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Abstract

Statistical analysis of shape representations relies on having good correspon-
dence across a population. Improving correspondence yields improved statistics.
Point distribution models (PDMs) are often used to represent object boundaries.
Skeletal representations (s-reps) model object widths and boundary directions
as well as boundary positions, so they should yield better correspondence.

We present two methods: one for continuously interpolating a discretely-
sampled skeletal model and one for improving correspondence by using this
interpolation to shift skeletal samples to new positions. The interpolation op-
erates by an extension of the mathematics of medial structures. As with Cates’
boundary-based method, we evaluate correspondence in terms of regularity and
shape-feature population entropies.

Evaluation on both synthetic and real data shows that our method both
improves correspondence of s-rep models fit to segmented lateral ventricles and
that the combined boundary-and-skeletal PDMs implied by these optimized s-
reps have better correspondence than optimized boundary PDMs.
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1. Introduction

Statistical analysis of shape populations is an important task in many image
analysis applications. Achieving good correspondence [1] across a population
of shapes is a necessary step in computing accurate statistics. For point distri-
bution models (PDMs) [2], this means having the points evenly spread around
the object while each point has similar local geometry on every object. The
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most common use of the PDM is to represent the boundary of an object. Cates
et al. [3] developed a method for improving correspondence of a set of PDMs
by shifting points along the boundary to minimize geometric entropy less a
regularity entropy summed over the population, which is implemented in the
publicly available ShapeWorks [4] software. This optimization has been shown
to produce improved statistics on populations of PDMs.

In many applications [5, 6, 7], it is beneficial to model object interiors as
well as boundaries. Skeletal representations (s-reps) [8] are one method for do-
ing this. An s-rep consists of a discretely sampled skeletal surface with vectors
called spokes pointing from the skeleton to the object boundary. As with PDMs,
good correspondence is required for statistical analysis of s-reps. At the same
time, it would be interesting to compare the statistical properties of a boundary
PDM put into correspondence directly by the Cates method to one implied by
the s-reps correspondence. In this paper, we present a method for improving
correspondence of s-reps by shifting spokes along the skeleton. Similarly to the
boundary-based method, we shift spokes to minimize a geometric entropy less a
regularity entropy summed over the population. In order to shift these discrete
spokes, we develop a method for interpolating a continuous s-rep from the dis-
crete samples. The interpolation is a new result generalizing the mathematics
of medial structures [9].

We evaluate our method on a set of 31 lateral cerebral ventricles. We show
that our method improves the correspondence of s-reps fit to this data. We also
compare the results of the s-rep correspondence optimization to two methods
of producing corresponding PDMs: the PDMs computed via the SPHARM-
PDM [10] method as well as PDMs optimized using the ShapeWorks software.
To compare s-reps to the PDM data, we apply our measures of correspondence
to the PDM implied by the s-rep spoke ends.

The rest of this paper lays out as follows. Sections 2 and 3 provide back-
ground information and a brief description of materials. Section 4 describes our
method for interpolating continuous object interiors from discrete s-reps. Sec-
tion 5 describes our method for improving the correspondence of s-rep models
using an entropy-minimizing optimization. Section 6 gives results of applying
the s-rep correspondence optimization, and section 7 discusses these results,
gives conclusions, and describes future work.

2. Background

2.1. Entropy-based surface correspondence

Many shape representations require good correspondence over a population
before being useful for statistical analysis. Manually constructing models with
corresponding points is a difficult and time-consuming task. Instead some meth-
ods, such as SPHARM-PDM [10], attempt to automatically generate represen-
tations with good correspondence based on geometry. Another approach is to
take an existing model and attempt to optimize its correspondence by tightening
a probability distribution. An entropy-based method for PDMs has been shown
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Figure 1: An s-rep model (left) and its implied boundary (right). The yellow balls are samples
of the skeletal surface. The cyan spokes point to the top of the object, the magenta to the
bottom, and the red to the crest. The green lines show the grid structure of the skeletal
samples.

to improve correspondence across a population of objects [3]. This method takes
an existing set of PDMs and shifts the points along the interpolated boundary
to optimize an objective function which is a difference of two terms: a geometry

entropy which measures how well some set of geometric features at a point match
across the population, and a regularity entropy which measures how evenly the
points are spread within each case. The idea is that the geometric probabil-
ity distribution should be tightened while the probability of boundary point
positions should be made more uniform on each case.

