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Abstract

Axon degeneration is an essential part of development, plasticity, and injury response and has been 

primarily studied in mammalian models in three contexts: 1) Axotomy-induced Wallerian 

degeneration, 2) Apoptosis-induced axon degeneration (axon apoptosis), and 3) Axon pruning. 

These three contexts dictate engagement of distinct pathways for axon degeneration. Recent 

advances have identified the importance of SARM1, NMNATs, NAD+ depletion, and MAPK 

signaling in axotomy-induced Wallerian degeneration. Interestingly, apoptosis-induced axon 

degeneration and axon pruning have many shared mechanisms both in signaling (e.g. DLK, JNKs, 

GSK3α/β) and execution (e.g. Puma, Bax, caspase-9, caspase-3). However, the specific 

mechanisms by which caspases are activated during apoptosis versus pruning appear distinct, with 

apoptosis requiring Apaf-1 but not caspase-6 while pruning requires caspase-6 but not Apaf-1.

Introduction

Neuronal development and target innervation by axons and dendrites are essential processes 

required for the establishment of the nervous system. Simultaneously however, the selective 

destruction of neurons or only their projections is also important for the refinement of the 

wired brain [1]. While the mechanisms regulating the survival and elimination of neurons 

via apoptosis are well studied, the pathways governing the selective degeneration of the 

axons are less understood. Axon degeneration has been observed to occur in many contexts 

(e.g. pruning, axotomy, apoptosis, dying back) and models (e.g. D. melanogaster, C. elegans, 

mice), which has been discussed in several recent reviews [2,3,4,5,6].

In the mammalian model, mechanistic details of axon degeneration has been predominantly 

studied in vitro in three contexts: 1) Axotomy (also known as Wallerian degeneration), 

where the severing of axons results in the degeneration of axons distal to the cut site; 2) 

Apoptosis-induced Axon Degeneration, which we define here as ‘Axon Apoptosis’, where 

the entire neuron is exposed to apoptotic stimuli (e.g. global deprivation of trophic factors) 

resulting in the degeneration of both axons and soma; and 3) Pruning-induced Axon 
Degeneration, which we refer to here as ‘Axon Pruning’, where a subset of axons are 
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selectively exposed to a pruning stimuli (e.g. axon-only or ‘local’ deprivation of trophic 

factors) which results in the selective degeneration of only the axons exposed to the 

stimulus. Axon degeneration within these three contexts appears to engage overlapping but 

also distinct pathways. While axon degeneration is ultimately the convergent outcome of 

these pathways, the molecular mechanisms engaged are defined by the context of 

degeneration (just as cell death can be executed by distinct mechanisms, dependent on 

context). In this article, we primarily focus on the recent progress in mammalian models and 

define the shared and distinct mechanisms of axon degeneration that occur in these three 

contexts. These in vitro studies have been instrumental in providing significant insight into 

the distinct mechanisms of axon degeneration, which are now poised for future in vivo 
investigations.

Axotomy (Wallerian degeneration)

Wallerian degeneration is a unique and structured form of axon degeneration that occurs 

when a neuronal axon is crushed or severed (axotomized) from its cell body (illustrated in 

Figure 1). Wallerian degeneration has been well examined in the Wlds mouse, where 

axotomy-induced axon degeneration is strikingly inhibited [7]. Wlds mice express a unique 

gain-of-function gene product responsible for this protection, which was identified as the 

fusion of the N-terminal fragment of ubiquitination factor E4B (UBE4b) with NMNAT1 

(nicotinamide mononucleotide adenyltransferase 1) [8]. These findings implicated the role 

of NAD+ (nicotinamide adenine dinucleotide) metabolism in Wallerian degeneration, as 

NMNATs are key enzymes in the NAD+ salvage pathway [9]. NAM (Nicotinamide), which 

is a byproduct of NAD+ metabolism, is recycled into NMN (nicotinamide mononucleotide). 

NAD+ can then be regenerated from NMN by the NMNAT enzymes to maintain steady-state 

pools of intracellular NAD+. The rapid depletion of NAD+ has been identified to be a 

central event in axons undergoing Wallerian degeneration and addition of exogenous NAD+ 

(albeit at high concentrations) is sufficient to inhibit this degeneration [9,10,11]. However, 

recent evidence suggest that rather than NAD+ depletion, it could be the accumulation of 

NMN instead that triggers axon degeneration [12].

Recently, SARM1 (Sterile Alpha and TIR Motif 1) was identified as the first loss-of-

function mutation to provide protection against Wallerian degeneration [13•,14]. SARM1-

deficiency robustly protects axons following axotomy in vivo and in vitro [13•,14] and 

maintains NAD+ levels in vitro [15••]. Conversely, direct activation of SARM1 rapidly 

depletes intracellular NAD+ and is sufficient to induce axon degeneration [14,15••]. A key 

event that occurs after axotomy is the depletion of NMNAT2, which is sufficient to trigger 

axon degeneration [16]. SARM1 appears to be the effector of NMNAT2-depletion induced 

axon degeneration, as the degeneration trigged by NMNAT2 depletion can be fully rescued 

by the co-deletion of SARM1 [17]. The exact role of SARM1 in degeneration is not fully 

understood, but these data and a recent review suggest that NMNAT2 depletion causes the 

reduction of NAD+ levels which leads to subsequent SARM1 activation and axon 

degeneration [4,15••,17]. Downstream of SARM1, a MAP Kinase signaling pathway is 

activated to propagate the degenerative signal [18••,19]. This cascade includes DLK (Dual 

