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Abstract

Purpose—ccRCC has recently been redefined as a highly heterogeneous disease. In addition to 

genetic heterogeneity, the tumor displays risk variability for developing metastatic disease, 

therefore underscoring the urgent need for tissue-based prognostic strategies applicable to the 

clinical setting. We’ve recently employed the novel positron emission tomography/magnetic 

resonance (PET/MR) image modality to enrich our understanding of how tumor heterogeneity can 

relate to gene expression and tumor biology to assist in defining individualized treatment plans.

Experimental Design—ccRCC patients underwent PET/MR imaging, and these images 

subsequently used to identify areas of varied intensity for sampling. Samples from eight patients 

were subjected to histological, immunohistochemical, and microarray analysis.

Results—Tumor subsamples displayed a range of heterogeneity for common features of HIF 

expression and microvessel density, as well as for features closely linked to metabolic processes, 

such as GLUT1 and FBP1. In addition, gene signatures linked with disease risk (ccA and ccB) 

also demonstrated variable heterogeneity, with most tumors displaying a dominant panel of 

features across the sampled regions. Intriguingly, the ccA and ccB-classified samples 
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corresponded with metabolic features and functional imaging levels. These correlations further 

linked a variety of metabolic pathways (i.e. the pentose phosphate and mTOR pathways) with the 

more aggressive, and glucose avid ccB subtype.

Conclusions—Higher tumor dependency on exogenous glucose accompanies the development 

of features associated with the poor risk ccB subgroup. Linking these panels of features may 

provide the opportunity to create functional maps to enable enhanced visualization of the 

heterogeneous biological processes of an individual’s disease.
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Introduction

The heterogeneous biology of most cancers challenges tools that rely on single biopsy 

criteria for making disease-wide assessments. Sporadic clear cell renal cell carcinoma 

(ccRCC) has recently been recognized to display a high level of genetic heterogeneity, based 

on high-throughput sequencing studies of subsampled tumors. These findings reveal a core 

mutational signature, which likely represents early or initiating events, coupled with variable 

secondary mutations, some of which are presumed to be associated with disease 

progression(1, 2). Other recent studies have suggested that single biopsies are inadequate to 

fully evaluate the molecular and genetic features of ccRCC, implying the need for multiple 

sampling in biomarker development, or novel alternatives to assess the disease more globally 

in an individual patient(3).

In addition, recent studies have implicated changes in hypoxia-regulated gene expression, 

and key enzymes involved in cellular metabolic programs, as potential features linked with 

progression(4, 5). In particular, the recent finding of lost fructose 1,6 bisphosphatase 1 

(FBP1) expression in renal tumors implies that metabolic diversions are central to ccRCC 

disease progression (6). The regional variation of these and other relevant protein features of 

ccRCC, or the associations with regional metabolic variation has not been explored 

previously. Here, we use positron emission tomography (PET) with fluoridated 2-

deoxyglucose (FDG) in combination with magnetic resonance imaging for structural and 

anatomic resolution, gene expression, and protein marker analysis. This approach permits 

evaluation of the potential for metabolic imaging to provide an assessment of disease 

biology on regional variation in key physiological mechanisms driving tumorigenesis and 

tumor heterogeneity.

Materials and Methods

Patients and clinical samples

All patients were enrolled to an investigator-initiated trial, LCCC1213, using a UNC 

Biomedical IRB approved consent. Enrollment criteria consisted of adequate organ function, 

radiographic confirmation of a renal mass of sufficient size to allow subsampling, and a 

scheduled surgery date. Patients were encouraged to be fasting at the time of the scan, and 

blood sugar was tested prior to imaging. No patients were excluded due to hyperglycemia. In 

Brooks et al. Page 2

Clin Cancer Res. Author manuscript; available in PMC 2017 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



total, 13 patients were imaged, but only clear cell RCC patients were included in the primary 

analysis (Supplemental Table S1 and 2), due to the markedly differing biology of other 

subtypes such as papillary RCC(5, 7, 8).