2.2. Skeletal Models

The s-rep [8] is a quasi-medial skeletal model that models not only an object’s
boundary but its interior as well. The s-rep is a collection of points sampled
from a skeleton of an object which have associated vectors called spokes pointing
from the skeleton to the object’s boundary. This model is fit to an object via an
optimization which requires the skeleton to be as close to medial as possible while
remaining non-branching and requires the spokes to touch the object boundary
and be nearly orthogonal to it [8]. As such, it captures not only object positions
but also object widths and object boundary directions. These samples can then
be interpolated to produce a continuous representation of an object’s boundary
and interior. This provides an object-relative coordinate system (u, v, τ) for the
object’s volume, where (u, v) parameterizes the skeleton and τ moves from the
skeleton (τ = 0) to the boundary (τ = 1).

2.3. Composite Principal Nested Spheres

Because shapes in general, and s-reps in particular, have many features which
do not naturally live in a flat Euclidean space, standard Euclidean statistical
techniques such as principal component analysis (PCA) have proven inadequate
for analyzing populations of s-reps. Instead, because many s-rep features live
on spheres, such as the spoke directions (S2) and the PDM formed from the n
skeletal points (S3n) [11], a method that can analyze data directly on spheres
is preferred.

Analyzing spherical data can be done using a method called principal nested
spheres (PNS) [12], which is analogous to PCA. As PCA repeatedly computes
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best-fitting subspaces of codimension 1 onto which the data is projected, PNS
successively computes best-fitting subspheres, lowers the dimension by projec-
tion, and repeats. At each projection step, the signed geodesic residual of each
data point to the subspace is recorded. It is reasonable to treat this collection of
signed distances as a Euclidean data object and analyze it using standard meth-
ods. We call this process Euclideanization. By combining these Euclideanized
features with the originally-Euclidean features and being careful to scale the
Euclideanized features to make them commensurate, all of the data can now be
analyzed using standard PCA. This method is called composite principal nested
spheres (CPNS) [13].

3. Materials

The objects on which the methods described herein are evaluated consist
of 31 lateral cerebral ventricles of neonates segmented from MRI. The subjects
were at risk for schizophrenia or bipolar disorder.

Each ventricle was fit via the SPHARM-PDM [14] toolbox and 1002-point
PDMs were extracted at corresponding latitudes and longitudes. An s-rep was
fit [8] to the solid implied by each SPHARM.

4. Spoke Interpolation

4.1. Skeletal Mathematics

A continuous skeletal model describes an object interior by two functions:
p(u1, u2), a 2D skeletal surface and S(u1, u2), a vector field pointing from the
skeletal surface to the boundary. S can be further decomposed into a product
of two functions: U(u1, u2), a unit vector field pointing in the direction of S
and r(u1, u2), a scalar distance function from the skeletal sheet to the object
boundary.

An s-rep is a sampling of the continuous skeletal model. It consists of an
m× n grid of samples from the skeletal surface with either two spokes (on the
interior) or three (along the crest). The grid structure on the skeletal sheet
forms a collection of quadrilaterals with a skeletal sample at each corner.

From this discrete representation we require a method to interpolate back to
the continuous entity. Our method is a generalization to quasi-medial objects
of the method for interpolating medial representations (m-reps) [15], which was
based on the mathematics of medial structures [9].

We wish to interpolate a spoke S(u∗

1, u
∗

2). If the sampled skeletal points have
integer parameter values, (u∗

1, u
∗

2) can be written as

(u∗

1, u
∗

2) = (u0
1 + δu1, u

0
2 + δu2); δu1, δu2 ∈ [0, 1)

where (u0
1, u

0
2) is the top left corner of the quad containing the desired value.

From this, we obtain the equation
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S(u∗

1, u
∗

2) = S(u0
1, u

0
2) +

(δu1,δu2)
∮

(0,0)

(

∂S

∂u1
du1 +

∂S

∂u2
du2

)

(1)

for the spoke we wish to interpolate. Since S(u1, u2) = r(u1, u2)U(u1, u2), the
partial derivatives in equation 1 can be written as Sui

= rUui
+ rui

U .
The radius derivatives rui

can be computed using the equation [16, 17]
−rui

= pui
·U+Bui

·U, where Bui
are boundary derivatives, (B = p+ rU =

p + S and Bui
= pui

+ Sui
). This equation is a correction to the compati-

bility condition for medial models [9] necessary because boundary and skeletal
changes are not tied together as strongly in skeletal models as in medial ones.
Using this expression for rui