Leucine Zipper Kinase), MEKK4, and MLK2 which leads to the activation of c-Jun-N-

terminal kinases (JNKs) via MKK4 and MKK7 [18••]. Exactly how these signaling 
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pathways induce axon degeneration is not fully understood, but this involves additional 

mediators of Wallerian degeneration which include the ubiquitin-proteasome system [20], 

the ubiquitin ligase Phr1/Highwire [21,22], and SCG10 [23,24]. Furthermore, Ca2+ 

signaling and calpain activation are also important for mediating late events in axon 

degeneration [25,26,27].

Axon apoptosis (apoptosis-induced axon degeneration)

Neuronal apoptosis, which results in the degeneration of both the soma and axons, occurs 

extensively during development and in response to various neuronal insults [28,29]. This 

pathway has been well studied in the developing peripheral nervous system where 

sympathetic and sensory neurons, which are produced in excess, are acutely dependent on 

the limiting amounts of target-derived nerve growth factor (NGF). During target innervation, 

only those neurons that obtain robust NGF signaling survive whereas those deprived of NGF 

undergo apoptosis, a phenomenon that serves to match the number of innervating neurons 

with the size of target [30,31]. While neurons can undergo developmental or pathological 

apoptosis in multiple contexts, the model of NGF deprivation-induced apoptosis is a useful 

and well-recognized model for studying the molecular mechanisms of neuronal apoptosis. 

This phenomenon can also be recapitulated in cell culture where dissociated sympathetic or 

sensory neurons, or ganglia explants, are maintained in the presence of NGF. It should be 

noted that in these models both the soma and axons are exposed to direct NGF signaling, 

while in vivo NGF signaling primarily occurs at the axon terminals and the signal is 

retrogradely transported to the cell body. Importantly, elimination of NGF from the culture 

media, to deprive the entire neuron of NGF (often referred to as ‘global deprivation’), results 

in the apoptotic degeneration of both the soma and axons (Illustrated in Figure 2) [30,32]. 

Since axon degeneration in this context is a consequence of the activation of the global 

apoptotic program, we refer to this apoptosis-induced axon degeneration here as ‘axon 

apoptosis’.

Global deprivation of NGF initiates a well-defined apoptotic pathway that we briefly outline 

here. NGF deprivation induces the dephosphorylation of its receptor, Tropomysin receptor 

kinase A (TrkA), which leads to the activation of a DLK-mediated apoptotic signal. DLK 

signaling activates downstream mediators (including JNKs, MAPKs, and GSKα/β) and 

leads to the transcriptional upregulation of proapoptotic BH3-only family proteins (including 

Bim, Puma, Bmf, Hrk/DP5) by transcription factors such as c-Jun, NF-Y, and FOXOs 

[30,33••]. Recently, Puma was shown to be a key mediator of axon apoptosis. Not only is 

Puma induced in the cell body after global NGF deprivation, but Puma deficiency markedly 

reduces axon apoptosis [33••]. A major function of the BH3-only proteins such as Puma is to 

activate Bax, a pro-apoptotic member of the Bcl-2 family, which is required for neuronal 

apoptosis [30]. Some BH3-only proteins directly interact with Bax to induce its 

conformation activation, while others inhibit anti-apoptotic proteins of the Bcl-2 protein 

family (Bcl-2, Bcl-w, Bcl-XL, Mcl-1) [34]. In particular, Bcl-w and Bcl-XL are known to be 

localized to axons where they are important for maintaining axonal survival [33••,35].

Once Bax is activated, it translocates to mitochondria and inserts into the outer 

mitochondrial membrane, leading to the release of cytochrome c (cyt c) into the cytoplasm 
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[36]. Released cyt c can then bind to Apaf-1 (Apoptotic protease activating factor 1) to 

induce a conformational change in Apaf-1 that results in the recruitment of and activation of 

procaspase-9 (Casp9). Activated Casp9 functions to activate Caspase-3 (Casp3), and 

subsequently calpains, which together execute the degeneration of both soma and axons by 

targeting many cellular proteins for proteolysis [26]. Interestingly, while there are numerous 

mammalian caspases with diverse cellular functions, only Casp9 and Casp3 appear to be 

strictly required for global NGF-deprivation induced sympathetic neuronal apoptosis [37]. 

Lastly, X-linked Inhibitor of Apoptosis Protein (XIAP) inhibits caspase activity in both 

soma and axons, but is degraded during global NGF deprivation [38,39•]. Consistent with 

this, XIAP-deficient neurons exhibit enhanced axon degradation when globally deprived of 

NGF [39•].

This apoptotic pathway activated upon global deprivation of NGF has been recognized to be 

important for the degeneration of both the cell bodies and axons. Indeed, deletion or 

depletion of the key effectors of this apoptotic program (e.g. DLK, JNKs, c-Jun, FOXO3a, 

Puma, Bax, Apaf-1, Casp9, Casp3) blocks the death of neurons in response to global NGF 

deprivation [30,33••,37,40•,41]. Overall, these data suggest that in the context of global 

apoptotic stimulation, axonal degeneration is a consequence of the apoptotic program 

activated in the cell body.

