; this species lives in a desert environment,

and spends much of the year hibernating in underground burrows

(Bragg 1944, 1945). Finally, demographic factors, such as recent

range expansions or large population sizes, can affect levels of popula-

tion differentiation (Hewitt 2000; Johansson et al. 2006;

Wellenreuther et al. 2011). Genetic differentiation of the East S. mul-

tiplicata populations (Figure 1) based on mitochondrial cytochrome b

sequences suggests that these populations have not undergone recent

population growth or range expansion (Rice and Pfennig 2008).

However, additional research is needed on the phylogeography and

demography of S. multiplicata populations across the species range to

evaluate demographic history as an explanation for our findings.

Our results suggest that at a regional scale, geographic distance

contributes more to the observed population differentiation in S.

multiplicata than does selective environment. The two geographic

groups explained a greater proportion of the total variation in geno-

type frequencies than did the three geographic or the two selective

environment groups (Table 3). When the number of retained princi-

pal components for DAPC was standardized across the three group-

ing schemes, the two geographic groups had the highest mean

proportion of overall correct assignment (Table 4). The higher par-

tial R2 value for geographic grouping in the two-factor AMOVA

also suggest this factor explained more of the genetic variation

(Table 6). Finally, the uncorrelated allele frequency model in

Geneland inferred two genetic clusters (Figure 4A) with strong cor-

respondence to the two geographic groups (Figure 4B). This result

contrasts with contributions to population structure at a local scale;

Pfennig and Rice (2014) found that selective environment explained

more of the population differentiation among the East populations

(Figure 1) than did geography. Our finding that 84.2% of the indi-

viduals from the YW population were assigned to the allopatric se-

lective environment by a DAPC, even though located nearer to other

sympatric populations, is consistent with Pfennig and Rice (2014).

Table 5. Summary of independent Geneland runs under two mod-

eling parameter sets

Run Inferred number of clusters

(Mode height of posterior

distribution, %)

Mean of posterior

probability distribution

Uncorrelated allele frequencies

1 2 (43.25) �3529.57243

2 2 (45.50) �3541.22173

3 2 (46.50) �3543.586784

4 2 (45.00) �3524.145509

5 2 (49.25) �3575.041492

6 2 (45.88) �3510.737678

7 2 (48.50) �3546.914796

8 2 (41.00) �3491.46949

9 2 (49.88) �3552.511677

10 2 (44.50) �3531.811381

Correlated allele frequencies

1 5 (70.88) �1493.8793

2 6 (36.50) �1024.9787

3 6 (35.88) �1648.6143

4 5 (68.88) �1531.3952

5 6 (29.88) �745.1921

6 5 (62.13) �1419.4386

7 5 (55.63) �1746.0225

8 6 (42.88) �677.9943

9 5 (61.75) �1958.0136

10 6 (58.13) �137.5810
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Variation might often exist across a species’ range in the strength

of particular evolutionary mechanisms, providing an explanation

for why the key contributors to population differentiation have the

potential to vary with spatial scale. For instance, populations of the

European flounder at the edges of the species range exhibit genetic

structuring and population sizes suggestive of founder events, while

population structure in other parts of the range is more strongly

associated with environmental or life history variation (Hemmer-

Hansen et al. 2007). As noted earlier, one possible explanation for

the lower than expected population differentiation in S. multiplicata

at this regional scale is that the populations from the geographic

groups differ in their recent demographic histories. Demography is

expected to affect the strength of both genetic drift and natural

selection. The greater contribution of selective environment over dis-

tance for explaining structure in the East populations might also be

a result of the higher potential for gene flow between populations in

the sympatric and allopatric selective environments. Populations in

the two environments occur within 30 km of each other (Figure 1),

so even a low level of dispersal may swamp out the predicted isola-

tion by distance pattern of gene flow. Although gene flow is

expected to erode differentiation due to local adaptation, divergent

selection may be strong enough in the East populations to maintain

associations between population structure and selective environ-

ment. Divergent selection on female mate preferences has led to the

evolution of premating reproductive isolation between sympatric and

allopatric populations (Pfennig and Rice 2014). Divergent ecological

Figure 4. Geneland results for the uncorrelated allele frequency model. Run length was equal to 2,000,000 MCMC iterations, with two as the inferred number of

clusters with the highest posterior probability. Heat maps illustrate the posterior probability of membership in A) cluster 1 or B) cluster 2. Lighter colors indicate

higher posterior probability of membership in a given cluster. (C) distruct plot visualizing the population assignment by Geneland, to each of the inferred clusters.

