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Abstract

Background—Liquid core nanodroplets containing condensed gaseous fluorocarbons can be 

vaporized at clinically relevant acoustic energies, and have been hypothesized as an alternative 

ultrasound contrast agent instead of gas-core agents. The potential for targeted activation and 

imaging of these agents was tested with droplets formulated from liquid octafluorpropane (C3) 

and 1:1 mixtures of C3 with liquid decafluorobutane (C3C4).

Methods and Results—In eight pigs with recent myocardial infarction and variable degrees of 

reperfusion, transthoracic acoustic activation was attempted using 1.3–1.7 MHz low (0.2 

mechanical index or MI) or high MI (1.2 MI) imaging in real time (32–64 Hertz) or triggered 1:1 

at end systole during a 20% C3 or C3C4 droplet infusion. Any perfusion defects observed were 

measured and correlated with delayed enhancement magnetic resonance imaging and post mortem 

staining. No myocardial contrast was produced with any imaging setting when using C3C4 

droplets, or C3 droplets during low MI real time imaging. However, myocardial contrast was 

observed in all eight pigs with C3 droplets when using triggered high MI imaging, and in five of 

six pigs who had 1.7 MHz real time high MI imaging. Although quantitative myocardial contrast 

was lower with real time high MI imaging than 1:1 triggering, the correlation between real time 

resting defect size and infarct size was good (r=0.97, p<0.001), as was the correlation with number 

of transmural infarcted segments by delayed enhancement imaging.

Conclusions—Targeted transthoracic acoustic activation of infused intravenous C3 

nanodroplets is effective, resulting in echogenic and persistent microbubbles which provide real 

time high MI visualization of perfusion defects.
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Perfluorocarbon gases have improved the ability of microbubbles to serve as left ventricular 

diagnostic contrast agents. Their high molecular weight and reduced solubility have resulted 

in improved microbubble persistence following venous injection, permitting consistent left 

ventricular opacification and myocardial contrast (1,2). However, by the time microbubbles 

reach the systemic circulation from a venous injection, they are very susceptible to 

ultrasound induced destruction. Although this has been exploited successfully to better 

quantify myocardial perfusion (3,4), it has prevented the real time visualization of 

myocardial contrast at power outputs that could improve image quality and reduce 

attenuation. One reason for the fragility of intravenously infused microbubbles is their 

reduced size upon reaching the systemic circulation, while larger intra-arterially injected 

microbubbles are more resistant to ultrasound destruction (5).

Both octafluoropropane and decafluorobutane gases can be condensed under pressure to 

their liquid phases within lipid shells to sub-micron size droplets (6,7). These same droplets 

can be vaporized by ultrasound to reform acoustically active microbubbles at transducer-

targeted locations (8,9). The nanodroplets formulated from these low-boiling point 

perfluorocarbons require less acoustic pressure than higher boiling point perfluorocarbons, 

and purely octafluoropropane droplets have vaporized at peak negative pressures that are 

achievable with current commercially available transthoracic ultrasound systems (8,9). The 

microbubbles produced are approximately five times the size of the original droplet (7). 

Despite extensive in-vitro studies, the acoustic properties of these created microbubbles 

within the myocardial microcirculation are unknown. The purpose of this paper was to test 

whether acoustic activation of condensed low boiling point droplets was possible with 

commercially available transthoracic frequencies and clinically relevant peak negative 

pressures.

METHODS

Acoustic Droplet Preparation and Characterization

Octafluoropropane (C3) and 1:1 mixtures of octafluoropropane/decafluorobutane (C3C4) 

were formed by condensing seed microbubbles using previously established techniques 

(3,6). Briefly, in order to generate microbubbles, the headspace within stock vials of lipid 

solution was gas-exchanged with either C3 or C3C4 and subject to standard agitation 

(Vialmix, Bristol-Myers-Squibb, New York, NY). Individual microbubble vials were then 

immersed in an isopropanol bath maintained at −10°C and exposed to a gradual increase in 

external pressure using an adjustable air source until condensation was observed. The 

droplets were stable and appeared as a clear solution during infusion (Figure 1).