, we obtain

Sui
= rUui

− (pui
·U+ (pui

+ Sui
) ·U)U = rUui

− (2pui
+ Sui

)UTU

=
(

rUui
− 2pui

UTU
) (

I+UTU
)−1 (2)

This equation allows for the computation of the spoke derivative at any point
(u∗

1, u
∗

2) given the derivative of the skeletal surface pui
and spoke direction Uui

at that point. Section 4.2 describes a method for computing pui
, while 4.3 deals

with computation of Uui
. Finally, 4.4 describes how a spoke is interpolated via

numerical integration of equation 2.

4.2. Interpolation of the Skeletal Surface

Interpolation of the skeletal surface is done by fitting cubic Hermite patches
to the quads of discrete samples which form the surface. This interpolation re-
quires 16 values: the (4) corner points p(u0

1, u
0
2), p(u

1
1, u

0
2), p(u

0
1, u

1
2), p(u

1
1, u

1
2),

the (8) derivatives of each corner in both parameter directions, and the (4) sec-
ond order mixed partial derivatives, which are set to 0. The control matrix Hc

is thus

Hc =









p(u0
1, u

0
2) p(u1

1, u
0
2) pu2

(u0
1, u

0
2) pu2

(u1
1, u

0
2)

p(u0
1, u

1
2) p(u1

1, u
1
2) pu2

(u0
1, u

1
2) pu2

(u1
1, u

1
2)

pu1
(u0

1, u
0
2) pu1

(u1
1, u

0
2) 0 0

pu1
(u0

1, u
1
2) pu1

(u0
1, u

0
2) 0 0









LetH(s) = (H1(s), H2(s), H3(s), H4(s)) andH′(s) = (H ′

1(s), H
′

2(s), H
′

3(s), H
′

4(s))
where Hi are the cubic Hermite spline basis functions and H ′

i are their deriva-
tives. Computation at a point (u∗

1, u
∗

2) inside a quad is given by

p(u∗

1, u
∗

2) = H(δu1) ·Hc ·H(δu2)
T.

Derivatives of the skeletal surface are computed by replacing the appropriate
set of basis functions by their derivatives:

pu1
(u∗

1, u
∗

2) = H′(δu1) ·Hc ·H(δu2)
T; pu2

(u∗

1, u
∗

2) = H(δu1) ·Hc ·H
′(δu2)

T

(3)
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4.3. Estimation of Spoke Direction Derivatives via Quaternion Interpolation

In equation 2, the derivatives of the spoke direction vector field Uui
are

needed. Because U is a unit vector field, changes in U are purely rotational.
Thus, we choose a quaternion-based interpolation to compute these derivatives.

Each spoke direction at the corner of a quad is represented by a quater-
nion. A unit vector U = (Ux, Uy, Uz) is represented by the quaternion q =
0+Uxi+Uyj+Uzk. From the four spoke quaternions bounding a quad we can
interpolate a unit quaternion in the quad interior by spherical linear interpola-
tion (slerp) [18]. The quaternion that is λ (∈ [0, 1]) of the distance between qi

and qi+1 is given by SL(qi,qi+1, λ) = qi (q
∗

iqi+1)
λ
.

To achieve higher continuity across quad boundaries and thus a smoother
surface, a higher order interpolation is desired. We use an extension of the cubic
Bézier curve to the surface of a sphere called squad [19]. Analogously to the
application of De Casteljau’s algorithm to the computation of Bézier curves,
squad can be computed in terms of slerp:

SQ(qi,qi+1,ai,ai+1, λ) = SL (SL(qi,qi+1, λ), SL(ai,ai+1, λ), 2λ(1− λ)) (4)

where ai and ai+1 are Bézier curve control points. Careful choice of these points
ensures C1 continuity across the qis [19][20]:

ai = qi exp

(

−
log(q−1

i qi+1) + log(q−1
i qi−1)

4

)

Differentiating the spoke interpolation formula SQ with respect to λ yields [20]

SQ′(qi,qi+1,ai,ai+1, λ) =SL(qi,qi+1, λ) log(q
∗

iqi+1)gi(λ)
2λ(1−λ)+

SL(qi,qi+1, λ)
(

g′

i(λ)
2λ(1−λ)

) (5)

where gi(λ) = SL(qi,qi+1, λ)
∗SL(si, si+1, λ).