Specimens were collected from October 2012 through September 2013 at the University of 

North Carolina directly from the pathology grossing area using the PET/MR image map as a 

guide to select samples corresponding to the desired region of interest. At least five fresh 

kidney specimens were obtained from each patient and were transported back to the lab, 

relabeled, and stored as flash frozen or paraffin embedded specimens for batched analysis. 

However, only samples with high RNA quality were used for analysis. Stage was classified 

using the American Joint Committee on Cancer’s Cancer Staging Manuel, 7th edition 

(AJCC-7). A genitourinary oncologist verified pathologic clinical variables.

PET/MR Acquisition

Prior to the PET/MR imaging session, 5mCi of FDG was infused intravenously. During the 

FDG uptake period, patients were kept in a quiet room. 40 min after FDG infusion, patients 

were asked to empty their bladder prior to the imaging session. All images were acquired 

using a hybrid PET/MR scanner (Biograph mMR, Siemens HealthCare) housed in the 

Biomedical Research Imaging Center. A spine coil together with 2 anterior body coils were 

used to cover liver through kidneys. After acquiring localization images, MR attenuation 

images were acquired first, followed by a breath-hold T2 half-Fourier acquisition single-shot 

turbo spin-echo (HASTE) sequence. These included multiplanar T2 weighted images 

obtained sequentially 5mm in thickness with a 2 mm gap and pre and post contrast enhanced 

T1 weighted images obtained as a volume and reviewed as 3mm contiguous images in 

multiple planes. The dose of Gadolinium chelate (Gadopentetate dimeglumine) was 0.1 

mg/kg over 1 minute using a standard delay protocol. A power injector was used to deliver 

contrast at 2cc/sec. This sequence was repeated twice along the coronal (cor) and axial 

orientations, respectively. The image parameters for the coronal orientation were as follows: 

repetition time, 2sec; echo time (TE) 94msec; slice thickness, 8 mm for 28 slices with 20% 

gap; matrix size, 256×256; acceleration factor of 3 using GRAPPA; flip angle, 150-degree; 

and voxel size 2×1.6×8mm3. In contrast, with the exception of TE=95msec, number of 

slices = 24, acceleration factor = 2, and voxel size = 1.7×1.4×8mm3, images acquired during 

a breath hold using an axial orientation used identical parameters as that for coronal 

orientation. The HASTE images were used for the placement of ROIs throughout the 

tumors. In contrast to MR imaging, a 4 min single-bed PET acquisition covering the kidneys 

was acquired simultaneously with the above outlined HASTE sequence. PET images were 

obtained on the same table again using a breath hold to reduce motion interference. Post 

procedure fusion of the MR and PET images with co-registration was performed using a 

dedicated workstation (Siemens Medical Solutions, Malvern, PA).

Image review

Two physicians reviewed images, one a genitourinary imaging specialist with 20 years 

experience and the other a nuclear medicine specialist with 15 years of experience. Cases 

were reviewed using a standardized hanging protocol. The high-resolution MR images were 

used to identify anatomic structures. Location of FDG and Gd uptake were identified, 
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focusing on the kidney tumor and local metastases. FDG uptake was quantified using 

standard uptake value (SUV). An increase of 2 SUV was considered increased avidity.

Antibodies and Immunohistochemistry

Rabbit polyclonal antibodies against CD31 (ab28364), FBP1 (HPA005857) and 

Glut-1(07-1401) were from Abcam (Cambridge, MA), Sigma Aldrich Corp. (St. Louis, MO) 

and Millipore (Billerica, MA)) respectively. Mouse monoclonal HIF-1α clone 54 (610959) 

was from BD Biosciences (San Jose, CA).

IHC was carried in the Bond Autostainer (Leica Biosystems Inc. Norwell, MA). Slides were 

dewaxed in Bond Dewax solution (AR9222) and hydrated in Bond Wash solution (AR9590). 

Antigen retrieval for all antibodies was performed for 30 min at 100ºC in Bond-Epitope 

Retrieval solution1 pH-6.0 (AR9961). After pretreatment slides were incubated with FBP1 

(1:1500) and Glut-1 (1:2000) for 30 min, CD31 (1:200) for 1h and HIF-1α (1:100) for 3h. 

