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Summary

At the leading edge of migrating cells, protrusion of the lamellipodium is driven by Arp2/3-

mediated polymerization of actin filaments [1]. This dense, branched actin network is 

promoted and stabilized by cortactin [2, 3]. In order to drive filament turnover, Arp2/3 

networks are remodelled by proteins such as GMF which blocks the actin-Arp2/3 interaction 

[4, 5], and coronin 1B which acts by directing SSH1L to the lamellipodium where it 

activates the actin severing protein cofilin [6, 7]. It has been shown in vitro that cofilin-

mediated severing of Arp2/3 actin networks results in the generation of new pointed ends to 

which the actin-stabilizing protein tropomyosin (Tpm) can bind [8]. The presence of Tpm in 

lamellipodia however is disputed in the literature [9–19]. Here we report that the Tpm 

isoforms 1.8/9 are enriched in the lamellipodium of fibroblasts as detected with a novel 

isoform-specific monoclonal antibody. RNAi-mediated silencing of Tpm1.8/9 led to an 

increase of Arp2/3 accumulation at the cell periphery and a decrease in the persistence of 

lamellipodia and cell motility, a phenotype consistent with cortactin and coronin 1B-

deficient cells [2, 7]. In the absence of coronin 1B or cofilin, Tpm1.8/9 protein levels are 

reduced while conversely, inhibition of Arp2/3 with CK666 led to an increase in Tpm1.8/9 

protein. These findings establish a novel regulatory mechanism within the lamellipodium 

whereby Tpm collaborates with Arp2/3 to promote lamellipodial-based cell migration.
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Results and Discussion

The precise localization of Tpm at the leading edge of cells has been controversial with 

studies reporting the absence of Tpms from lamellipodia [9–11, 13], and others reporting 

their presence at or near lamellipodia [16–19]. These opposing observations are partly due to 

the lack of appropriate reagents to detect the Tpms. Here we report the characterization of a 

novel monoclonal antibody (α/1b) generated by two overlapping peptides spanning the 

entire exon 1b of the Tpm1 gene as the immunogen (Figure 1A). A panel of recombinant 

Tpm proteins comprised of isoforms representing all four Tpm genes was probed with the 

α/1b antibody. It preferentially detects isoforms Tpm1.8 and Tpm1.9 with minor cross 

reactivity with Tpm2.1 (Figure 1B). Tpm1.8/9 share a similar amino-terminal exon/intron 

structure with Tpm1.12 [19], an isoform found at the leading edge of neuronal cells [17]. 

The spatial distribution of Tpm1.8/9 was assessed in mouse embryonic fibroblasts (MEFs) 

that display characteristic lamellipodia [20]. MEFs were co-stained with α/1b and CG1 (an 

antibody specific for Tpm2.1 [19]) in order to demonstrate that lamellipodial staining in 

these cells is due to the presence of Tpm1.8/9 rather than Tpm2.1, which is more prominent 

in stress fibers [19, 21, 22]) (Figures 1C and 1D) (see also Figure S1 and S2). MEFs were 

also co-stained with anti-cortactin and anti-Arp2 to demonstrate that both of these proteins 

are present in the lamellipodium (Figure 1E), as well as with α/1b and anti-Arp2 (Figure 

1F). Finally, 3 μm × 3 μm enlargements (Figure 1G) of regions along the leading edge 

(indicated in the merge panel of Figure 1F) reveal that, although both are present in the 

lamellipodium, Tpm1.8/9 (red) and Arp2 (green) do not overlap significantly. Co-

localization was quantitated using Pearson’s coefficient (Figure 1G), showing that, 

compared to a cortactin control, Tpm1.8/9 and Arp2 display a significantly lower level of 

co-localization (R), suggesting that Tpm1.8/9 and Arp2/3 associate with different 

populations of actin filaments within the lamellipodium. This is supported by in vitro studies 

which showed that binding of the Arp2/3 complex to actin filaments is inhibited by Tpm1.9 

[10], but interestingly, not the related Tpm1.12 [17, 23].

Due to the biochemical incompatibility of Arp2/3 and most Tpms, early reports suggested 

that they were spatially segregated [10, 11]. It has also been proposed that persistent 

advancement of the cell relies on the underlying lamella [12, 24] which is supported by 

observations that cell migration is possible without a lamellipodium [13] and Arp2/3 is 

dispensable for chemotaxis [25]. To investigate the potential role of Tpm1.8/9 in regulating 

Arp2/3 within the lamellipodium, we designed a siRNA to target exon 1b of the mouse 

Tpm1 gene. Western blot analysis of MEF lysates 48 h post transfection shows successful 

knockdown of Tpm1.8/9 protein (Figure 2A) without impacting other Tpm isoforms (Figure 

S3). Cells were submitted to a random migration assay, which revealed that Tpm1.8/9 

siRNA treated cells exhibited a significant reduction in whole-cell velocity (Figure 2B). 