The sizes of the condensed droplets were polydisperse. As such, two separate sizing systems 

were required to characterize the entire range of droplet sizes. The NanoSight NS500 

(Malvern Instruments Inc., Westborough, MA) was used to capture droplet content ranging 

from 50 to 1000 nm in diameter, and the AccuSizer 780A (Particle Sizing Systems, Port 

Richey, FL) was used to capture droplet content ranging from 500 to 50,000 nm in diameter. 

According to the NanoSight system, the average distribution (3 separate vials) of C3 

droplets had a mode size of 109.1 +/− 6.8 nm and a total concentration of 2.8 × 1011 +/− 1.3 

× 1011 particles/ml, whereas C3C4 droplets had a mode size of 125.9 +/− 3.6 nm and a total 
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concentration of 1.6 × 1011 +/− 8.8 × 1010. The differences in size and concentration 

between C3 and C3C4 droplets are expected based on ideal gas laws and the concentration 

of seed microbubbles (8). According to the AccuSizer, the average distribution (3 separate 

vials) of C3 droplets had a mode size of 623.3 +/− 37.9 nm and a total concentration of 2.6 × 

108 +/− 3.3 × 107 particles/ml, whereas C3C4 droplets had a mode size of 610.0 +/− 10.0 

nm and a total concentration of 3.2 × 108 +/− 3.5 × 107. It is important to note that although 

the concentration of larger droplet content reported by the AccuSizer is three orders of 

magnitude larger than that reported by the NanoSight, it is likely this larger droplet content 

is primarily responsible for contrast enhancement.

Animal Studies

All studies performed were approved by the Institutional Animal Care and Use Committee 

at the University of Nebraska Medical Center. Eight pigs (mean weight 64 ± 6 kg) who were 

48 hours post an acute ST segment elevation myocardial infarction were studied. One 

additional pig without infarction was utilized to demonstrate the effect of mechanical index 

on activation threshold in real time and the wash out of activated droplets from the 

myocardium and left ventricular cavity. The infarction was created using an established 

protocol (10,11) that involves balloon injury of the mid left anterior descending artery 

followed by a 50 day 15% lard diet. At 50 days, the left anterior descending was balloon-

injured again in the same location, following which the balloon was reinflated slightly 

proximal to the injury site to create stasis, and small 0.2–0.3 milliliter aliquots of 

thrombosing venous blood were re-injected through the balloon catheter until a sustained 

(20 minute) angiographic occlusion was achieved. Pigs were then treated with intermittent 

high mechanical index impulses (1.0 mechanical index) from a modified low frequency 

diagnostic and therapeutic transducer (900 kHz GE Vivid E9; GE Global Research) during a 

30 minute intravenous microbubble infusion (3% Definity). All pigs received 300 mg of 

aspirin and 600 milligrams of clopidogrel via a nasogastric tube combined with a heparin 

infusion for sixty minutes. Using this protocol epicardial recanalization occurred in five of 

the eight pigs by 90 minutes into therapy. Following the myocardial infarction and 

ultrasound treatment, all pigs were allowed to recover and placed back on a regular diet for 

two days.

At 48 hours post infarction, the pigs underwent cardiac magnetic resonance exams 

(described below) to define infarct size. Following this, pigs underwent 20% intravenous 

infusions (diluted in normal saline) of C3 or 20% infusion of the 1:1 ratio of C3C4 droplets. 

Imaging was initiated at one minute after the infusion was started. Each infusion was 

separated from the other by five-seven minutes to allow clearance of the previous droplets 

from the system, which was verified by ultrasound imaging. Before and during all infusions, 

arterial blood pressure, heart rate, and oxygen saturation monitoring were recorded.