The derivative Uu1
(u∗

1, u
∗

2) within a quad is computed by first using equation
4 to estimate U(u−1

1 , uδu2

2 ),U(u0
1, u

δu2

2 ),U(u1
1, u

δu2

2 ), and U(u2
1, u

δu2

2 ) via the
4 × 4 surrounding grid spokes. Equation 5 on the resulting quaternions then
yields the desired derivative. The computation is similar for Uu2

.

4.4. Spoke Computation via Integration of Derivatives

With the pui
and Uui

values from sections 4.2 and 4.3, we can start from
the quad corner (u0

1, u
0
2) and integrate equation 2 using interval subdivision h

to produce a spoke at (uh
1 = u0

1+hδu1, u
h
2 = u0

2+hδu2). Euler’s method for the
integration yields S(uh

1 , u
h
2 ) = S(u0

1, u
0
2) + h

(

δu1Su1
(u0

1, u
0
2) + δu2Su2

(u0
1, u

0
2)
)

.
From (uh

1 , u
h
2 ), we take another step towards (u∗

1, u
∗

2) and iterate to (u∗

1, u
∗

2).
Figure 2 shows results.
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Figure 2: A lateral ventricle s-rep and a dense interpolation of its top side spokes.

5. Correspondence

In this section we describe our method for improving s-rep correspondence
through spoke shifting. Tightening the probability distribution of the geometric
properties of s-reps in the population is the basic means of producing correspon-
dence. If this is optimized alone, these features will tend to group together and
produce highly irregular objects. This effect is avoided by also considering, for
each training object, an entropy derived from various s-rep properties related to
the regularity of the distribution of spokes throughout the s-rep. We improve
s-rep correspondence by optimizing the weighted difference of these two entropy
measures.

5.1. Spoke Shifting to Optimize Entropy

In order to optimize correspondence, spokes must be able to shift along
the skeletal surface while respecting the boundary of the object. A spoke
S(ui, vj), with i, j ∈ Z+, is shifted to a new position S(ui + δui, vj + δvj)
by interpolating the value of the spoke at S(ui+ δui, vj + δvj). By constraining
δu, δv ∈ (−0.5, 0.5), we ensure that the rectangular structure of the grid is kept
intact. Spokes in the interior of the grid shift along the skeletal surface, while
spokes along the fold of the object can only move on the crest curve.

The δu and δv by which the spokes are shifted are chosen to optimize an
objective function which is the difference of two entropies: a geometry term
Egeo which measures how well corresponding spokes match across a population
of objects and a regularity term Ereg which measures how evenly spokes are
distributed within each object. The following subsections discusses each of these
terms in more detail.

5.2. Geometry Entropy

Correspondence in a population of s-reps is defined here as having a tight
probability distribution of their geometric properties. These properties are the
positions of the skeletal points, the spoke directions, and the spoke lengths. Be-
cause typical entropy measurements assume that the properties are Euclidean
whereas s-rep features are not, we first Euclideanize and commensurate the ob-
ject features as described in section 2.3 and detailed in [8]. After Euclideaniza-
tion and commensuration, the probability distribution of these features can be
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estimated via standard Euclidean PCA, from which the entropy Egeo is com-
puted.

5.3. Regularity Entropy

The regularity entropy is a measure of how uniformly distributed features are
within each object. On an s-rep, using spoke interpolation the grid of skeletal
positions can be connected to form curvilinear quadrilaterals with corresponding
curvilinear quads on the object boundary. Figure 3 shows three examples of
these quads with varying regularity.

Figure 3: Three s-reps with varying regularity. The quads of the left and middle s-reps are
non-regular while the right s-rep is highly regular.

S-rep regularity is measured on a number of features for each skeleton /
boundary quad pair. We wish these features to be statistically independent
while implying the geometrical properties of quad edge lengths, quad areas, and
inter-quad-pair volumes, which are intuitively related to regularity. The features
are as follows: horizontal and vertical quad edge lengths, average angle cosines
of top-left and bottom-right corners of each interpolated sub-quad, and cosine
of the swing of the quad normal between the two corners of the quad. The first
two help to enforce regular shapes for the quads (tend towards rectangles) while
the last penalizes highly curved surfaces (tends toward planar quads). These
properties are computed separately for the skeleton and boundary quads. The
similar features for each quad are combined (i.e., the boundary and skeletal
horizontal edge lengths for that quad are concatenated) forming a tuple of that
feature for that quad. These features are then combined from all quads into
three groups: the horizontal edge lengths Mhel, the vertical edge lengths Mvel,
and the angle cosines Mcos. If there are 2k copies of a feature per quad (k on
the boundary and k on the skeleton) and there are n quads in the s-rep, this
yields a 2k × n feature vector.