Axon pruning (pruning-induced axon degeneration)

In addition to neuronal apoptosis, the nervous system undergoes substantial refinement by 

the pruning of axons and dendritic connections, which are selectively dismantled and 

rewired. Pruning is critical not only for establishing specific and appropriate neuronal 

circuitry during development but also for neuronal plasticity in the adult nervous system 

[1,42]. Precise spatial and temporal control of the degenerative machinery is important for 

pruning to ensure that only the targeted region of the axons are degraded. This spatial 

regulation is in contrast to apoptosis, where the entire neuron undergoes degeneration.

Similarly to axon apoptosis, mechanistic insights into the axon pruning pathway have 

primarily come from studies in peripheral neurons (sensory and sympathetic) subjected to 

NGF deprivation. An important distinction however is that while axonal apoptosis is 

triggered by ‘global’ deprivation of NGF (where neurons are completely deprived of NGF), 

axon pruning is observed in response to the selective deprivation of NGF from the axon 

while maintaining the neuronal cell body in NGF (illustrated in Figure 3). To study this 

pathway in vitro, neurons are cultured in compartmentalized chambers (e.g. Campenot [43] 

or microfluidic chambers [44]) where the cell bodies and the axons are maintained in 

different compartments, separated by a physical barrier, to keep them spatially and 

fluidically isolated. Selective deprivation of NGF from only the axon compartment (known 

as ‘local’ NGF deprivation), with cell bodies maintained in NGF, triggers the selective 

degeneration (pruning) of only the axons in the NGF-deprived axon compartment [43]. 

Although axon apoptosis and axon pruning are both induced by NGF deprivation, the 

distinction between global and local NGF deprivation is important as it defines the context, 

and thus, the specific pathway activated.
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While multiple factors are known to mediate axon pruning in vivo [1], the molecular 

pathway of axon pruning has been best studied in vitro in the context of local (axon-only) 

NGF deprivation. Amyloid Precursor Protein (APP) and Death Receptor 6 (DR6) have been 

shown to regulate pruning in vivo [45•,46]. However, loss of either APP or DR6 was not 

protective against apoptosis (global NGF deprivation) in vitro [46], suggesting that APP and 

DR6 may play a role in axon pruning but are dispensable for apoptosis. During local NGF 

deprivation-mediated pruning, the loss of TrkA activity leads to the activation of DLK to 

induce a retrograde signal to the soma [33••]. This signal is important, as DLK-deficient 

neurons are protected from axon pruning [33••,40•]. DLK activation leads to the local 

phosphorylation of JNKs to propagate the pruning signal [40•,47•]. Interestingly, inhibition 

of JNK (and also p38 MAPK) in only the axons, and not the cell bodies, is sufficient to 

protect against axon pruning, confirming a function of JNK in axons during pruning [47•]. 

One of the functions of JNK in axons could be to mediate the transmission of the retrograde 

signal to soma. Interestingly, GSK3 (both α and β) could be a potential JNK-regulated 

mediator of this retrograde signal as inhibition of GSK3 activity in the soma, but not the 

axons, protects against axon pruning [47•]. While GSK3 could be activated locally in axons, 

its kinase activity may be required only in the soma where its substrates important for 

pruning could be spatially localized. c-Jun has been identified as another soma-dependent 

transcriptional regulator that is activated during pruning [40•,48]. Whether c-Jun is required 

for axon pruning is undetermined however, as previous results examined the requirement of 

c-Jun in the context of axon apoptosis (global NGF deprivation) [33••,40•].

Recently, the BH3-only protein Puma was identified as an essential mediator for axon 

pruning where its deficiency protects axons against local NGF deprivation [33••]. As Bax is 

also required for axon pruning [45•,49••,50•], the role of Puma is likely to directly activate 

Bax. Consistent with Bax activation, cyt c is released from mitochondria in axons 

undergoing pruning [49••], but whether cyt c is required for pruning is not known. This is 

particularly relevant as cyt c is known to activate Casp9 via Apaf-1 on the apoptosome. 

However, Apaf-1 is not required for axon pruning [49••]. While Apaf-1-deficient neurons are 

protected from undergoing apoptosis after global NGF deprivation [33••,37], they still 

undergo pruning after local NGF deprivation [49••]. Interestingly, despite not requiring 

Apaf-1, pruning requires both Casp9 [49••] and Casp3 [49••,51]. Thus, Casp9 appears to be 

activated via an Apaf-1-independent mechanism during pruning. This is particularly relevant 

in post-developmental mature neurons, which are known to shut down the apoptotic pathway 

by turning off Apaf-1 expression [52], yet maintain plasticity and remain competent to 

undergo pruning [49••]. This finding not only supports but highlights the Apaf-1-

independent nature of the pruning pathway and illustrates how neurons are able to exert 

precise and differential control over the apoptosis and pruning pathways. Additionally, 

pruning is dependent on Casp6, a caspase which is not essential for apoptosis [45•,49••,51]. 

However, exactly how caspases are activated during pruning, or even their precise order of 

activation, remains unknown. As pruning allows for the selective degeneration only the 

targeted axon, without degeneration outside of that target region, it is likely that caspase 

activation during pruning is spatially restricted [53]. One such mediator that restricts caspase 

activity during pruning is XIAP (dIAP in Drosophila) [49••,54], which could serve to 

spatially constrain degeneration to the desired region. Indeed, XIAP-deficient neurons are 
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unable to spatially restrict caspase activity and inappropriately accumulate active Casp3 in 

their cell bodies during pruning [49••].