Ultrasound Activation Protocols

Using a Philips S5-1 transducer (Philips Healthcare), a triggered harmonic high mechanical 

index (MI) at 1.3 MHz (1.1 MI) was tested using mid and distal short axis imaging of the 

left ventricle. At the 1.3 MHz harmonic setting, the images were triggered to end systole at 

either one frame every one cardiac cycle or every four cardiac cycles. We also tested two 
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real time settings: A 20 Hz frame rate low MI (0.2–0.25) setting (Power Modulation) 

traditionally used for microbubble imaging at 1.7 MHz, and a high MI (1.2 MI) real time 

setting of 1.7 MHz harmonic imaging. The purpose of the high MI real time setting was to 

determine if droplets within the microcirculation could be activated and still visualized 

without destruction. To further evaluate this in three of the pigs, myocardial contrast 

enhancement with the 1.7 MHz real time setting was compared with the 1:1 triggered setting 

at the same MI during the continuous infusion to determine if there was evidence of 

differences in myocardial signal enhancement due to destruction. The wash out of the 

myocardial and left ventricular cavity contrast following infusion termination was also 

analyzed using Q lab measurements of digital intensity versus time.

All three settings (triggered 1.3/2.6 MHz harmonic, low MI 1.7 MHz power modulation 

imaging, and real time 1.7 MHz high MI imaging) were tested for both intravenous C3 and 

C3C4 droplet infusions. Prior to sacrifice, the pigs had a balloon catheter advanced under 

fluoroscopy into the same location as the original LAD occlusion and inflated to re-occlude 

the infarct vessel (if it was recanalized). No balloon was inserted if the vessel remained 

occluded at the original injury site. Following this, a total of 65 ml of 3% Evans Blue (40 ml 

in the left main, 25 ml in the right coronary) was then injected through coronary catheters 

placed in the right and left main coronary arteries to define risk area. The pigs were 

subsequent sacrificed and post mortem triphenyl tetrazolium chloride (TTC) staining of 

infarct size and Evans Blue (EB) measurements of risk area were determined using 

planimetry.

Magnetic resonance imaging (MRI), Risk Area, and Post Mortem TTC Staining

MRI scans were also performed at 48 hours following infarction just prior to droplet 

infusion studies using a 1.5 Tesla Magnet (Philips Achieva XL: Best, The Netherlands). 

Cine images using steady state free precession were obtained in serial short axis views (slice 

thickness 8 cm, slice gap 2 cm, 45 msec temporal resolution, flip angle 60 degrees; TR 3 

msec; TE 1.5 msec) to quantify left ventricular ejection fraction using the Philips View 

Forum workstation. Following this, 0.15 mmol/kilogram of 0.2 mmol/kg dimeglumine 

gadopentatate (Magnevist: Bayer) was injected. At 10 minutes post injection, all short axis 

views were examined using an inversion recovery turbo fast field echo/gradient recall ECG-

triggered, segmented image collection for detection of extent of necrosis. Using a 16 

segment model, segments exhibiting transmural (>50% thickness at end diastole) 

hyperenhancement, and segments exhibiting any microvascular obstruction (persistent 

unenhanced portions within the hyperenhanced segments) were recorded using established 

criteria (12). All image interpretation and quantification was performed by an experienced 

level III trained cardiologist (SS) who was blinded to echocardiographic and post mortem 

staining results.

Statistical Comparisons

Since the presence or absence of myocardial contrast at high and low mechanical indices 

were obvious and consistent, comparisons of the presence or absence of myocardial contrast 

using the different imaging techniques utilized to activate the intravenously infused C3 

versus C3C4 droplets were descriptive and not determined with contingency tables. When 
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comparing myocardial contrast intensity between real time and triggered frame rates in the 

different animals (n=18 comparisons in three animals), a covariance structure which treats 

random variation due to the three pigs was performed, which then treats the paired data with 

a 2×2 unstructured co-variance matrix. The average size of any visualized perfusion defect 

(at rest and during repeat LAD occlusion) with any of the imaging techniques was 

planimetered off line, and compared with post mortem EB and TTC staining using a 

Spearman correlation with an exact p value to summarize the association. The planimetered 

size of any defect was also compared with the number of segments (using a 16 segment 

model) exhibiting transmural (>50% transmural thickness) delayed enhancement on post 

gadolinium magnetic resonance imaging using a Spearman correlation coefficient. Statistical 

analyses were generated with SAS/STAT software, Version 9.4 (© 2002 – 2012 SAS 

Institute Inc.)

RESULTS

Activation Thresholds for Transthoracic Real Time Imaging of Myocardial Contrast 
Enhancement

Figure 2 and Video 1 demonstrate the effect of mechanical index on the presence of 

myocardial contrast enhancement achieved with a continuous intravenous C3 infusion. Note 

that at a specific mechanical index (0.8) we begin to see myocardial and left ventricular 

cavity contrast which eventually encompasses the entire short axis at the 1.2 mechanical 

index.