From these three feature sets, the entropy measures Ehel, Evel, and Ecos

are derived (see section 5.4 for detail on the Entropy computation). The total
measure of regularity for ith object in the training set is Ei

reg = Ei
hel+Ei

vel+Ei
cos

due to the assumption of independence.

5.4. Optimization

As with the PDM correspondence method implemented in ShapeWorks, each
of the entropies is computed using the assumption that the features follow a
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Gaussian distribution. The entropy of a d-dimensional Gaussian random vari-

able X is H(X) = 1
2

(

d+ d ln(2π) +
∑d

i=1 lnλi

)

, where λ1, λ2, . . . λd are the

non-zero eigenvalues of the covariance matrix of X. Because in many applica-
tions the covariance matrix will not have full rank, there will be a number of
small eigenvalues that will disproportionately contribute to H(X). We solve
this by removing eigenvalues with contribution λi/

∑

λi lower than a threshold
θ.

We optimize correspondence by minimizing

argmin
x

(

ωEgeo(x)−

N
∑

i=1

Ei
reg(x)

)

(6)

where ω is a weight controlling the balance between probability distribution
tightness and the regularity of each model and x is the shifting of each spoke
in all of the models. The optimization is done via iterative, alternating appli-
cations of the NEWUOA [21] and one-plus-one evolutionary [22] optimization
algorithms. The choice of the parameters ω and θ was made via empirical
evaluation.

6. Application & Results

Our method was first tested on a set of 80 synthetic lateral ventricle s-reps
where all but one spoke were identical. After optimization, the distribution of
the one moving spoke was greatly tightened.

In the following experiments we evaluate the method for improving s-rep
correspondence on the set of 31 lateral ventricle shapes described in section 3.
Unless otherwise noted, for these experiments ω = 4 in equation 6 and θ = 0.01.

6.1. Improvement of S-rep Correspondence

Figure 4 shows distributions of s-rep spokes before and after optimization.
The s-reps after optimization have qualitatively better correspondence and main-
tain good regularity properties.

Figure 5 shows the cumulative variance explained by each eigenvalue from
CPNS analysis on the s-rep population, i.e. of the s-rep features, before and
after optimization. The two plots are similar, but after optimization the amount
of variance captured in the first two eigenmodes has increased. The cumulative
variance of the s-rep population is lower after optimization, with the sum of the
eigenvalues being .0081 compared with .0085 before optimization.

Figure 6 shows the effect of the correspondence improvement on the s-rep
population under three standard measures for evaluating correspondence [23,
24, 25]: compactness, generalization, and specificity. All of these measures are
computed not on the s-rep directly, but on the PDM formed by taking two
points for each spoke: the tail point on the skeletal sheet and the end point on
the object boundary.
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Figure 4: Distributions of spokes on the top (left) and crest side (right) of the s-reps before
(first row) and after (second row) optimization. The groupings of spokes are noticeably tighter
after optimization.

Compactness is a measure of tightness of a probability distribution, com-
puted as the sum of the eigenvalues obtained via PCA. After correspondence
optimization there is marked improvement in compactness.

Generalization is measured by computing a shape space on all but one of
the training cases and computing the distance between the last shape and its
projection onto this shape space. Generalization is computed on a set of PDMs
in a leave-one-out fashion. PCA is applied to all but one case, forming a shape
space. This final PDM is then projected onto the shape space given by the
first M modes of variation. The distance between the PDM and its projection
is computed as the average Euclidean distance between pairs of correspond-
ing points. The optimized s-reps show slightly better generalization for low

Figure 5: CPNS eigenvalues before (left) and after (right) correspondence optimization, as
percent of total variance explained. The red curves show cumulative variance explained.
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Figure 6: Plots of compactness (left), generalization (center), and specificity (right) on the
original and optimized s-rep populations. These measures are functions of the number of
eigenmodes (M) used to form the shape space.

Figure 7: Effects of the weighting factor ω on the 31 lateral ventricle s-reps on compactness
(left), generalization (middle), and specificity (right).

numbers of eigenvalues that would be used in a final model as indicated by
the compactness result. However, they show slightly worse generalization than
before optimization at higher numbers of eigenvalues.

