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Abstract

Cells have evolved a variety of mechanisms to regulate the enormous complexity of processes 

taking place inside them. One mechanism consists in tightly controlling the localization of 

macromolecules, keeping them away from their place of action until needed. Since a large fraction 

of the cellular response to external stimuli is mediated by gene expression, it is not surprising that 

transcriptional regulators are often subject to stimulus-induced nuclear import or export. Here we 

review recent methods in chemical biology and optogenetics for controlling the nuclear 

localization of proteins of interest inside living cells. These methods allow researchers to regulate 

protein activity with exquisite spatiotemporal control, and open up new possibilities for studying 

the roles of proteins in a broad array of cellular processes and biological functions.

Introduction

Many cellular processes are naturally regulated via control of nuclear import and export [1]. 

For instance, gene transcription is often repressed by sequestering transcription factors in the 

cytosol [2]. To enter and exit the nucleus, macromolecules dynamically interact with nuclear 

transport receptors which facilitate passage through nuclear pore complexes [3,4]. The 

interaction between cargo molecules and the transport receptors is frequently mediated by 

short linear motifs on the cargo called nuclear localization signals (NLS) or nuclear export 

signals (NES) [3,5]. The discovery of these interactions and the control mechanisms that 

regulate them is enabling new technologies which allow cell biologists to manipulate when 

and where proteins enter the nucleus. These inducible systems offer a powerful alternative to 

traditional gene knock-out or RNA knock-down approaches for studying dynamic processes.
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In this review, we briefly describe the protein interactions that mediate nucleocytoplasmic 

transport and provide examples of how these interactions are regulated in natural systems. 

We then present the methods that have been devised for inducible control of nuclear 

localization. These approaches fall into two broad categories: control via small molecules 

and control via light-mediated protein switches (Figure 1). Some of these methods lead to 

non-reversible nuclear accumulation/depletion, while some of the light-based techniques are 

compatible with repeated cycles of import and/or export. Reversible control is particularly 

promising for studying the influence of protein dynamics on cellular decisions. We conclude 

with a perspective on the most important challenges that need to be overcome to permit the 

widespread usage of these tools in research labs.

Nucleocytoplasmic transport

Transport in and out of the nucleus occurs through the nuclear pore complex (NPC) [4,6]. 

Nuclear pore proteins with arrays of phenylalanine-glycine repeats create a permeability 

barrier in the NPC that restricts the flow of proteins through the pore [7,8]. Smaller proteins 

(< 40 kDa) can diffuse through the barrier, while larger proteins require the assistance of 

nuclear transport receptors [9]. Karyopherins are the primary transport receptors used in the 

cell and can act as importins, helping proteins get into the nucleus, or exportins, helping 

proteins leave the nucleus [3]. Karyopherins generally bind to specific linear motifs on their 

transport cargoes.

Importin-α is a karyopherin that binds to nuclear localization signals (NLSs) on cargoes and 

interacts with Importin-β to direct proteins to the nucleus. The sequence and structural 

determinants of binding between Importin-α and NLS motifs have been extensively studied 

[10], and it has been shown that the affinity of Importin-α for a particular NLS influences 

transport efficiencies [11]. NLSs are often short sequences of positively charged lysines and 

arginines. CRM1 (chromosome region maintenance 1, exportin1) is the major nuclear export 

receptor and interacts with nuclear export signals (NESs) that are rich in hydrophobic amino 

acids [12]. Loading and unloading of cargo from the transport receptors is controlled by the 

GTPase Ran [13]. For a more extensive explanation of how nucleocytoplasmic transport 

functions we refer readers to other reviews focused on this topic [10,14,15].