Detection of CD31, FBP1 and Glut-1 was performed using Bond™ Polymer Refine 

Detection (DS9900) and Bond™ Polymer Refine Red Detection (DS9390) for HIF-1α. 

Stained slides were dehydrated and coverslipped. Positive and negative controls (no primary 

antibody) were included for each antibody.

Digital imaging and image analysis

IHC stained slides were digitally imaged in the Aperio ScanScope XT (Leica) using 20x 

objective. HIF-1α, Glut-1 and FBP1 slides were analyzed using Aperio Image analysis 

algorithms and Definiens Tissue Studio software (Munich, Germany) was used to measure 

the microvessel density in CD31 stained slides.

Quantitative Image Analysis

For each subject, one PET image and five MRI images were analyzed as follows. The PET 

image was scaled to units of Standard Uptake Value (SUV). The MR images used included a 

T2-weighted HASTE sequence (referred to as “HASTE"), a water-content image from the 

Dixon sequence used for attenuation correction (referred to as “Water”), an apparent 

diffusion coefficient image (referred to as “ADC”), a t1-weighted image (referred to as 

“T1”), and a contrast image produced from the subtraction of pre-contrast from a post-

contrast image (Referred to as “Contrast”). The ADC image was already quantified as an 

estimate of a physical quantity, the apparent diffusion coefficient, and was used unchanged. 

The other MRI images in their raw forms were quantified in arbitrary intensity units and so 

were normalized to the average intensity in a cortical region of the opposite healthy kidney.

Because the PET-MR scanner gives images that are already aligned, the PET and MRI 

images generally did not require an additional alignment step. However, in two cases, some 

images had to be rigidly translated to align the tumor sites; generally this appeared to be due 

to respiratory motion. All images were then resampled to the grid of the PET image (2.086 

mm × 2.086 mm × 2.031 mm). Regions of interest encompassing the tumors were drawn by 

hand to isolate the tumor volume.
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For each voxel, a set of six image quantities (PET, HASTE, Water, ADC, T1, and Contrast) 

were derived. Means of these six quantities within the tumor volume were computed for 

each subject. Further analysis of the PET image included computation of the percent of 

tumor volume exceeding certain SUV thresholds, which were found to be related to 

pathology outcomes.

Microarray Analysis

mRNA was extracted from fresh frozen ccRCC tissue specimens using the Qiagen AllPrep 

DNA/RNA Mini Kit (Valencia, CA), amplified, labeled and hybridized against a 

reference(9) on Agilent Whole Human Genome (4 × 44k) Oligo Microarrays. Missing data 

was imputed, log transformed (base 2), and median centered.

Subtype Classification

Samples were classified as either ccA or ccB using a reference microarray data set and 

centroid-based classification algorithm previously described(10).

The Cancer Genome Atlas (TCGA) data analysis

TCGA RNA sequence data were obtained from dbGAP and normalized to the upper quartile 

of normal counts. For analysis, the data were log-transformed (base 2) and genes were 

median centered.

Statistical Analysis

All statistical analyses were performed using the R program (R Project for Statistical 

Computing, Vienna, Austria). A two-sample Welch t-test was used to assess differences 

between subtypes, with all p-values lower than 0.05 considered significant. Gene and protein 

(H-Scores log2 transformed) expression data were fit with a mixed effects regression model 

using fixed effects for each variable of interest, and a random effect for the patients (nlme 

and lme4 R Packages). Standard errors of the effect estimates were calculated and illustrated 

as a forest plot. Intra-class correlation (ICC) was utilized to measure concordance between 

samples from the same patient and between patients. ICC was calculated for each pair and 

then summarized by mean for each group of paired samples. ICC values for unpaired groups 

were estimated from all samples in the group. Further analysis and plotting of paired and 

unpaired analyses were performed identically. The “irr” R package was used to generate ICC 

estimates.