Leading edge dynamics was evaluated by generating kymographs of active lamellipodia 

taken from 10 minute live DIC movies of control or Tpm1.8/9 knockdown MEFs. Analysis 

of the kymographs revealed that, whilst protrusion velocity (Figure 2C) and retraction 

velocity (Figure 2D) were both increased as a result of Tpm1.8/9 knockdown, protrusion 

persistence, a measure of lamellipodial stability, was significantly reduced in Tpm1.8/9 

siRNA-treated cells (Figure 2E). Since persistent advancement of the lamellipodium is 
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largely driven by Arp2/3 activity, and Arp2/3 and Tpm1.8/9 appear to associate with 

different actin filament populations (Figure 1G), we postulated that Tpm1.8/9 may have an 

antagonistic effect on the binding of Arp2/3 to actin filaments within the lamellipodium, a 

property of Tpm1.9 in vitro [10]. To test this, we measured the percentage of the cell edge 

that contains Arp2 relative to cell area in control and Tpm1.8/9 knockdown cells (Figure 

2G). Whilst we observed no significant change in cell area (Figure 2F), we saw a significant 

increase in the percentage of the cell edge that contains Arp2 in the Tpm1.8/9 knockdown 

cells compared to control (Figure 2H), suggesting that knockdown of Tpm1.8/9 results in an 

increased ability of the Arp2/3 complex to bind to actin filaments and spread along the cell 

periphery. Finally, as Arp2/3 activity generates a dense, branched actin network, we 

hypothesized that its increased activity, due to reduced inhibition from Tpm1.8/9, should 

also lead to a thicker lamellipodium due to an increased abundance of branched, filamentous 

actin (F-actin) at the leading edge. The lamellipodium is clearly identifiable as an F-actin 

rich band, as probed by phalloidin in fibroblasts [26]. We measured the width of the 

lamellipodium in control and Tpm1.8/9 knockdown cells (Figure 2I). Analysis of 15 cells 

from each group revealed that lamellipodia in the Tpm1.8/9 knockdown cells were, on 

average, significantly thicker than those in the control group (Figure 2J).

There is controversy in the literature about the organization of the actin network at the 

leading edge. Some studies have reported the existence of two spatially segregated zones 

composed of Arp2/3-branched filaments at the cell edge, and unbranched filaments 

immediately proximal to this zone [1, 9, 27–29]. Others have stated that these overlap and 

that both branched and unbranched filaments are present at the very leading edge [30–32]. 

The formation of a linear array of actin filaments at the leading edge would need to be 

governed by a precise sequence of appearance of other actin binding proteins following 

activation of the Arp2/3 complex. Coronin 1B and cofilin have been shown to cooperate to 

drive the turnover of branched filaments to establish a new network of F-actin [3, 6–8]. To 

determine whether Tpm1.8/9-containing actin filaments derive from the formation of this F-

actin network, the Arp2/3 inhibitor CK666 was used to abolish the lamellipodium. Upon 

washout of the inihbitor, Arp2/3 activity is rapidly restored and formation of new 

lamellipodia can be synchronized [33, 34]. We found that after 5 seconds of washout of the 

inhibitor, Arp2 staining can be seen at the very tips of newly formed lamellipodia (Figure 

3A). This is consistent with the well established role of Arp2/3 in the initiation of 

lamellipodia [13, 23, 25, 35]. Strikingly, Tpm1.8/9 is absent from these structures at this 

early timepoint. However, after 30 seconds, some enrichment of Tpm1.8/9 is clearly visible 

at the periphery of cells (Figure 3B). We also examined the timecourse of appearance of 

other actin binding proteins and found that cortactin is also rapidly recruited following the 

re-activation of Arp2/3 although not to the same extent as Arp2/3 (Figure 3C). This is also 

consistent with the role of cortactin in the stabilization of Arp2/3-nucleated filaments at the 

leading edge [2, 3]. In contrast, significantly fewer cells displayed coronin 1B enrichment at 

the leading edge at 5 or 10 seconds after CK666 washout, with enrichment seen in the 

majority of cells after 30 seconds of washout. Collectively, these data indicate that coronin 