Acoustic Activation of C3 versus C3C4 Droplet Infusions

A total of eight pigs were examined with both the C3 and C3C4 droplet infusions. During 

the C3 infusion, consistent myocardial opacification and left ventricular cavity contrast were 

seen in all eight pigs with the 1.3 MHz triggered (once every one and four cardiac cycles at 

end systole) harmonic imaging modality (Figure 3 example). No myocardial contrast and 

minimal left ventricular cavity contrast was seen with 1.7 MHz low MI power modulation 

imaging. However, in the six pigs in which real time high MI harmonic imaging at 1.7 MHz 

was tested, myocardial contrast enhancement was observed in the un-infarcted myocardial 

microcirculation with excellent delineation of perfusion defects in five of six animals 

(Figure 4; Videos 2). This contrast persisted during and for up to three minutes following 

cessation of the 20% C3 infusion, and a time lapse quantitative measurements of contrast 

disappearance from the cavity and myocardium indicated that there was a linear 

disappearance of contrast from both regions (Figure 5), indicating the created microbubbles 

were, for the most part, behaving as intravascular tracers and were not trapped within the 

microcirculation.

In the three pigs in which a triggered 1.7 MHz high MI end systolic image (1:1 triggering) 

was compared to a real time 1.7 MHz image at the same MI, there was a slight, but highly 

significant increase in myocardial contrast intensity was observed (p<0.00001; n = 18 

comparisons in the three pigs). This would indicate that simultaneous generation and 

destruction of microbubbles is occurring in the microcirculation while in the real time high 

MI mode (Figure 6).
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In none of the eight pigs was myocardial contrast achieved with the 20% C3C4 infusion.

Correlation with Infarct Size and Risk Area Assessments

At cardiac MRI, the average ejection fraction of the pigs was 45 ± 15% (range 29–74%). 

Median number of segments exhibiting transmural hyperenhancement was 4, with a range of 

1 to 6.

During the C3 infusion with triggered end systolic 1:1 imaging at 1.3 MHz, delineation of 

perfusion defects was possible. This was also possible with the real time high mechanical 

index 1.7 MHz harmonic imaging in five of six pigs tested. Under resting conditions before 

re-occlusion of the LAD, perfusion defect size (presumed infarct size) observed with 1:1 

triggering at high MI 1.3 harmonic imaging and 1.7 MHz real time high MI imaging 

averaged 1.86±1.29 cm2 while TTC measurements of infarct size were 1.90±1.31cm2. There 

was a close correlation between perfusion defect size and TTC measurements (r=0.95, 

p<0.001; Figure 7a) and with the number of transmurally infarcted segments measured at 

MRI (r=0.74, p=0.048). Figure 8 depicts two examples of infarctions detected with real time 

high MI imaging and corresponding TTC staining.

Assessment of perfusion defect size with the C3 infusion was possible during repeat LAD 

occlusion ischemia in seven pigs. In this setting, the average perfusion defect size with both 

1.3 MHz triggered and 1.7 MHz real time high MI imaging correlated closely with unstained 

areas on post mortem Evans Blue staining (r=0.97;p<0.001; Figure 7b).

Safety

During infusions of both agents, no changes in heart rate, systolic arterial pressure, or 

oxygen saturation were observed (Table). None of the animals exhibited premature 

ventricular contractions or other arrhythmias during the infusion of either C3 or C3C4. Post 

mortem TTC staining indicated no evidence of hemorrhage within the normal myocardium, 

or within the infarct zones.

DISCUSSION

This is the first paper to demonstrate that intravenous nanodroplets can be acoustically 

activated with conventional transthoracic phased array transducers to detect both infarct size 

and risk area. Although these droplets were acoustically undetectable with conventional low 

mechanical index techniques traditionally used to detect perfusion with microbubbles, they 

were consistently activated with triggered high mechanical index harmonic techniques, and 

more importantly visualized within the microcirculation with real time high mechanical 

index harmonic imaging techniques.