Controlling nuclear localization as a strategy to control protein activity

Most cellular processes need to occur at specific times and locations within a cell for 

accurate and specific cellular function. Therefore, the appropriate proteins need to be 

activated in the right place, at the right time. This can be accomplished by always 

maintaining the proteins in the correct location, but keeping them inactive until needed 

[16,17]. Alternatively, activated proteins can be recruited to the correct location when 

needed [18,19]. Both strategies allow for rapid control as protein activation via post-

translational modification and recruitment can occur much more quickly than transcription 

and translation. Gene expression is a prominent example of a process regulated this way 

[20,21]. Transcription factors and transcriptional co-regulators often are denied access to the 

nucleus where they would find their interacting partners (DNA, co-factors, etc.), remaining 

cytoplasmic until the proper stimuli trigger their nuclear accumulation. Nuclear 

accumulation can also be transient, to allow for adaptation and termination of cellular 
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response. Transient control is achieved by quickly shifting from rapid nuclear import to 

rapid export.

For example, Signal transducer and activator of transcription 1 (STAT1) is a transcription 

factor that is kept in a latent, monomeric form in the cytoplasm in the absence of activating 

signals (cytokines, hormones and growth factors). Upon signal transduction cascade 

initiation, STAT1 is phosphorylated at the plasma membrane by activated kinases (e.g. 

members of the Janus kinase (JAK) family) on a conserved tyrosine at its C- terminus and 

dimerizes [22–25]. Dimer formation induces a conformational change that presents a non-

classical NLS to Importin-α5 leading to transport of phosphorylated, dimeric STAT1 into 

the nucleus [26,27]. Once inside the nucleus, phosphorylated, dimeric STAT1 binds to its 

cognate DNA responsive elements. DNA binding conceals STAT1 NES and prevents its 

dephosphorylation [28], thus nuclear accumulation is further enhanced through repression of 

export.

NF-κB is another example of a transcription factor kept in a latent form in the cytoplasm by 

interaction with its inhibitor IκB. The NF-κB/IκB complex constantly shuttles between the 

nucleus and the cytoplasm, but, since the NES on IκB is stronger than the NLS on NF-κB 

(partly concealed in the complex [29,30]), the resulting localization is heavily shifted 

towards the cytoplasm [31]. Upon arrival of the stimulus onto the cells, IκB gets 

phosphorylated, which leads to its ubiquitination and proteasomal degradation [32]. Once its 

inhibitor is removed, NF-κB can be imported in the nucleus via its fully exposed NLS.

Transcription can also be initiated by exporting repressors out of the nucleus, and terminated 

by re-importing the repressors in the nucleus [33]. For instance, class II histone deacetylases 

HDAC4 and −5 bind to the transcription factor MEF2 turning it into a repressor [34–37]. 

During myogenesis, this repression has to be released to allow transcription of muscle genes. 

This is achieved through export of HDAC4 and −5 from the nucleus. The mechanism 

involves phosphorylation of HDAC5 by calcium-calmodulin-dependent protein kinase 

(CaMK) on two serines (at positions 259 and 498) which triggers binding to the chaperone 

14-3-3 and exposure of the otherwise cryptic NES on HDAC5 [38]. Binding to 14-3-3 may 

additionally block the NLS on HDAC5, thus having two synergistic effects to localize the 

protein to the cytosol [38]. In order for HDAC5 to reenter the nucleus dephosphorylation at 

the two serines is required, likely involving protein phosphatase function in this process.

Importantly, in the last years it is becoming evident that the dynamics of nuclear 

accumulation play a critical role in determining the cellular response to specific stimuli [39–

42]. In order to unravel the importance of these dynamics on determining cellular output, 

methods to reversibly, quickly and precisely control the nuclear localization of proteins of 

interest are needed.

Methods to control nuclear localization

Chemical Control

Discovered in a screen for antifungal antibiotics, leptomycin B (LMB) is a branched-chain 

fatty acid that binds covalently to cysteine 528 on the surface of CRM1 and inhibits binding 
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to NES motifs [43]. Low nanomolar concentrations of LMB are sufficient to induce nuclear 

accumulation of proteins dependent on CRM1 for export, and similar molecules are 

currently being tested for anti-cancer activity [44]. However, LMB is a blunt tool for 

studying the function of individual proteins as it blocks the export of a large set of proteins, 

and long incubation times can lead to the induction of apoptosis or cell cycle arrest.