Results

PET/MR imaging identifies heterogeneous regions in ccRCC

Medical imaging technologies, such as PET and MRI, have advanced the field of oncology 

by characterizing tumor morphology and disease monitoring. The fused PET/MR 

technology has further improved the assessment of soft-tissue for diagnostic purposes(11, 

12). Functional imaging using PET has previously been evaluated in ccRCC to predict and 

evaluate response to systemic treatment(13, 14), but such studies have been challenged by 

the variable uptake of glucose in these tumors. Not surprisingly, this methodology has yet to 
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be adopted into general practice for screening or disease assessment(15, 16). In this study, 

we used PET/MR imaging to identify and evaluate heterogeneous regions of ccRCC (Figure 
1a and Supplemental Table 1). MRI was used for its greater tissue resolution, and PET, as 

measured by standard uptake value (SUV), for mapping regional glucose uptake variation 

throughout the tumor. Various histologic morphologies were observed within these 

heterogeneous regions (Supplemental Figure 1), which ranged from the hallmark lipid-

filled epithelial cells to granular cells with regional necrosis (Figure 1b and Supplemental 
Table 2), although notably, regional variation in SUV did not strictly correspond to regional 

necrosis.

We first evaluated levels of key proteins implicated in ccRCC in sampled tumor regions. 

Hypoxia inducible factors (HIF-1α and HIF-2α), are commonly stabilized in ccRCC due to 

the high frequency of VHL mutation in this disease(17, 18) and promote the expression of 

genes that support tumor progression, such as angiogenic factors like the vascular 

endothelial growth factor (VEGF) and the platelet endothelial cell adhesion molecule 

(PECAM)(19-21). Metabolic reprogramming is also central in tumor progression, especially 

in ccRCC(5, 22), with both glucose transporters (GLUT1) and key metabolic enzymes 

regulated by HIF factors. We detected regional variation in these features, and in particular 

we observed evidence of reduced protein (Figure 1c and d) and mRNA (Figure 1e) levels 

of the critical glycolytic enzyme FBP1. Specifically considering these factors directly 

regulate glucose metabolism, it was noteworthy to find that samples from PET avid regions 

expressed higher levels of glucose transporter GLUT1 and lower expression of FBP1 and the 

HIF-1α transcription factor (Figures 1c-e), potentially indicating a switch from storing 

energy to obtaining additional glucose to support increased metabolic activity(6). The 

acquisition of additional glucose may also be supported through an increased endothelial 

compartment that contains larger vessels, evident of the positive association between 

increased SUV and PECAM expression (Figure 1c and d). Downregulation of FBP1 was 

recently found to be a critical feature of progressive ccRCC(6) by enabling glycolytic flux in 

renal tubular epithelial cells, and this data further supports this mechanism.

ccRCC prognostic subtypes express heterogeneous biology

In addition to key ccRCC biological features, gene expression profiles which define low and 

high-risk patterns of ccRCC, clear cell A (ccA) and B (ccB) (10, 23-25) respectively, have 

also been observed to display regional heterogeneity(2, 25), possibly reflecting the same 

clonal evolution revealed in DNA sequencing studies. In our selected tumor samples, and 

similar to previous findings(2), intra-tumor gene expression heterogeneity was sometimes 

evident among samples from the same patient, although most tumors demonstrated a 

majority feature profile (Figure 2a) and similar expression profiles among intra-tumor 

samples (Supplemental Figure S2). In an effort to minimize the uncertainty surrounding 

the influence of tumor heterogeneity on gene expression(26, 27), we examined the 

relationship of the ccA/ccB subtyping with PET/MR imaging parameters, identifying PET 

standardized uptake value (SUV) to be the best for dichotomizing ccA patients from ccB 

(Supplemental Figure S3), even compared with a variety of MRI density measurements. 

Moreover, individually ccB-typed samples had significantly higher maximum SUV than ccA 

(Figure 2b). This maximum SUV also correlated with HIF-1α and GLUT1 protein levels, 
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which could account for the shift toward glucose uptake. No significant correlation was 

observed between subtype and HIF-2α (Supplemental Figure S4). FBP1 protein levels 

were significantly higher in good risk ccA classified samples and tumors (Figure 2b), 

suggesting a connection between possible alternate metabolic pathways and these ccRCC 

subtypes.