Mechanistic overlap in the three distinct pathways of axon degeneration

Despite the fact that the three pathways of axon degeneration that we highlight in this review 

are engaged in different contexts, there are intriguing overlaps in both the signaling as well 

as the execution of these pathways. We highlight here some of these similarities and 

differences, although in many instances the function of individual proteins has not been 

examined in all three contexts of axon degeneration (Table 1). While it is too early to tell 

whether the shared proteins have exactly the same functional role in all contexts of axon 

degeneration, future research will help clarify these roles.

An obvious difference between these axon degeneration pathways is that during axotomy-

induced Wallerian degeneration, the cell body is not involved as it is physically separated 

from the axon undergoing degeneration. In contrast, the cell body is required, and in fact 

orchestrates, the degeneration programs during both apoptosis and pruning. Despite this 

fundamental contextual difference, key proteins essential for Wallerian degeneration (e.g. 
Wlds, NMNATs, SARM1) appear to be involved in axon apoptosis as well. Demonstrating 

this overlap, neurons isolated from Wlds mice degenerate their cell bodies but surprisingly 

not their axons upon global NGF deprivation [55]. Similarly, overexpression of cytosolic 

NMNAT1 also provides protection against axon apoptosis during global NGF deprivation 

[56]. Interestingly, this block appears to be in parallel to or after the point of caspase 

activation [56] but exactly how this protection is mediated remains to be determined. The 

exact importance of SARM1 for axon apoptosis is unclear as one study found SARM1 

deficiency to protect axons [14] while another failed to see protection [13•] after global NGF 

deprivation. The ability of these proteins to protect axons but not the cell bodies in the 

context of apoptosis suggests that there could be mechanistically distinct pathways 

mediating the degeneration of axons versus cell bodies during neuronal apoptosis. 

Interestingly, all three contexts of axon degeneration mediate degeneration by engaging 

many of the same signaling pathways and proteins (e.g. various MAPKs and JNKs). While 

during apoptosis and pruning these signaling proteins are required for the transcriptional 

activation of the axon degeneration [33••,40•,47•], their function in Wallerian degeneration is 

downstream of SARM1 and independent of transcription as the degenerating axons are 

separate from the cell body [18••].

Significant mechanistic similarities exist between axon apoptosis and axon pruning. Both 

pathways are initiated by a common signal (NGF deprivation) and in both contexts (global 

or local NGF deprivation), the initiating signals appear to originate from axons [47•,48]. 

Also, most of the upstream signals up to the point of Bax activation appear to identical in 

both contexts. This includes DLK, JNKs, p38 MAPK, GSK3, the BH3-only protein Puma, 

and Bax itself [33••,40•,45•,47•,49••,51]. However, downstream of Bax, these two pathways 

diverge. Axon apoptosis strictly requires the Apaf-1 and Casp9-dependent apoptosome 

pathway to activate Casp3 [33••,37]. In this context, Casp6 is cleaved but its deficiency does 

not block axon apoptosis [49••]. In contrast, axon pruning requires Casp6 as well as Casp9 

and Casp3 [49••,51], but importantly not Apaf-1[49••]. This is surprising as there is very 
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limited precedence of a Casp9-dependent but Apaf-1-independent pathway for activating 

Casp3. Thus, many exciting details of how these two distinct pathways use similar signaling 

machinery yet diverge after the point of Bax activation remain to be discovered. 

Undoubtedly, future research will help uncover the mechanisms by which neurons exert both 

spatial and temporal control of these axon degeneration pathways.

Acknowledgments

Thank you to members of the Deshmukh lab for comments on the manuscript. This work was supported by grants 
from the National Institutes of Health (F31CA186654 to MJG; NS083384 and GM105612 to MD).

References and recommended reading

Papers of particular interest, published within the period of review, have been highlighted as:

• of special interest

•• of outstanding interest

1. Riccomagno MM, Kolodkin AL. Sculpting neural circuits by axon and dendrite pruning. Annu Rev 
Cell Dev Biol. 2015; 31:779–805. [PubMed: 26436703] 

2. Pease SE, Segal RA. Preserve and protect: maintaining axons within functional circuits. Trends 
Neurosci. 2014; 37:572–582. [PubMed: 25167775] 

3. Neukomm LJ, Freeman MR. Diverse cellular and molecular modes of axon degeneration. Trends 
Cell Biol. 2014; 24:515–523. [PubMed: 24780172] 

4. Gerdts J, Summers Daniel W, Milbrandt J, DiAntonio A. Axon self-destruction: new links among 
SARM1, MAPKs, and NAD+ metabolism. Neuron. 2016; 89:449–460. [PubMed: 26844829] 

5. Wang JT, Medress ZA, Barres BA. Axon degeneration: molecular mechanisms of a self-destruction 
pathway. J Cell Biol. 2012; 196:7–18. [PubMed: 22232700] 

6. Maor-Nof M, Yaron A. Neurite pruning and neuronal cell death: spatial regulation of shared 
destruction programs. Curr Opin Neurobiol. 2013; 23:990–996. [PubMed: 23871216] 