To control the transport of individual proteins, strategies have been developed that involve 

genetically modifying the protein of interest. Upon ligand binding, class-1 nuclear receptors, 

such as the estrogen receptor (ER), dissociate from heat shock proteins and translocate to the 

nucleus. Taking advantage of this natural mechanism, researchers have fused nuclear 

receptors to proteins of interest (POIs) in order to create ligand-dependent import [45]. In 

some cases, this has required engineering NES and/or NLS in the fusion protein to tune the 

export and import properties of the switch [46,47]. A fusion between ER and Cre 

recombinase is frequently used for inducing site-specific recombination with the ER ligand, 

tamoxifen [48].

Several groups have demonstrated that rapamycin-induced dimerization of the FK506 

binding protein (FKBP) and the FKBP12-rapamycin-binding (FRB) domain of mTOR can 

be used to control the nuclear import or export of POIs (Figure 1) [49–53]. With this strategy 

one half of the dimer system is fused to the POI and the other half is fused to a NLS, NES, 

or to a protein that is known to undergo robust localization to the nucleus or cytosol. In 

Saccharomyces cerevisiae the ribosomal protein Rpl13a has proven effective at directing 

nuclear export as it is abundantly expressed and rapidly transported to the cytoplasm after 

being assembled into ribosomes in the nucleus [51]. Following exposure to rapamycin, the 

target is transported to the cytosol within 15 minutes. Similarly, nuclear import via 

rapamycin-induced recruitment of a FKBP-NLS chimera has been shown to occur in 10–15 

minutes in yeast [50]. These approaches have been used to study a variety of processes 

including transcription [54], spindle positioning [55], and establishment of cell polarity [56]. 

One challenge that can arise when using rapamycin is that will also bind and inhibit 

endogenous mTOR, which can lead to unwanted toxicity. In yeast, this problem can be 

circumvented by using rapamycin-resistant strains that contain a mutated TOR1 and deleted 

FPR1, a yeast homolog to FKBP12 [50,51]. Alternatively, rapamycin analogs (rapalogs) 

have been developed that only bind to mutated forms of FRB [57]. It has been shown that by 

using multiple rapalogs and engineered proteins simultaneously it is possible to direct a POI 

to the nucleus with one rapalog, and to the cytosol with a separate rapalog [58]. For further 

details on chemical dimerization systems we refer readers to other reviews on this topic [59–

61].

Light-inducible control

Irreversible control—Light-inducible control of nuclear transport has gained significant 

interest lately because it offers some advantages when compared to chemical induction. 

Using lasers, light can be applied with very tight spatial resolution in living cells and 

animals, and it can be rapidly turned on and off. In an early example of light-mediated 

control, an NLS peptide was synthesized with a critical lysine modified with a 

photocleavable group sensitive to UV light [62]. The modified NLS was conjugated to 
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BSAin vitro and then microinjected into cells. Only after UV stimulation could the NLS 

bind to importins, and recruit BSA to the nucleus. More recently, to avoid the need for 

microinjection, a genetically encoded system was developed for expression of caged lysines 

and used to activate a NLS fused to a transcription factor (Figure 1). This approach is not 

reversible and requires special expression systems for the caged lysine [63].

Another UV light-based approach consists in using the Arabidopsis thaliana UVR8 

photoreceptor which binds to the E3 ubiquitin ligase COP1 after irradiation with UV-B light 

(280–315 nm) [64,65]. The basic idea behind this approach is very similar to the one that 

characterizes rapamycin-based methods: one of the two components should reside inside the 

nucleus the whole time, while the other component fused to the POI should be mostly 

cytoplasmic but still shuttling inside the nucleus where it can find its binding partner, in this 

case after illumination with UV-B light. When testing accumulation of GFP fused to UVR8, 

Crefcoeur and colleagues observe slow kinetics of nuclear accumulation [66]. Kinetics 

might get slower for a POI larger than GFP [67–69]. This system is irreversible, therefore it 

is mostly suited for applications where the protein to be light-controlled has an all-or-none 

function (e.g. Cre recombinase). In this case, import kinetics are likely less critical.