1B and Tpm1.8/9, while not essential for initiation of lamellipodial protrusion, may play a 

role in the maintenance and persistence of lamellipodia by generating and stabilizing the F-

actin network. Finally cofilin, which is present fairly homogenously throughout the cell, 
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including the lamellipodium, in both migrating and non-migrating fibroblasts [26], was 

enriched at the very earliest of timepoints closely following that of Arp2/3. Cofilin is 

activated via dephosphorylation by protein phosphatase slingshot homolog 1 (SSH1L) which 

is directed to the lamellipodium by coronin 1B [7]. We postulate that, although cofilin is 

present in early lamellipodia, it is not until the later recruitment of coronin 1B/SSH1L that 

cofilin is activated, and begins severing the Arp2/3 network, as has been described in a cell-

free system [8].

These findings raise an important question - how can multiple actin filament populations 

coexist in the same cellular region yet be differentially regulated [17]? It has recently been 

shown in vitro that severing of Arp2/3-generated networks by cofilin results in the 

generation of new pointed ends to which the Drosophila-derived Tpm, Tm1A, preferentially 

binds, generating two sets of actin filaments. One is Tpm-coated and the other Tpm-free that 

is competent to bind Arp2/3. They can be stably maintained in vitro because they are 

insulated from each another [8]. These findings point toward a potential mechanism of how 

branched actin filaments may be re-modelled in cells to include Tpm. Recent experiments 

indicate the importance of building multiple actin filament types in the same location to 

generate functional outcomes [36, 37]. Studies in a variety of systems support that Tpm 

isoforms are used to specify the functional and molecular properties of actin filaments to 

allow the collaboration of different filament populations within the cell [38]. By a 

mechanism that is not yet fully understood, Tpm isoforms display extensive sorting, both at 

a tissue and intracellular level resulting in spatially distinct actin filament populations [22, 

39]. Because of the co-recruitment of Tpm1.8/9 and coronin 1B in newly formed 

lamellipodia, we postulated that coronin 1B and/or active cofilin may be required for 

Tpm1.8/9 targeting to lamellipodial actin filaments. To test this we used siRNA sequences to 

knockdown coronin 1B or its downstream effector cofilin and examined Tpm1.8/9 

localization using the α/1b antibody. We observed that significantly fewer cells displayed 

lamellipodial enrichment of Tpm1.8/9 in the coronin 1B (24.6 ± 2.0 %, p < 0.0001) and 

cofilin (16.0 ± 3.3 %, p < 0.0001) siRNA knockdown cells compared to control cells (71.3 

± 1.3 %) (images not shown). We hypothesized that the lack of Tpm1.8/9 at the leading edge 

following the knockdown of coronin 1B or cofilin could potentially be as a result of protein 

degradation. Western blots of siRNA treated cell lysates demonstrate a significant reduction 

in the overall levels of Tpm1.8/9 (Figure 4A, upper panel and 4B). As no significant change 

was observed in the mRNA levels for Tpm1.8/9 as revealed by qPCR (Figure 4E), this effect 

is likely due to Tpm1.8/9 protein being degraded when it cannot bind as effectively to actin 

filaments in the lamellipodium. To investigate whether Tpm1.8/9 was being degraded by the 

26S proteasome, the proteasome inhibitor MG132 was used. Cells transfected with Coronin 

1B or cofilin siRNA were treated with 20μM MG132 for 6 hours. Protein lysates for treated 

and untreated cells were separated by SDS-PAGE, and blots were probed with the α/1b 

antibody. The same lysates were later run on a separate gel alongside non-inhibitor treated 

lysates and probed for Hsp70, a chaperone that is known to be degraded by the 26S 

proteasome. As expected, the MG132-treated samples showed increased levels of Hsp70 

compared to untreated samples (Figure 4A, lower panel). There was no apparent restoration 

of Tpm1.8/9 protein levels following MG132 treatment (Figure 4A, upper panel) suggesting 

Tpm1.8/9 is not degraded by the proteasome. In contrast to the result of Coronin 1B/cofilin 
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knockdown, knockdown of cortactin had no significant impact on the localization (p = 

0.7828) or protein level (p = 0.0785) of Tpm1.8/9 (Figure S4). Finally, we examined the 

effect of CK666 on Tpm1.8/9 protein levels using a time-course assay and found that after 6 

hours exposure to the Arp2/3 inhibitor, Tpm1.8/9 levels were significantly increased 

compared to DMSO control (Figure 4C and D). Despite an increase in protein level, 

Tpm1.8/9 is not redistributed to other structures such as stress fibers (Figure S2D). This 

result further indicates a regulatory relationship between Arp2/3 and Tpm1.8/9 whereby if 

Tpm1.8/9 is silenced, Arp2/3 activity increases (Figures 2H and 2J) and conversely, if 

Arp2/3 is inhibited by CK666, Tpm1.8/9 expression is transiently increased (Figures 4C and 

4D). This effect is supported by the results outlined in Figure 3 whereby under CK666 

inhibition, even though expression is upregulated, Tpm1.8/9 do not have access to the 

leading edge until Arp2/3 activity is restored and coronin 1B/cofilin remodelling can take 

place.