7. Conforti L, Gilley J, Coleman MP. Wallerian degeneration: an emerging axon death pathway linking 
injury and disease. Nat Rev Neurosci. 2014; 15:394–409. [PubMed: 24840802] 

8. Mack TGA, Reiner M, Beirowski B, Mi W, Emanuelli M, Wagner D, Thomson D, Gillingwater T, 
Court F, Conforti L, et al. Wallerian degeneration of injured axons and synapses is delayed by a 
Ube4b/Nmnat chimeric gene. Nat Neurosci. 2001; 4:1199–1206. [PubMed: 11770485] 

9. Wang J, Zhai Q, Chen Y, Lin E, Gu W, McBurney MW, He Z. A local mechanism mediates NAD-
dependent protection of axon degeneration. J Cell Biol. 2005; 170:349–355. [PubMed: 16043516] 

10. Araki T, Sasaki Y, Milbrandt J. Increased nuclear NAD biosynthesis and SIRT1 activation prevent 
axonal degeneration. Science. 2004; 305:1010–1013. [PubMed: 15310905] 

11. Wang JT, Medress ZA, Vargas ME, Barres BA. Local axonal protection by WldS as revealed by 
conditional regulation of protein stability. Proc Natl Acad Sci. 2015; 112:10093–10100. [PubMed: 
26209654] 

12. Di Stefano M, Nascimento-Ferreira I, Orsomando G, Mori V, Gilley J, Brown R, Janeckova L, 
Vargas ME, Worrell LA, Loreto A, et al. A rise in NAD precursor nicotinamide mononucleotide 
(NMN) after injury promotes axon degeneration. Cell Death Differ. 2015; 22:731–742. [PubMed: 
25323584] 

13•. Osterloh JM, Yang J, Rooney TM, Fox AN, Adalbert R, Powell EH, Sheehan AE, Avery MA, 
Hackett R, Logan MA, et al. dSarm/Sarm1 is required for activation of an injury-induced axon 
death pathway. Science. 2012; 337:481–484. Identified SARM1 in Drosophila as a key regulator 
of Wallerian degeneration and demonstrated that SARM1-deficient mouse neurons are protected 
from axotomy-induced axon degeneration. [PubMed: 22678360] 

Geden and Deshmukh Page 7

Curr Opin Neurobiol. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



14. Gerdts J, Summers DW, Sasaki Y, DiAntonio A, Milbrandt J. Sarm1-mediated axon degeneration 
requires both SAM and TIR interactions. J Neurosci. 2013; 33:13569–13580. [PubMed: 
23946415] 

15••. Gerdts J, Brace EJ, Sasaki Y, DiAntonio A, Milbrandt J. SARM1 activation triggers axon 
degeneration locally via NAD+ destruction. Science. 2015; 348:453–457. Showed that SARM1 
activation, via dimerization, is sufficient to trigger axon degeneration. This degeneration is 
signaled by NAD+ depletion as increased NAD synthesis protected against SARM1-initiated 
axon destruction. [PubMed: 25908823] 

16. Gilley J, Coleman MP. Endogenous Nmnat2 Is an essential survival factor for maintenance of 
healthy axons. PLoS Biol. 2010; 8:e1000300. [PubMed: 20126265] 

17. Gilley J, Orsomando G, Nascimento-Ferreira I, Coleman Michael P. Absence of SARM1 rescues 
development and survival of NMNAT2-deficient axons. Cell Rep. 2015; 10:1974–1981. [PubMed: 
25818290] 

18••. Yang J, Wu Z, Renier N, David DJ, Uryu K, Park DS, Greer PA, Tournier C, Davis RJ, Tessier-
Lavigne M. Pathological axonal death through a MAPK cascade that triggers a local energy 
deficit. Cell. 2015; 160:161–176. Shows that SARM1-mediated NAD+ depletion leads to the 
activation of a MAPK signaling cascade that regulates axon degeneration during axotomy. The 
depletion of MEKK4, MLK2, and DLK as well as their downstream regulators MKK4/MKK7 or 
JNKs all are protective against Wallerian degeneration. [PubMed: 25594179] 

19. Miller BR, Press C, Daniels RW, Sasaki Y, Milbrandt J, DiAntonio A. A dual leucine kinase-
dependent axon self-destruction program promotes Wallerian degeneration. Nat Neurosci. 2009; 
12:387–389. [PubMed: 19287387] 

20. Zhai Q, Wang J, Kim A, Liu Q, Watts R, Hoopfer E, Mitchison T, Luo L, He Z. Involvement of the 
ubiquitin-proteasome system in the early stages of wallerian degeneration. Neuron. 2003; 39:217–
225. [PubMed: 12873380] 

21. Babetto E, Beirowski B, Russler Emilie V, Milbrandt J, DiAntonio A. The Phr1 ubiquitin ligase 
promotes injury-induced axon self-destruction. Cell Rep. 2013; 3:1422–1429. [PubMed: 
23665224] 

22. Xiong X, Hao Y, Sun K, Li J, Li X, Mishra B, Soppina P, Wu C, Hume RI, Collins CA. The 
highwire ubiquitin ligase promotes axonal degeneration by tuning levels of nmnat protein. PLoS 
Biol. 2012; 10:e1001440. [PubMed: 23226106] 