Reversible control

Methods based on the red/far-red responsive PhyB-PIF system: The plant phytochrome 

B (PhyB) exists in three conformations: 1) the apo-form not bound to the chromophore 

phycocyanobilin (PCB); 2) the chromophore-bound, red light absorbing Pr conformation, 

which is biologically inactive; and 3) the chromophore-bound, infrared absorbing Pfr 

conformation, which is active [70]. PhyB in the Pfr form interacts with phytochrome 

interacting factors (PIFs) and the interaction is released by infrared illumination, which 

brings PhyB back to its red-absorbing, non-PIF binding Pr state [71]. This light-dependent 

complex formation has been successfully used in the engineering of optogenetic control of 

protein-protein interactions [72–76]. More recently the system has been adapted to 

specifically control nuclear translocation. There are two slightly different versions of PhyB-

PIF-mediated nuclear translocation.

In one version, developed by Yang and co-workers for usage in budding yeast, PhyB is 

either anchored to the nucleus by means of a fusion to the histone H2B or kept nuclear by 

means of fusion to a NLS [77]. The POI is fused to a fragment of PIF6 (aa 1–100) and is 

equally distributed between cytoplasm and nucleus. Nuclear localization is likely due to the 

presence of a weak NLS on PIF. Once red light is shone on the cells, PhyB and PIF interact, 

thereby causing the retention of the POI in the nucleus. This method has been shown to 

work with fluorescent proteins of various sizes (e.g. mCitrine, GFP-GFP or Venus-Venus-

Venus) and with the biologically relevant protein cyclin Clb2. Using their optogenetic 

system, the authors investigated interesting aspects of Clb2 biology, such as the time during 

the cell cycle at which it is needed for nuclear fission. Importantly, this tool is not restricted 

to nuclear localization, as by simply selecting another type of anchor the POI can be 

recruited to various cellular addresses, including small organelles such as the spindle pole 

body, peroxisomes and the nucleolus. Indeed, by choosing the plasma membrane as anchor, 
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the POI can be depleted from the nucleus, effectively producing an optogenetic version of 

techniques based on chemically induced dimerization.

In another variation developed by Beyer and co-workers for use in mammalian cells, the POI 

is fused to PhyB and can contain a NES to allow return of the fusion protein to the 

cytoplasm after nuclear localization (without additional NES the fusion protein is trapped in 

the nucleus and the tool is, thus, irreversible [78]). The PIF used here is the full length PIF3 

from Arabidopsis thaliana. The authors take advantage of the biology of the system, 

whereby PhyB gets translocated in the nucleus by virtue of its interaction with PIF3 under 

red light [78] (Figure 1). This system has been used to control gene expression in 

mammalian cells and zebrafish using a synthetic transcription factor based on the TetR 

binding domain and the VP16 transactivation domain.

Both approaches based on the PhyB-PIF system share many properties. First of all, there is 

no light absorption (and therefore complex formation) until the PCB chromophore is added, 

which provides a tight off state for the start of experiments. When addition of the 

chromophore is not a problem –e.g. in cell culture or at the early stages of development in 

zebrafish larvae (when done by injection) – these methods are quite advantageous. However, 

having to externally add the chromophore mitigates other advantages of red light, i.e. its 

deeper penetration into tissue, making the use of the PhyB-PIF system in animals for 

instance more challenging. While production of PCB by Chinese hamster ovary cells has 

been established by introducing two enzymes that convert heme into PCB [79], the question 

remains whether adopting the same strategy in animals would be possible given that heme is 

a very important cofactor in many reactions, among which cellular respiration.