Metabolic activity dichotomizes ccRCC subtypes

Metabolic dysregulation has widely been considered as a fundamental event in ccRCC 

tumorigenesis due to the high frequency of VHL inactivation and resulting activation of HIF 

factors(28, 29), which regulate numerous genes involved in metabolism. Therapeutics are 

being developed and used to target enhanced metabolic pathways, such as the mTOR 

pathway. However, these agents produce either inefficient or varied patient responses, urging 

the need for a greater understanding of the complex relationships between tumor and host 

metabolic activities(30-33). Recently, the ccRCC cancer genome atlas (TCGA) elucidated 

that patients with unfavorable survival outcomes had higher expression of genes involved in 

early steps of glucose utilization, the oxidative pentose phosphate pathway, fatty acid 

synthesis, and downregulation of the PI(3)K pathway, whereas patients with better survival 

expressed genes involved in glycolysis, Krebs Cycle, and AMPK signaling(5). In our 

analysis, the ccA and ccB subtypes, and PET glucose uptake patterns, followed similar 

trends, as ccB (SUV high) samples significantly displayed higher expression levels of 

oxidative pentose phosphate pathway genes whereas ccA (SUV low) samples had higher 

levels of glycolytic and Krebs Cycle genes (Figure 3a).

Surprisingly, FBP1 and other glucose storage genes showed differential expression between 

ccA and ccB-typed samples. It was recently demonstrated that FBP1 is frequently depleted 

in ccRCC and may act as a critical mediator of tumor progression(6). We observed that the 

majority of ccB-typed samples have depleted FBP1 transcript levels, as compared to ccA, 

consistent with FBP1 loss corresponding to steps in disease progression or an aggressive 

phenotype. Similarly, a metabolic switch was evident between ccA and ccB assigned 

samples in the TCGA dataset. ccA samples demonstrated notably higher glycogen synthesis 

(Figure 3b), glycolysis (Figure 3c), and Krebs Cycle (Figure 3d) activity compared to ccB 

samples that had enhanced oxidative pentose phosphate (Figure 3e) and mTOR pathway 

(Figure 3f) activation. The trend towards a “Warburg effect”-like state identified in the 

ccRCC TCGA was evident with ccA patients who experienced increased AMPK signaling 

(Figure 3g) and expression of mTOR pathway inhibition, as compared to the upregulation of 

fatty acid synthesis in ccB patients (Figure 3h).

Distinct metabolic pathways predict subtypes

We performed logistic regression on both ccA and ccB samples from our study samples 

(Figure 4a) and those from the TCGA (Figure 4b) to identify biological variables 

significantly correlated to and predictive of subtype. In our study, ccA samples were best 

defined by genes (pink) and proteins (purple) involved in glucose storage and glycolysis 

(Figure 4a). On the other hand, enhanced expression of pentose phosphate pathway genes 

distinguished ccB samples. Higher standard uptake values trended towards ccB (p-

value=0.06), however the sample size prevented statistical significance. We were able to 
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further evaluate metabolic trends that characterized the two subtypes by using RNA-seq data 

from the TCGA (Figure 4b). Similar to previous findings, the most significant genes 

associated with the ccA subtype involved the upregulation of glycogen synthesis (G6PC, 

FBP1, PCK1, and PCK2), glycolysis (PKLR, ENO1, LDHD, LDHA, and PGK1), and Krebs 

Cycle (PDK2, PDK1, ACO2, SDHC, SDHB) in contrast to ccB samples which had 

significant association with the oxidative pentose phosphate pathway (HK3, PGLS, G6PC, 

TKT, PGD, and PFKM) and fatty acid synthesis (FASN, ACACA, and ME1). Interestingly, 

the PI(3)K pathway inhibitors TSC1 and GRB10 were highly associative to the ccA subtype, 

while mTOR genes (mTOR and RHEB) were enhanced in ccB subtype, again, highlighting 

metabolic redirection in these two prognostic groups (Figure 5).