23. Liu Y, Wang Y, Chen Y, Li X, Yang J, Liu Y, Shen A. Spy1 protein mediates phosphorylation and 
degradation of SCG10 protein in axonal degeneration. J Biol Chem. 2015; 290:13888–13894. 
[PubMed: 25869138] 

24. Shin JE, Miller BR, Babetto E, Cho Y, Sasaki Y, Qayum S, Russler EV, Cavalli V, Milbrandt J, 
DiAntonio A. SCG10 is a JNK target in the axonal degeneration pathway. Proc Natl Acad Sci. 
2012; 109:E3696–E3705. [PubMed: 23188802] 

25. Vargas ME, Yamagishi Y, Tessier-Lavigne M, Sagasti A. Live imaging of calcium dynamics during 
axon degeneration reveals two functionally distinct phases of calcium influx. J Neurosci. 2015; 
35:15026–15038. [PubMed: 26558774] 

26. Yang J, Weimer Robby M, Kallop D, Olsen O, Wu Z, Renier N, Uryu K, Tessier-Lavigne M. 
Regulation of axon degeneration after injury and in development by the endogenous calpain 
inhibitor calpastatin. Neuron. 2013; 80:1175–1189. [PubMed: 24210906] 

27. Loreto A, Di Stefano M, Gering M, Conforti L. Wallerian degeneration is executed by an NMN-
SARM1-dependent late Ca2+ influx but only modestly influenced by mitochondria. Cell Rep. 
2015; 13:2539–2552. [PubMed: 26686637] 

28. Buss RR, Sun W, Oppenheim RW. Adaptive roles of programmed cell death during nervous system 
development. Annu Rev Neurosci. 2006; 29:1–35. [PubMed: 16776578] 

29. Yuan J, Yankner BA. Apoptosis in the nervous system. Nature. 2000; 407:802–809. [PubMed: 
11048732] 

30. Kristiansen M, Ham J. Programmed cell death during neuronal development: the sympathetic 
neuron model. Cell Death Differ. 2014; 21:1025–1035. [PubMed: 24769728] 

31. Glebova NO, Ginty DD. Growth and survival signals controlling sympathetic nervous system 
development. Annu Rev Neurosci. 2005; 28:191–222. [PubMed: 16022594] 

Geden and Deshmukh Page 8

Curr Opin Neurobiol. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



32. Eichler ME, Rich KM. Death of sensory ganglion neurons after acute withdrawal of nerve growth 
factor in dissociated cell cultures. Brain Res. 1989; 482:340–346. [PubMed: 2706491] 

33••. Simon DJ, Pitts J, Hertz NT, Yang J, Yamagishi Y, Olsen O, Tešić Mark M, Molina H, Tessier-
Lavigne M. Axon degeneration gated by retrograde activation of somatic pro-apoptotic signaling. 
Cell. 2016; 164:1031–1045. Highlight the importance of the cell body in promoting apoptosis-
induced axon degeneration in the context of NGF deprivation. Utilise a variety of genetic mouse 
models and inhibitors to define key elements of this pathway including TrkA and Akt signaling, 
JNKs, FOXO3a, Puma, Bcl-XL, Bcl-w, and others. [PubMed: 26898330] 

34. Walensky LD, Gavathiotis E. BAX unleashed: the biochemical transformation of an inactive 
cytosolic monomer into a toxic mitochondrial pore. Trends Biochem Sci. 2011; 36:642–652. 
[PubMed: 21978892] 

35. Courchesne SL, Karch C, Pazyra-Murphy MF, Segal RA. Sensory neuropathy attributable to loss 
of Bcl-w. J Neurosci. 2011; 31:1624–1634. [PubMed: 21289171] 

36. Wang X. The expanding role of mitochondria in apoptosis. Genes Dev. 2001; 15:2922–2933. 
[PubMed: 11711427] 

37. Wright KM, Vaughn AE, Deshmukh M. Apoptosome dependent caspase-3 activation pathway is 
non-redundant and necessary for apoptosis in sympathetic neurons. Cell Death Differ. 2007; 
14:625–633. [PubMed: 16932756] 

38. Potts PR, Singh S, Knezek M, Thompson CB, Deshmukh M. Critical function of endogenous 
XIAP in regulating caspase activation during sympathetic neuronal apoptosis. J Cell Biol. 2003; 
163:789–799. [PubMed: 14623868] 

39•. Unsain N, Higgins Julia M, Parker Kristen N, Johnstone Aaron D, Barker Philip A. XIAP 
regulates caspase activity in degenerating axons. Cell Rep. 2013; 4:751–763. Focuses on the 
importance of caspase-3 and the regulation of its actvity by XIAP during apoptotic axon 
degeneration. Shows that NGF deprivation leads to the degradation of XIAP to permit caspase 
activation in axons and that XIAP-deficient neurons exhibit enhanced axon degenration after 
NGF deprivation. [PubMed: 23954782] 

40•. Ghosh AS, Wang B, Pozniak CD, Chen M, Watts RJ, Lewcock JW. DLK induces developmental 
neuronal degeneration via selective regulation of proapoptotic JNK activity. J Cell Biol. 2011; 
194:751–764. Demonstrates the importance of DLK as an essential factor for axon degeneration 
in the context of both global and local deprivation of NGF. Also reports that inhibition of JNK in 
the axons, and not the soma, during local deprivation prevents nuclear accumulation of 
phosphorylated c-Jun. [PubMed: 21893599] 