The interaction between PhyB and PIF can be quickly disrupted at any time point by shining 

infrared light onto the cells, meaning that the tools have a high temporal resolution, only 

limited by nucleocytoplasmic transport itself. Reversibility is, though, obtained at the cost of 

equipping the microscope with a filter set or laser for infrared light. Finally, these methods 

are based on two components and, therefore, the concentration of each one needs to be 

carefully titrated to achieve quantitative control of protein nuclear accumulation kinetics.

Methods based on the blue light responsive LOV2 domain of Avena sativa: Light 

Oxygen Voltage (LOV) domains are protein domains that sense changes in oxygen, redox 

potential and light in cells [80,81]. The second LOV domain of Avena sativa phototrophin 1 

(As LOV2) has been extensively used for creating optogenetic switches because it is small, 

binds a chromophore that is abundant in nature (Flavin Mononucelotide, FMN), and 

undergoes a well characterized structural transition with blue light stimulation that can be 

harnessed to regulate protein-protein interactions and protein function (see Box 1 for more 

details).

Recently, methods to control nuclear protein import and export with the As LOV2 domain 

have been developed [82,83,86,87] (Figure 1). These methods all control the accessibility of 

engineered NLSs and NESs by embedding them in the Jα helix of As LOV2 so that they are 

more exposed when the Jα helix undocks from the rest of the protein in the lit state (Box 1 

and Figure 2a). Interestingly, the tools for import (LINuS and LANS), as well as those for 
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export (LEXY and LINX), were independently developed in two laboratories, providing 

evidence that this approach is robust, can be used on different proteins, in several cell lines 

and animals, and for different biological applications.

One useful feature of these systems is that they are single-component (Figure 2 b–d). The 

POI is fused to the modified As LOV2 (which is as small as GFP) bearing either a caged 

NLS (LINuS and LANS) or NES (LEXY and LINX), and is expressed in cells. In the 

presence of blue light, the exposed NLS/NES interacts with the endogenous import/export 

machinery triggering accumulation of the fusion protein in the nucleus/cytoplasm (Figure 2). 

These methods have been used to control entry into mitosis [87], gene expression from 

synthetic [82,83,86,87] or natural transcription factors such as p53 [86] and an E3 ubiquitin 

ligase that modifies histone H2B in yeast [82]. In the latter study, rapid removal of the E3 

ligase from the nucleus allowed the investigators to monitor the in vivo stability of the 

monoubiquitylated H2B. Surprisingly, the modification was removed within two minutes, 

highlighting the dynamic nature of epigenetic modifications and demonstrating the 

usefulness of light-activated tools for studying dynamic processes.

Methods based on the LOV2 domain suffer from the problem of “leakiness”, i.e. activation 

of the system prior to illumination. This is due to the fact that the LOV2 domain always 

exists in its two conformations and light only shifts the equilibrium towards the lit state [94]. 

This means that, even in the dark, there is always some spontaneous uncaging of the 

NLS/NES with consequential import/export of the fusion protein. To compensate for this, 

Niopek and colleagues, and Yumerefendi and colleagues added a constitutively exposed 

countersignal –that is, a NES for their import tools and a NLS for their export tools –to 

ensure that the fusion protein rapidly returns to the appropriate compartment in the dark 

state. Notably, such additional sequences might not be necessary when the POI already 

contains them. Interestingly, these tools can also be used in combination with other 

optogenetic switches; for instance, by using the LYNX switch in tandem with a light-

induced dimer that recruited the LYNX-POI fusion to the mitochondria in the light, the 

authors further reduced nuclear levels in the lit state [82]. In another example, the tools for 

nuclear import and export were combined to control with the same light pulse the movement 

of two fluorescent proteins in opposing directions [86]. One attractive feature of As LOV2-

based systems is that the FMN chromophore is endogenously made by all cell types, readily 

allowing experiments in animals [96]. The shallow tissue penetration of blue light can be 

bypassed for example by using upconversion nanoparticles (UCNPs) which convert near-

infrared light into visible light [97–100].