FDG uptake correlates to tumor heterogeneity

Intra-tumor heterogeneity has been shown to significantly impact the genome of ccRCC 

creating difficulties in revealing underlying molecular events that promote tumorigenesis 

and progression(1, 2). Thus, biomarkers are urgently needed that provide insight towards 

tumor biological processes, and which have the potential to comprehensively assess the 

whole disease(32, 34, 35). We observed a wide range of contrast patterns in our ccRCC 

patients, including patterns displaying low or no FDG uptake (Figure 6a), and tumors that 

displayed uniformly high SUV (Figure 6b). Furthermore, patients who expressed a 

complete or predominately ccB subtype had SUVs of 2.0 or higher in 50% or more of the 

tumor volume compared to only 20% or less in tumors of ccA patients (Figure 6c). Thus, 

utilizing PET/MR can potentially facilitate personalized tumor evaluations without using 

invasive alternatives, especially where biopsy bias is a concern(27).

Discussion

In this study, we provide further evaluation of the effector products of tumor heterogeneity, 

finding variation in metabolic and angiogenic gene, protein, and tissue features. In addition, 

we present a novel approach incorporating functional imaging with multiregional gene 

expression profiling to facilitate the assessment of intra-tumor heterogeneity and tumor 

progression. This technique can potentially facilitate a comprehensive assessment of the 

tumor without using invasive alternatives, especially where biopsy bias is a concern(27).

The ccRCC subtypes, ccA and ccB, even as defined based on single tissue sample 

specimens, have been validated as prognostic tools for this disease. ccA patients have 

substantially better cancer-specific and recurrence-free survival than patients of the ccB 

subtype (10). However, intratumor heterogeneity has been observed for this gene expression 

feature set; therefore, a secondary tool that can provide a holistic evaluation of the patient’s 

disease would be highly valuable in selecting regions for sampling. Here, we have identified 

that ccB samples express higher glucose uptake compared to ccA and tumors with any ccB-

typed regions have higher overall SUV tumor means compared to ccA. Thus, PET imaging 

could be used in the future to guide biopsy or sample collection for biomarker analysis, or 

the patterns of SUV present in tumors could be further studied as an independent non-

invasive biomarker for classifying tumor risk.
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This study also underscores the potential importance of metabolic transitions in the 

progression of ccRCC, with FBP1 expression as a potentially key factor. ccA tumor cells 

appear to produce energy through increased glycolysis and Krebs Cycle activity, while 

storing additional glucose (and thus, potentially not requiring high levels of uptake) through 

FBP1-controlled glycogen synthesis, in keeping with the glycogen-rich histology that is 

classic for lower grade ccRCC tumors. In contrast, metabolic activity in ccB patients is 

substantially enhanced, with glucose uptake and synthesis increased and storage decreased. 

The oxidative pentose phosphate pathway is elevated and potentially functions as a generator 

of NADPH for ccB patients, which is likely supported via the mTOR pathway (Figure 5). 

This finding is in keeping with the original observation that mTOR pathway activation 

occurred later in disease progression, eventually leading to the indication for mTOR 

inhibitor temsirolimus being applied for poor risk patients(36).

This preliminary study is limited by the relatively smaller available sample size, but 

recapitulates the approximate levels of heterogeneity observed in the genotype driven studies 

of similar scale(1, 2). In addition, the relatively low SUV of ccRCC tumors overall both 

provided us with a good window for discrimination (in contrast to tumor types that are 

consistently strikingly high for SUV), and utilizes values that have conventionally bordered 

on the level of detection when compared with CT/PET. PET/MR is an emerging technology 

that provides enhanced tissue and spatial resolution for discrete sampling of regions of 

interest, and newer evidence suggests that reported SUVs are typically lower with PET/

MR(37), and re-evaluation of thresholds is likely to be considered as this technology 

matures. PET/MR provided the opportunity to explore a variety of dynamic contrast 

enhancement features, none of which provided a clear association with the tissue biological 

features we investigated in exploring the heterogeneity of ccRCC. However, the high level of 

architectural resolution was very useful for tracking the regions of interest across imaging 

and tissue collection. Future studies examining regional PET as an independent prognostic 

factor should consider the technological differences of CT/PET compared with PET/MR.