The findings of this study may provide a solution to the controversy found in the literature 

and offer a novel mechanism of how Tpm and Arp2/3 collaborate at the leading edge. At the 

advancing cell edge, coronin 1B and cofilin coordinate the transition between a network of 

non-Tpm-containing Arp2/3-branched filaments and a second, Tpm-containing network of 

linear filaments by generating exposed pointed ends which become coated with Tpm1.8/9. 

This provides the stability needed to enhance persistence through the subsequent promotion 

of substratum adhesions. In the absence of coronin 1B, cofilin is not activated and fewer free 

pointed ends to which Tpm can bind are created. Tpm may be subsequently degraded and 

therefore depleted from the leading edge, an observation also seen following the knockdown 

of cofilin. As a result of reduced Tpm levels, the presence of more stable, unbranched 

filaments is diminished and lamellipodial persistence is impaired. In conclusion, the 

tropomyosin isoforms Tpm1.8/9 are specifically recruited to the leading edge of migrating 

cells where they promote the transition from a branched actin network to a more stable actin 

network in order to achieve a persistent state of lamellipodial protrusion.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The Tpm isoforms 1.8/9 are enriched in the lamellipodium of fibroblasts as detected 
with a novel isoform-specific monoclonal antibody (See also Figures S1 and S2)
(A) Peptides that span the entire exon 1b of the Tpm1 gene were used as the immunogen to 

generate the rat α/1b monoclonal antibody.

(B) Western blot of recombinant Tpm isoforms showing isoform specificity of the α/1b 

antibody for Tpm1.8 and Tpm1.9 with minor cross-reactivity with Tpm2.1.

(C) Representative confocal image of a MEF cell co-stained for Tpm1.8/9 and Tpm2.1, 

demonstrating that only Tpm1.8/9 are present in the lamellipodium. Merged image shows 

Tpm1.8/9 in red, Tpm2.1 in green and nucleus stain with DAPI (blue). Scale bar = 10 μm. 

See also Figure S1.
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(D) 30 μm × 30 μm enlargement of the boxed region in (C, merge) showing, in detail, the 

presence of Tpm1.8/9 and absence of Tpm2.1 from the lamellipodium. Scale bar = 5 μm.

(E) 5x magnification of the lamellipodium of a MEF cell co-stained for cortactin and Arp2, 

used as a control to demonstrate that both of these proteins occupy the lamellipodium. 

Merged image shows cortactin in red and Arp2 in green Scale bar = 2 μm.

(F) 3x magnification of the lamellipodium of a MEF cell co-stained for Tpm1.8/9 and Arp2 

to demonstrate that both of these proteins occupy the lamellipodium. Merged image shows 

Tpm1.8/9 in red and Arp2 in green Scale Bar = 2 μm.

(G) 3 μm × 3 μm enlargements of the regions shown in the merge panel from (E), showing 

that, although both present in the lamellipodium, Tpm1.8/9 (red) and Arp2 (green) do not 

strongly overlap. This is demonstrated quantitatively by co-localization analysis of the 

images by Pearson’s coefficient, where compared to cortactin control (individual zooms not 

shown), Tpm1.8/9 and Arp2 display a significantly lower level of co-localization (R). Error 

bars ± SEM; n = 9; ***p < 0.001; Student’s t-test.
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Figure 2. RNAi-mediated silencing of Tpm1.8/9 results in reduced in cell speed and lamellipodial 
persistence and leads to an increase of Arp2/3 accumulation at the cell periphery and (See also 
Figure S3)
(A) Western blot showing Tpm1.8/9 expression in MEFs 48 h post transfection with either 

control (non-silencing) or Tpm1.8/9 siRNA. α-tubulin was used as a loading control. Target 

sequence shown below blot.

(B) Histogram showing average (control, n = 79 cells; Tpm1.8/9 siRNA, n = 74 cells) cell 

velocity. Error bars = SEM; n = 4, ****p < 0.0001; Student’s t-test.