41. Wyttenbach A, Tolkovsky AM. The BH3-only protein Puma is both necessary and sufficient for 
neuronal apoptosis induced by DNA damage in sympathetic neurons. J Neurochem. 2006; 
96:1213–1226. [PubMed: 16478523] 

42. Luo L, O’Leary DD. Axon retraction and degeneration in development and disease. Annu Rev 
Neurosci. 2005; 28:127–156. [PubMed: 16022592] 

43. Campenot RB. Local control of neurite development by nerve growth factor. Proc Natl Acad Sci 
USA. 1977; 74:4516–4519. [PubMed: 270699] 

44. Taylor AM, Blurton-Jones M, Rhee SW, Cribbs DH, Cotman CW, Jeon NL. A microfluidic culture 
platform for CNS axonal injury, regeneration and transport. Nat Methods. 2005; 2:599–605. 
[PubMed: 16094385] 

45•. Nikolaev A, McLaughlin T, O’Leary DD, Tessier-Lavigne M. APP binds DR6 to trigger axon 
pruning and neuron death via distinct caspases. Nature. 2009; 457:981–989. Initial finding 
demonstating the importance of DR6 for axon pruning both in vitro and in vivo. Also report that 
axon pruning is mediated by Bax and caspase-6. [PubMed: 19225519] 

46. Olsen O, Kallop DY, McLaughlin T, Huntwork-Rodriguez S, Wu Z, Duggan CD, Simon DJ, Lu Y, 
Easley-Neal C, Takeda K, et al. Genetic analysis reveals that amyloid precursor protein and death 
receptor 6 function in the same pathway to control axonal pruning independent of β-secretase. J 
Neurosci. 2014; 34:6438–6447. [PubMed: 24806670] 

47•. Chen M, Maloney JA, Kallop DY, Atwal JK, Tam SJ, Baer K, Kissel H, Kaminker JS, Lewcock 
JW, Weimer RM, et al. Spatially coordinated kinase signaling regulates local axon degeneration. 
J Neurosci. 2012; 32:13439–13453. Identifies GSK3α/β as regulators of axon pruning, both in 
vitro and in vivo. Inhibition of GSK3α/β in the cell bodies alone protects axons from pruning. 

Geden and Deshmukh Page 9

Curr Opin Neurobiol. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Also identify dleu2 and tbx6 as two GSK3α/β-regulated genes upregulated during pruning. 
[PubMed: 23015435] 

48. Mok SA, Lund K, Campenot RB. A retrograde apoptotic signal originating in NGF-deprived distal 
axons of rat sympathetic neurons in compartmented cultures. Cell Res. 2009; 19:546–560. 
[PubMed: 19188931] 

49••. Cusack CL, Swahari V, Hampton Henley W, Michael Ramsey J, Deshmukh M. Distinct pathways 
mediate axon degeneration during apoptosis and axon-specific pruning. Nat Commun. 2013; 
4:1876. Defines that axon degeneration in the context of apoptosis and pruning are mediated by 
distinct pathways While Bax, caspase-9, and caspase-3 are common to both pathways, caspase-6 
is essential for pruning but not apoptosis. Also demonstrates that Apaf-1, which is required for 
apoptosis, is not essential for pruning. Shows that XIAP is important for the spatial restriction of 
caspase activation to axons during pruning. Also demonstrates that mature neuroins are able to 
restrict apoptosis but remain permissive for pruning. [PubMed: 23695670] 

50•. Schoenmann Z, Assa-Kunik E, Tiomny S, Minis A, Haklai-Topper L, Arama E, Yaron A. Axonal 
degeneration is regulated by the apoptotic machinery or a NAD+-sensitive pathway in insects and 
mammals. J Neurosci. 2010; 30:6375–6386. Finds that both Caspase 6 and Caspase 3 are 
activated in axons and that XIAP is degraded in axons in response to global NGF deprivation. 
Found that combined treatment of neurons with NAD+ and caspase inhibitors is significantly 
more protective than either alone during axon apoptosis induced by global NGF deprivation. 
[PubMed: 20445064] 

51. Simon DJ, Weimer RM, McLaughlin T, Kallop D, Stanger K, Yang J, O’Leary DD, Hannoush RN, 
Tessier-Lavigne M. A caspase cascade regulating developmental axon degeneration. J Neurosci. 
2012; 32:17540–17553. [PubMed: 23223278] 

52. Wright KM, Smith MI, Farrag L, Deshmukh M. Chromatin modification of Apaf-1 restricts the 
apoptotic pathway in mature neurons. J Cell Biol. 2007; 179:825–832. [PubMed: 18056406] 

53. Unsain N, Barker Philip A. New views on the misconstrued: executioner caspases and their diverse 
non-apoptotic roles. Neuron. 2015; 88:461–474. [PubMed: 26539888] 

54. Kuo CT, Zhu S, Younger S, Jan LY, Jan YN. Identification of E2/ E3 ubiquitinating enzymes and 
caspase activity regulating Drosophila sensory neuron dendrite pruning. Neuron. 2006; 51:283–
290. [PubMed: 16880123] 