Another particularly interesting future question would be to examine how this applies in 

assessing metastatic disease, where differential metabolic activity may be informative for 

predicting response to therapy. A previous study examined CT/PET as a biomarker of 

response to everolimus, but was challenged by the heterogeneity of signal in metastatic 

disease(38). However, as we have shown here, this may be reflective of differing underlying 

biology.

Future studies are required to validate the metabolic mechanisms of the ccA and ccB 

subtypes. However, this is the first study to evaluate the correspondence of regional 

variations in tissue features with imaging parameters that can be assessed over defined 

regions of interest. These findings suggest novel properties of regional tumor variation that 

may improve assessment for prognostic and predictive outcomes for ccRCC, and shed light 

on metabolic transitions that accompany the switch to more aggressive disease.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Translational Relevance

The incidence of adult Renal Cell Carcinoma, or kidney cancer, is on a steady rise in the 

western world. There are multiple subtypes of this disease, the most frequent type, clear 

cell Renal Cell Carcinoma (ccRCC), is closely linked to hypoxia signaling through the 

high frequency loss of the VHL gene. ccRCC has recently been redefined as a highly 

heterogeneous disease. Here, we used positron emission tomography with magnetic 

resonance (PET/MR) imaging to better understand how tumor heterogeneity affects 

tumor biology through variations in hypoxia signaling, metabolism, vascularity, and gene 

expression signatures to provide fortitude towards individual patient treatment options. 

Utilizing these tools prior to surgical resection has the potential to reveal links between 

biological correlates and imaging parameters that can prevent unnecessary invasive 

procedures and enable enhanced knowledge of the relationships of heterogeneity and 

ccRCC.
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Figure 1. PET/MR imaging characterizes heterogeneous regions of ccRCC that correlate to 
tumor biology
(a) Tumor samples were obtained from eight ccRCC patients for hematoxylin and eosin (b), 

immunohistochemistry (c and d), and microarray (e) analysis. (b) Normal kidney cortex 

architecture was observed in the normal tissue (yellow) compared to ccRCC (red, blue, and 

green) that displayed various architectures that ranged from classical epithelial cells with 

clear cytoplasm and distinct membranes to a granular cell morphology. Samples with 

increased Glut1 protein (c and d) and gene expression (e) correlated with higher 

Fluorodeoxyglucose uptake (SUV), suggesting a possible mechanism that supports the 

greater metabolic activity. In contrast, protein (c and d) and gene expression (e) of the 

fructose-1,6-bisphosphatase 1 (FBP1) enzyme and the hypoxia inducible factor 1 (HIF-1α) 

were anti-correlative to SUV. The expression density of the platelet endothelial cell adhesion 

molecule (PECAM) decreased with higher SUV, but revealed larger vessels with high PET 

avidity.
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Figure 2. PET dichotomizes ccRCC subtypes by metabolic activity
Heterogeneous subtype classification was evident among samples from the same patient (a). 

However, an overall classification trend was observed with all patients. All primary tumor 

samples from Patient 3 were of the ccA subtype and metastatic samples ccB. (b) ccB 

samples had significantly higher maximum SUV compared to ccA, as well as increased 

expression of HIF-1α and activation of the glucose transporter GLUT1. Interestingly, ccA 

and ccB-typed samples expressed distinct levels of FBP1, suggesting discrete metabolic 

reprogramming within these two groups.
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Figure 3. ccRCC subtypes are involved in distinct metabolic pathways
Increased metabolic activity is a key event in ccRCC progression and has been postulated to 

be a future target for personalized treatment. (a) ccB patients had significantly higher 

expression of genes associated with the oxidative pentose phosphate pathway (PGLS, HK3, 

G6PD, PGD, PFKL, and ALDOB), while having lower levels of genes involved in glucose 

storage (G6PC, FBP1, and PCK2), showing a shift in metabolism towards glucose synthesis. 