Opto-LMB: Niopek and colleagues also created a different version of their export LEXY 

tool which effectively corresponds to a light-inducible LMB treatment (the authors call it 

Opto-LMB). By fusing the engineered As LOV2-NES domain to histone H2B, their 

anchored a light-inducible CRM1 “sponge” into the nucleus. When cells are illuminated 

with blue light, the NES gets exposed binding the endogenous export receptors, making 

them unavailable to bind to and export other cargos [86]. Albeit being less tight than LMB 

itself, Opto-LMB is genetically encoded and fully reversible, thus problems arising from 

LMB toxicity can be avoided. Moreover, as NESs of different strengths can be caged within 
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the LOV2 domain, this tool can be tuned to block the export of a subset of endogenous 

targets.

Conclusion and outlook

Since many biological processes are controlled by the timely translocation of proteins in or 

out of the nucleus, being able to induce such translocation with an external trigger is very 

important for cell biological studies. Nowadays, this is possible with the tools presented 

here, among which cell biologists can find the one most suited for the specific application 

(Table 1). Still, in most cases, optimization of the selected switch is required to obtain 

optimal results with the POI in any given cellular system (see for instance [102]).

While many studies are conducted with overexpressed proteins (i.e. transient transfection of 

plasmid-bore engineered construct in cells), modern genome-engineering techniques such as 

CRISPR/Cas [103] will allow for more studies with protein expressed from their 

endogenous locus. In this case, single-component tools are advantageous requiring only 

appending the photoswitch to either terminus of the POI. Notably, Yumerefendi and 

colleagues demonstrated that LANS functioned when integrated in the genome of C. elegans 
[83].

Finally, a challenge for the future will be to find ways to directly control the localization of 

unmodified, endogenous proteins. We speculate that combining the switches presented here 

with engineered peptides or proteins [104] that bind with high specificity and affinity their 

targets is a promising strategy in this direction.
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Box 1

Using the AsLOV2 domain to regulate peptide-protein interactions. Several studies 

have demonstrated that the LOV2 domain from Avena sativa phototropin 1 (As LOV2) 

can be used to effectively cage peptides so that they have reduced affinity for their 

binding partners in the dark, but binding is restored in the light [82–90]. This change in 

binding affinity can be used to regulate a variety of cellular processes including nuclear 

import and export. As LOV2 binds a flavin mononucleotide (FMN) in the center of the 

protein. Upon irradiation with blue light, a metastable covalent bond is formed between a 

cysteine in the core of the protein and a carbon atom of the FMN [91]. NMR studies 

indicate that this leads to large conformational changes in the protein, including 

undocking and unfolding of the C-terminal helix of the protein (the Jα helix) [92]. When 

the light is turned off, the metastable bond breaks within seconds to hours, depending on 

the LOV domain ortholog (for As LOV2 the reversion time is ~30 sec.) [93], and the the 

Jα helix refolds. It is important to point out that the changes to the Jα helix between the 

lit and dark state are not an all or none process, but rather there is always an equilibrium 

between the docked/folded state and the undocked/unfolded state. For wild type As 
LOV2 the docked/undocked ratio is 98.4/1.6 In the dark and 9/91 in the lit state [94]. The 

sequence alignment shows the various positions at which investigators have placed 

peptides of interest (underlined residues) in the As LOV2 to achieve light sensitivity. In 

order to achieve caging in the dark it is important to have at least a few critical residues 

from the peptide embedded in the last helical turn of the Jα helix. In creating the 

chimeric sequences, it is also important to conserve the hydrophobicity of the Jα residues 

that are packed against the core of the domain. The crystal structure shown here is of the 

As LOV2 domain with the SsrA peptide embedded in the Jα helix [90]. This construct 

also includes an engineered phenylalanine at the end of the Jα helix that packs back 

against the domain and further holds the dark state closed. Other Jα helix mutations have 

also been discovered that stabilize the closed state of the protein, and can be used to 

improve switching [95].
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Highlights