55. Deckwerth TL, Johnson EM Jr. Neurites can remain viable after destruction of the neuronal soma 
by programmed cell death (apoptosis). Dev Biol. 1994; 165:63–72. [PubMed: 8088451] 

56. Vohra BPS, Sasaki Y, Miller BR, Chang J, DiAntonio A, Milbrandt J. Amyloid precursor protein 
cleavage-dependent and -independent axonal degeneration programs share a common 
nicotinamide mononucleotide adenylyltransferase 1-sensitive pathway. J Neurosci. 2010; 
30:13729–13738. [PubMed: 20943913] 

57. Glass JD, Brushart TM, George EB, Griffin JW. Prolonged survival of transected nerve fibres in 
C57BL/Ola mice is an intrinsic characteristic of the axon. J Neurocytol. 1993; 22:311–321. 
[PubMed: 8315413] 

58. Sasaki Y, Araki T, Milbrandt J. Stimulation of nicotinamide adenine dinucleotide biosynthetic 
pathways delays axonal degeneration after axotomy. J Neurosci. 2006; 26:8484–8491. [PubMed: 
16914673] 

59. Watkins TA, Wang B, Huntwork-Rodriguez S, Yang J, Jiang Z, Eastham-Anderson J, Modrusan Z, 
Kaminker JS, Tessier-Lavigne M, Lewcock JW. DLK initiates a transcriptional program that 
couples apoptotic and regenerative responses to axonal injury. Proc Natl Acad Sci. 2013; 
110:4039–4044. [PubMed: 23431164] 

60. Xu Z, Maroney AC, Dobrzanski P, Kukekov NV, Greene LA. The MLK family mediates c-Jun N-
terminal kinase activation in neuronal apoptosis. Mol Cell Biol. 2001; 21:4713–4724. [PubMed: 
11416147] 

61. Ma M, Ferguson TA, Schoch KM, Li J, Qian Y, Shofer FS, Saatman KE, Neumar RW. Calpains 
mediate axonal cytoskeleton disintegration during Wallerian degeneration. Neurobiol Dis. 2013; 
56:34–46. [PubMed: 23542511] 

62. Whitmore AV, Lindsten T, Raff MC, Thompson CB. The proapoptotic proteins Bax and Bak are 
not involved in Wallerian degeneration. Cell Death Differ. 2003; 10:260–261. [PubMed: 
12700655] 

Geden and Deshmukh Page 10

Curr Opin Neurobiol. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



63. Deckwerth TL, Elliott JL, Knudson CM, Johnson EM Jr, Snider WD, Korsmeyer SJ. Bax is 
required for neuronal death after trophic factor deprivation and during development. Neuron. 1996; 
17:401–411. [PubMed: 8816704] 

Geden and Deshmukh Page 11

Curr Opin Neurobiol. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Axotomy activates the Wallerian degeneration pathway for the selective elimination and 

degeneration of severed axons. This mechanism of axon degeneration occurs in response to 

the physical severing of axons from their cell bodies. Wallerian degeneration occurs 

independently of NGF signaling and the presence of NGF is illustrated in this context only 

for contrast with the axon apoptosis and axon pruning pathways.
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Figure 2. 
Global NGF deprivation activates the apoptotic pathway to degenerate both soma and axons, 

in the model of sympathetic neurons. We refer to the axon degeneration that occurs during 

apoptosis as ‘axon apoptosis’ for clarity and to distinguish this axon degeneration from that 

observed during axon pruning. Here, major components of the apoptotic pathway engaged 

during axon apoptosis are highlighted for clarity.
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Figure 3. 
Pruning is the selective degeneration of only the axon exposed to the pruning stimulus, 

leaving the cell body intact. Pruning can be studied in compartmentalized (illustrated by the 

gray barrier) cultures where NGF can be selectively deprived from the axons, while cell 

bodies are maintained in NGF. The axon pruning pathway shares many of the same 

machinery as the axon apoptosis pathway, but several significant differences exist which are 

discussed in the text and are highlighted in Table 1.
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Table 1

Shared and distinct components of the axon degeneration pathways:

Axotomy Apoptosis Pruning

Wlds +++ [57] Axons ++
Soma − [55]

?

NMNAT overexpression +++ [58] Axons ++
Soma − [56]

?

Sarm1 −/− +++ [13•,14] +/− [13•,14] ?

MLK-depletion (DLK, MLK, MEKK4) +++ [18••,19,59] +++ [40•,59,60] +++ [40•]

Inhibition or loss of JNKs +++ [19,33••] +++ [19,40•] +++ [47•]

Inhibition of Calpains + [26,61] + [26] ?

NGF/TrkA stimulation − [33••] +++ [33••] +++ [33••]

Bax −/− − [62] +++ [63] +++ [45,49••]

Apaf-1 −/− ? +++ [33••,37] − [49••]

Caspase 9 −/− ? +++ [37] +++ [49••]

Caspase 6 −/− ? − [49••] +++ [49••,51]

Caspase 3 −/− − [51] +++ [37] +++ [45,49••]

Summary of the functional importance of select key proteins in mediating axon degeneration in the contexts of axotomy, apoptosis, and pruning. 
The degree of protection reported is represented as: +++ excellent or complete protection, ++ significant protection, + some protection, − no 
protection,? not yet known. The relevant publications (not an exhaustive list) are also indicated.
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