Following acoustic activation, the C3 nanodroplets behaved similar to what has been 

described with larger sized more concentrated intra-arterially injected microbubbles (5), in 

that they were resistant to high mechanical index ultrasound destruction. It is unlikely that 

these were microbubbles were trapped within the microcirculation, since their disappearance 

following infusion termination correlated with disappearance of left ventricular cavity 

contrast. The 600–650 nanometer sized droplets would be expected to result in microbubbles 
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that were at least 3–4 microns in size (7), and perhaps slightly larger due to inward diffusing 

dissolved nitrogen gas within the blood stream. Even at these sizes though, they would still 

be expected to pass freely through the myocardial capillaries (13) while also being more 

resistant to destruction than smaller sized perfluorocarbon microbubbles (14). Intravenously 

infused commercially available microbubbles within the capillaries would not be visualized 

at this high mechanical index and frame rate, since capillary blood replenishment with 

intravenously infused C3 microbubbles would not be expected at this frame speed (10). It is 

possible, therefore, that these created microbubbles were in a unique size range that was 

resistant to ultrasound induced destruction but still capable of acting as free intravascular 

tracers. Other explanations for their resistance to destruction may be their resistance to shell 

buckling in response to diagnostic ultrasound pressures. High speed optical imaging has 

shown that in some cases, microbubbles recently formed from vaporized liquid 

perfluorocarbons behave differently in response to diagnostic ultrasound when compared to 

commercially available microbubbles, and do not exhibit shell buckling (15). Whether this 

renders them more resistant to destruction is not clear. One important caveat from this is that 

these created microbubbles cannot be used for the perfusion imaging techniques that take 

advantage of microbubble destruction to quantify myocardial blood flow (3).

Also, we did not observe any evidence of leaking of the microbubbles into infarcted 

segments. This may have been due to our ability to only activate only the “larger” 600 

nanometer C3 droplets that were confined to the intravascular spaces. According to the 

characterization results, the nanodroplets were polydisperse. It has been shown that the 

droplet activation threshold increases with decreasing droplet diameter (6). Therefore, it is 

possible that that observed contrast enhancement was due to the activation of larger droplet 

content, and droplets small enough to cross damaged endothelial membranes may not have 

been activated at the pressures tested herein. This may explain the close correlation between 

contrast defect size with triggered high MI imaging and TTC measurements of infarct area 

as well as Evans Blue measurements of risk area.

C4 droplets, and droplets with 50% C4 content as used in the current study, appear to be 

more difficult to activate with the MI limits currently available with conventional diagnostic 

transthoracic transducers at the depths required for cardiac imaging in the pig and humans 

(approximately 4–10 centimeters from the anterior to posterior borders for transthoracic 

parasternal imaging as demonstrated in Figures 3–5). This is in agreement with in vitro 

studies that indicated that the droplet activation threshold increases with increasing 

molecular weight of the perfluorocarbon core (7).

Limitations of Nanodroplet Formulations

A problem with the technique used to create droplets in the current study was the 

polydisperse nature of the formed droplets, ranging from 100 to 700 nm in diameter. It is 

possible that more monodisperse droplet distributions, designed for different clinical 

applications, could be created through techniques such as microfluidic particle generation 

(16) or by optimizing the size distribution of the precursor bubble population.

The microbubbles created in this study were resistant to high MI destruction, and thus 

cannot be used to perform targeted myocardial blood flow calculations similar to what is 
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currently done with destruction replenishment curves using commercially available 

microbubbles (3). However, since the generated microbubbles still appear to function as free 

intravascular tracers, the targeted activation of left ventricular cavity droplets with a three 

dimensional high mechanical index impulse following a bolus intravenous injection could be 

utilized as an input function to generate myocardial contrast time intensity curves to 

quantitatively assess transit rates that correlate with myocardial blood flow (17). Further 

work is needed to assess the feasibility of such methods.

Clinical Implications/Future Directions

All infusions of the nanodroplets resulted in no changes in myocardial function across a 

wide range of ejection fractions, and no changes in hemodynamics, oxygen saturation, or 

damage outside the infarct zones. Therefore, this study suggests there is clinical potential for 

this technique for real time high mechanical index transthoracic perfusion imaging. 