(C & D) Quantitation of kymographs (control, n = 228 kymographs generated for 30 cells; 

Tpm1.8/9 siRNA, n = 181 kymographs generated for 23 cells) showing the velocity of 

protrusions (C) and retractions (D). For Tukey box plots, whiskers indicate maximum and 

minimum values within 1.5 IQR, the box represents the 25th–75th quartile, and the line 

indicates the median. n = 4; ****p < 0.0001; Student’s t-test.

(E) Quantitation of kymographs showing protrusion persistence in Tpm1.8/9 treated cells 

compared to control siRNA treated cells. Error bars ± SEM; Control siRNA, n = 228 

kymographs generated for 30 cells; Tpm1.8/9 siRNA, n = 181 kymographs generated for 23 

cells; ****p < 0.0001; Student’s t-test.
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(F) Quantitation of image analysis showing no significant difference in cell area in control 

siRNA compared to Tpm1.8/9 siRNA treated cells. Error bars ± SEM; n = 25; ns = not 

statistically significant; Student’s t-test.

(G) MEFs stained for Arp2, 48 h post transfection with either control (left) or Tpm1.8/9 

siRNA (right). Scale bars = 10 μm.

(H) Quantitation of image analysis showing % of cell edge containing Arp2 is significantly 

increased in the knockdowns. Error bars ± SEM; n = 25; ****p < 0.0001; Student’s t-test.

(I) MEFs stained with Phalloidin, 48 h post transfection with either control (left, 2.0 x 

magnification) or Tpm1.8/9 siRNA (right, 2.6 x magnification). Scale bars = 5 μm.

(J) Quantitation of image analysis showing lamellipodial thickness is significantly increased 

in Tpm1.8/9 knockdown cells. Error bars ± SEM; n = 15; ****p < 0.0001; Student’s t-test.
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Figure 3. Sequence of appearance of other actin binding proteins following activation of the 
Arp2/3 complex
Cells were treated with the Arp2/3 inhibitor CK666 at 150 μM for 3 hr, the inhibitor was 

then washed out and cells fixed at 5, 10, 20 or 30 sec.

(A) Representative confocal image of a newly formed lamellipodium in a MEF cell (3 x 

magnification), co-stained for Arp2 (green) and Tpm1.8/9 (red) at 5 seconds following 

washout of CK666. Scale bar = 5 μm.

(B) Representative confocal image of a newly formed lamellipodium in a MEF cell (3 x 

magnification), co-stained for Arp2 (green) and Tpm1.8/9 (red) at 30 seconds following 

washout of CK666. Scale bar = 5 μm.

(C) Quantitation shown as a percentage of cells displaying lamellipodial enrichment of the 

relevant protein at the various time-points following drug washout; Error bars ± SEM; n > 

100 cells per antibody per time-point. n = 3.
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Figure 4. In the absence of coronin 1B or cofilin, Tpm1.8/9 protein levels are reduced while 
conversely, inhibition of Arp2/3 with CK666 leads to an increase in Tpm1.8/9 protein (see also 
Figures S2 and S4)
(A) Western blot showing degradation of Tpm1.8/9 protein following siRNA knockdown of 

either coronin 1B or cofilin compared to control siRNA (top panel, left) with α-tubulin as a 

loading control (middle panel). Treatment with proteasome inhibitor MG132 does not 

restore Tpm1.8/9 protein levels (top panel, right). The same lysates from the upper panels 

were run together on a separate gel and probed for Hsp70 as a positive control to 

demonstrate successful inhibition of the proteasome (lower panel, right) compared to lysates 

from untreated cells (lower panel, left).

(B) Quantitation of western blots showing a significant reduction in Tpm1.8/9 protein levels 

(normalized to α-tubulin) following siRNA knockdown of coronin 1B or cofilin compared 

to control; Error bars = SEM; n = 3; **p<0.01, ****p < 0.0001; Student’s t-test.
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(C) Western blot showing Tpm1.8/9 protein levels at 2 h time points following CK666 

treatment compared to DMSO vehicle control. α-tubulin was used as a loading control.

(D) Quantitation of western blots in (C) showing an increase in Tpm1.8/9 protein levels 

(normalized to α-tubulin) post-CK666 treatment with a statistically significant increase at 6 

h post-treatment. Error bars ± SEM; n = 3; *p<0.05; Student’s t-test.

(E) qPCR analysis of Tpm1.8/9 mRNA taken from cDNA generated from either control, 

coronin 1B or cofilin siRNA treated cells; Error bars = SEM; n = 2; ns = not statistically 

significant; Student’s t-test.
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