• Protein localization regulates function

• Gene expression is controlled by nuclear localization of transcriptional 

regulators

• The basic signals dictating nuclear import and export have been 

deciphered

• Small molecules can be used to control nuclear transport of engineered 

proteins

• Light-activatable proteins can provide reversible control of nuclear 

localization
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Figure 1. 
Overview of methods for external control of nuclear protein localization. For simplicity, only 

some of the methods are depicted here. Different color zones correspond to different 

methods. The selected colors roughly indicate the wavelengths used for illumination: UV 

light for uncaging lysines, blue light to activate the LOV domain and red/infrared light to 

activate/de-activate the PhyB/PIF system. Numbers indicate temporally sequential events. In 

the case of the lysine caged with a photo-removable protective group, the cargo is depicted 

with a small black tongue, to indicate the presence of the unnatural amino acid. NCP: 
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nuclear pore complex; FRB: FKBP and rapamycin binding domain; As LOV2: Avena sativa 
LOV2 domain from phototrophin 1; PhyB: phytochrome B; PIF: phytochrome interacting 

factor.
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Figure 2. 
As LOV2-based methods for controlling import and export. (a) Schematic drawing showing 

the conformational change of As LOV2 upon light absorption leading to Jα helix undocking 

and unfolding and consequential exposure of NLS/NES motifs. This mechanism is common 

to LINuS, LANS, LEXY and LINX. (b–d) Upper panel: schematic drawing of the construct. 

Thin black line, flexible linker. (b) Representative images of HEK 293T cells expressing 

NES-mCherry-LINuS before and after blue light illumination. Scale bar, 15 µm. LINuS here 

is the biLINuS22 variant. NES, PKIt NES. (c) Representative images of a C. elegans embryo 
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before and after blue light illumination. Scale bar, 10 µm. LANS here is the variant LANS4. 

(d) Representative images of HEK 293T cells (left) and mouse fibroblasts (IA32) cells 

(right) transfected with the indicated construct before and after blue illumination. Scale bar, 

20 µm (left) and 50 µm (right).

Di Ventura and Kuhlman Page 20

Curr Opin Chem Biol. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Di Ventura and Kuhlman Page 21

Table 1

Methods for Inducible Control of Nuclear Localization

System/
Molecule Engineered Function Critical Features Selected

References

Chemical
Induction

Leptomycin B
(LMB)

Broad inhibitor of
nuclear export

Covalent inhibitor of CRM1
Non-reversible [36]

Fusions with
nuclear

receptors

Ligand binding induces
nuclear import

Estrogen, Glucocorticoid,
and Progesterone

receptors have been used
Commonly used to control

Cre recombinase
One-component system

[39] [40]

Rapamycin-
dependent

dimerization

Protein of interest
recruited to cytosolic

or nuclear proteins via
dimerization

Common technique in
yeast (“anchor away”)
Requires rapamycin-
resistant yeast strain

Non-reversible inhibition in
<15 minutes

Two-component system

[49–53]

Light
Induction

Photocaged
lysine in a NLS

Inducible nuclear
import of fusion

proteins

Non-reversible / UV-light
sensitive

Requires cells engineered
for use with non-natural

amino acids
One-component system

[62,63]

PhyB/PIF
dimerization

Inducible nuclear
import or export of

fusion proteins

Reversible: 650 nm ->
PhyB/PIF complex forms,

750 nm -> PhyB/PIF
complex dissociates

Very tight spatio-temporal
control

Chromophore must be
supplied in non-plant

systems
Two-component system

[77,78,101]

Caging of NLS
with AsLOV2

Inducible nuclear
import of fusion

proteins

Reversible: 450 nm ->
nucleus, dark -> cytoplasm
Chromophore abundant in

most systems
One-component system

[83,87]

Caging of NES
with AsLOV2

Inducible nuclear
export of fusion

proteins

Reversible: 450 nm ->
cytoplasm, dark -> nucleus
Chromophore abundant in

most systems
One-component system

[82,86]

UVR8
dimerization

with COP1/NLS

Inducible nuclear
import of fusion

proteins.

UV-B light sensitive
Slower than other systems

(responds in minutes to
hours); Two-component

system

[66]
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