Specificity is a measure of average distance between random samples in the
computed shape space with their nearest members of the data. Specificity is
computed by using PCA on all PDMs to produce a probability distribution.
Independent random samples are chosen from the distribution given by the first
M modes. For each sample, the distance between it and the nearest original
PDM is computed in the same way as for generalization. The optimized s-reps
show noticeable improvement in specificity.

We did not evaluate the accuracy of boundary positions interpolated from
the modified s-reps as in application we interpolate these from the original s-rep
rather than the modified one.

We also examined the effect of changing the weight ω on the results of the
optimization. Figure 7 shows the correspondence measures on s-reps with differ-
ent weights. In general, ω = 4 is the best choice, showing the most improvement
in compactness and specificity and the least worsening of generalization.

6.2. Comparison with PDM-based Methods

We compare the correspondence produced via optimized s-reps to the initial
SPHARM-PDMs as well as PDMs optimized using the ShapeWorks software.
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Figure 8: Plots of compactness (left), generalization (middle), and specificity (right) measures
of the original SPHARM-PDMs, the s-reps after correspondence optimization, and the PDMs
optimized via ShapeWorks. These measures are functions of the number of eigenmodes (M)
used to form the shape space.

For SPHARM-PDM and ShapeWorks, these measures are directly on the bound-
ary PDMs. For the s-reps, use the PDMs mentioned previously. All PDMs have
similar numbers of points, with the s-reps being interpolated to match the num-
bers of points in the SPHARM-PDMs. Figure 8 shows comparisons of the three
methods using the three correspondence evaluation criteria. The s-rep-implied
PDMs are scaled to match the scale of the others.

For compactness, the optimized s-reps show noticeably improved compact-
ness over both of the PDM datasets. For generalization, the optimized s-reps
are better than both for low numbers of eigenvalues but worse than the op-
timized PDMs at higher numbers. For specificity, the optimized s-reps again
out-perform both PDM datasets.

7. Discussion

This paper presented novel methods for interpolating discrete s-reps into
continuous objects and improving the correspondence of a population of s-reps.
This interpolation is an extension of the interpolation of m-reps to the more
general skeletal representation. The correspondence improvement is done via
entropy minimization analogously to similar methods for PDMs. This opti-
mization was shown to improve the correspondence of a population of lateral
cerebral ventricle s-reps and s-rep-implied PDMs are shown to have correspon-
dence comparable to or better than PDMs optimized via ShapeWorks.

The interpolation method presented here produces smoother and more accu-
rate s-rep boundaries, as earlier methods for s-rep interpolation were based on
the mathematics of medial structures and failed to correctly model the interac-
tion between changes in the skeleton and the boundary when medial constraints
are relaxed. Figure 9 shows a comparison of a boundary patch interpolated
using both methods. The use of Euler’s method for performing the integration
steps will be replaced by a method with better speed and accuracy properties
in future work.

The correspondence optimization results show good improvement in corre-
spondence on the population of s-reps. Previous work has shown that s-reps
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Figure 9: Comparison between interpolations of an s-rep using medially-based (left) and
skeletal-based (right) mathematics.

without improved correspondence outperform PDMs in the statistical tasks of
classification [7] and hypothesis testing [26] and we believe that using s-reps
with improved correspondence will only further this advantage. In particular,
the results on compactness show that the improved s-reps are a more efficient
representation than the non-optimized s-reps used in previous studies, while
the similar generalization and improved specificity suggest the improved s-reps
could be more powerful for these tasks. Experiments to demonstrate this im-
provement are planned but are outside the scope of this paper.

The comparisons done to the PDM datasets are troublesome for several
reasons. The use of PCA in computing probability distributions of shape rep-
resentations, be they PDMs or s-reps, is not ideal because of the non-Euclidean
nature of the data. Second, we compare purely boundary PDM-based methods
(SPHARM-PDM and ShapeWorks) to PDMs implied by s-reps. While we use
both boundary and skeletal points to leverage some of the interior correspon-
dence s-reps provide, the use of point information without orientation or width
information ignores many of the rich features that s-reps provide.

The current implementation of the correspondence optimization is in C++
and MATLAB takes 5 days to run on 31 cases on a 3.20GHz quad-core computer
with 8GB of memory, with this time increasing with the number of cases being
optimized. A reimplementation to speed up the optimization is ongoing.
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