Colors correspond to inferred clusters (dark gray, cluster 1; light gray, cluster 2), with the height of each color indicating the probability of assignment to each

inferred cluster. Individuals are grouped by sampling location (Table 1, Figure 1). Bars above the figure identify the selective environment group (allopatry, or-

ange; sympatry, blue) and the geographic group (West, dark gray; Central, white; East, light gray) assignments for each population.
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selection is also present between the East allopatric and sympatric

populations of S. multiplicata. Ecological character displacement has

occurred between S. multiplicata and S. bombifrons in tadpole morph

production, resource use, and morphology (Pfennig and Murphy 2000;

Pfennig et al. 2007; Rice et al. 2009) in sympatric populations, but not

in allopatric populations. This divergence in ecological selective pres-

sures between sympatric and allopatric populations has led to extrinsic

postzygotic reproductive isolation (Pfennig and Rice 2007). Hence, the

balance between selection, genetic drift, and gene flow likely varies

across different spatial scales in S. multiplicata, affecting patterns of

population differentiation.

Although our results suggest that distance contributes more to

population differentiation at a regional scale than does selective en-

vironment, we found evidence that a portion of the population

structure is associated with the divergent environments of allopatry

and sympatry. The two selective environment groups exhibited a sig-

nificant global weighted average FCT value (Table 3). In addition,

the DAPC illustrated some separation between allopatric and sym-

patric population groups (Figs. 2C, 2D). When geographical group-

ing and selective environment were considered simultaneously in the

two-factor AMOVA, both were identified as significant contributors

to genetic variation. Finally, individuals from the YW population

were more frequently assigned to the correct selective environment

group by DAPC than to the nearest geographic group. Using a dif-

ferent analysis, Rice and Pfennig (2010) also found that YW was

more genetically similar to other allopatric populations than to

nearby sympatric populations.

That these presumably neutral microsatellite markers exhibit

any structure associated with divergent selection is somewhat sur-

prising. Although divergence due to selection can be detected with

neutral markers (Rice and Pfennig 2010; Rosenblum and Harmon

Figure 5. Geneland results for the correlated allele frequency model. Run length was equal to 2,000,000 MCMC iterations, with six as the inferred number of clus-

ters with the highest posterior probability. Heat maps illustrate the posterior probability of membership in A) cluster 1, B) cluster 2, C) cluster 3, D) cluster 4,

E) cluster 5 and F) cluster 6. Lighter colors indicate higher posterior probability of membership in a given cluster. G) distruct plot visualizing the population assign-

ment by Geneland, to each of the inferred clusters. Colors correspond to inferred clusters (orange, cluster 1; blue, cluster 2; yellow, cluster 3; pink, cluster 4; green,

cluster 5; purple, cluster 6), with the height of each color indicating the probability of assignment to each inferred cluster. Individuals are grouped by sampling lo-

cation (Table 1, Figure 1). Bars above the figure identify the selective environment group (allopatry, orange; sympatry, blue) and the geographic group (West,

dark gray; Central, white; East, light gray) assignments for each population.

Table 6. Two-factor AMOVA testing the relative effects of geo-

graphic group vs. selective environment on genetic distance

Factor df SS MS F Partial R2 P

Geographic group 1 11.6 11.6 13.1 0.06 <0.001

Selective environment 1 4.5 4.5 5.1 0.02 <0.001

Residuals 201 178.3 0.9 0.92

Total 203 194.5 1.0
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2011, Edelaar et al. 2012), theoretical and empirical results suggest

that it often may not be (Crispo et al. 2006; Thibert-Plante and

Hendry 2009, 2010; Hoskin and Higgie 2010). Levels of genetic dif-

ferentiation are expected to vary across the genome for populations

that have adapted to divergent selective environments, with the

highest levels of differentiation often present at and near loci

involved in local adaptation and reproductive isolation (Nosil et al.

2009a; Cruickshank and Hahn 2014). Consistent with expectations

of variable differentiation across the genome, only one to two of the

six loci exhibited significant FCTs for sympatric versus allopatric

population groups (Tables 3). Genome-wide studies will be neces-

sary to evaluate the extent of genetic divergence between sympatric

and allopatric S. multiplicata populations, and to identify specific

loci associated with reproductive isolation and local adaptation.

In sum, our results indicate that at a regional scale, geographic

distance contributes more to patterns of genetic differentiation

among S. multiplicata populations than does selective environment.

This result contrasts with genetic structure in this species at a more

local scale, which is associated with divergent selective environ-

ments, and highlights the potential of reinforcement to initiate gen-

etic differentiation. In general, variation across a species’ range in

the balance of evolutionary forces at work can result in differences

in the key contributors to genetic differentiation among locations

and spatial scales.
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