On the other hand, glycolytic activity (PKLR and LDHD) was enhanced in ccA samples 

compared to ccB, as well as Kreb Cycle genes (PDK2, DLD, and PDK4). Red genes were 

found statistically significant (p-value>0.05) between ccA and ccB samples by a Welsh t-

test. Similar to the patients in the study, ccA and ccB patients from the ccRCC Cancer 

Genome Atlas (TCGA) (b-h) separated by the activation of distinctive metabolic pathways. 

ccA patients had higher expression of genes associated with glucose storage (b), glycolysis 

(c), and the Krebs Cycle (d) compared to ccB patients. Much like ccB patients in Figure 3a, 

ccB patients had higher expression of genes involved in the oxidative phase of the pentose 

phosphate pathway (e). Interestingly, ccA patients significantly increased expression of 

genes inhibiting the PI(3)K, AKT, and MTOR pathway (f and g), while ccB patients had 

activation of the mTOR pathway and fatty acid synthesis (h), suggesting a possible 

mechanism for increased HIF-1α and GLUT1 expression in ccB patients (Figure 2d). Welsh 

t-test was performed to analyze significance of gene expression between subtypes (* = p-

value>0.05, ** = p-value>0.01, *** = p-value>0.001).
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Figure 4. Distinct pathways support ccRCC metabolism
Logistic regression was performed to assess which biological features were significantly 

correlated to the ccA and ccB subtypes, with the exclusion of patient effect. (a) A forest plot 

depicts the association of effect estimates (odds ratios) of genes (pink), proteins (purple), 

and standard uptake values (black) with ccA (odds ratios between −10 and −1) and ccB 

subtypes (odds ratios between 1 and 5). The G6PC and PCK1 genes were highly associated 

with ccA samples, but weren’t significantly valuable. However, FBP1 gene expression was 

significantly correlated and higher in (p-value=0.014) ccA samples. In contrast, ccB samples 

were associated with the gene expression of G6PD (p-value=0.042) and HK3 (p-

value=0.052), as well as SUV (p-value=0.06). (b) Similar metabolic trends were associated 

with subtype in the ccRCC TCGA, where enhanced expression of glycogen synthesis 

(G6PC, FBP1, PCK1, and PCK2), glycolysis (PKLR, ENO1, LDHD, LDHA, and PGK1) 

and Krebs Cycle (PKLR, ENO1, LDHD, LDHA, and PGK1) genes were associated with 

ccA, while oxidative pentose phosphate pathway (HK3, PGLS, G6PC, TKT, PGD, and 

PFKM) and fatty acid synthesis (FASN, ACACA, and ME1) genes were upregulated in ccB.
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Figure 5. Metabolic pathways expressed in ccRCC subtypes
A model illustrating the different metabolic pathways driving the ccA (orange) and ccB 

(blue) subtypes. ccAs generate NADH for the electron transport pathway mainly through 

glycolysis and Krebs Cycle, while fatty acid synthesis is enhanced to generate energy 

through the oxidative pentose phosphate pathway in ccBs. The mTOR pathway activity is 

also enhanced in ccBs driving the expression of HIF-1α and thus the target gene GLUT1, 

resulting in higher glucose uptake.
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Figure 6. FDG uptake correlates to ccRCC heterogeneity
Representative PET, MR, and PET/MR fused images depicting low (a) and high (b) 

metabolic activity in clear cell Renal Cell Carcinoma (ccRCC). Patients who largely 

expressed the ccA classification profile were considered ccA and those expressing mostly 

ccB were considered ccB. Only the primary tumor was used to measure tumor means, so 

Patient 3 was annotated as a ccA patient (c). Standardized Uptake Value (SUV) of primary 

tumors was greater than 2.0 in at least 50% of tumor volume for tumors with a ccB 

classification while those absent of ccB exceeded SUV of 2.0 in 20% or less of tumor 

volume.
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