Although C3 droplets have not been tested with transthoracic imaging in humans, these pigs 

were large animals (mean weight 64 ± 6 kg) and their parasternal locations for left 

ventricular cavity were similar to that which is seen in humans. The mechanical indices that 

were required to activate the microbubbles and permit myocardial contrast enhancement in 

both the near and far field were well within Food and Drug Administration limits.

This targeted activation technique at a high mechanical index may improve the dynamic 

range within which myocardial blood volume can be analyzed and quantified with contrast 

echocardiography. Additional studies are needed to determine whether more precise sizes of 

nanodroplets can be created that would allow a consistent size of microbubble to be 

produced. Activation of the smaller 100–200 nanometer droplets that cross defective 

endothelial borders into infarct zones may allow highlighting of the infarct zone in a manner 

currently seen with delayed enhancement imaging, but this still has not been demonstrated. 

Droplets of larger size like those activated in the current study may be used to better 

delineate myocardial contrast defects seen with infarction, as well as identify normal 

myocardial contrast enhancement within dysfunctional segments (i.e. hibernating 

myocardium). Overall, the ability intravenous droplets to bypass the lung filtering effect and 

permit targeted acoustic activation only to zones where myocardial contrast is needed may 

further improve the safety of ultrasound contrast imaging and allow higher quality imaging 

of myocardial blood volume in acute coronary syndromes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGEMENTS

The authors appreciate the assistance of Terry Matsunaga (University of Arizona) in the early development of 
perfluorocarbon agents. The authors thank Nazar Filonov and the Nanomedicines Characterization Core Facility at 
University of North Carolina for the use of nanoparticle sizing equipment. The authors thank Carol Gould for her 
administrative assistance in manuscript preparation, as well as Elizabeth Stoltze and Gretchen Fry for their 
assistance in performing the additional animal experiments.

SOURCES OF FUNDING

Porter et al. Page 8

Circ Cardiovasc Imaging. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The study was supported in part by the Theodore Hubbard Foundation and National Institute of Health Biomedical 
Research Partnership Grant # R01 HL095868, as well as the National Institute of General Medical Sciences, 
Division of Training, Workforce Development, and Diversity under the Institutional Research and Academic 
Career Development Award, grant #K12-GM000678.

DISCLOSURES

Thomas R. Porter has equipment support from General Electric Global and Philips Healthcare. Dr. Porter has grant 
support from Lantheus Medical, Astellas Pharma, GE Healthcare. Dr. Porter is on the Speaker’s Bureau for Bracco. 
Paul A. Dayton has patents pending on the phase change contrast agent formulations utilized here.

REFERENCES

1. Porter TR, Xie F. Visually discernible myocardial echocardiographic contrast after intravenous 
injection of sonicated dextrose albumin microbubbles containing high molecular weight, less 
soluble gases. J Am Coll Cardiol. 1995; 25:509–515. [PubMed: 7829807] 

2. Porter TR, Xie F. Transient myocardial contrast after initial exposure to diagnostic ultrasound 
pressures with minute doses of intravenously injected microbubbles: Demonstration and potential 
mechanisms. Circulation. 1995; 92:2391–2395. [PubMed: 7586336] 

3. Wei K, Jayaweera AR, Firoozan S, Linka A, Skyba DM, Kaul S. Quantification of myocardial 
blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous 
infusion. Circulation. 1998; 97:473–483. [PubMed: 9490243] 

4. Wei K, Jayaweera AR, Firoozan S, Linka A, Skyba DM, Kaul S. Basis for detection of stenosis 
using venous administration of microbubbles during myocardial contrast echocardiography: Bolus 
or continuous infusion? J Am Coll Cardiol. 1998; 32:252–260. [PubMed: 9669278] 

5. Wei K, Skyba DM, Firschek C, Jayaweera AR, Lindner JR, Kaul S. Interactions between 
microbubbles and ultrasound: In vitro and in vivo observations. J Am Coll Cardiol. 1997; 29:1081–
1088. [PubMed: 9120163] 

6. Sheeran PS, Luois S, Mullin L, Matsunaga TO, Dayton PA. Design of ultrasonically-activatable 
nanoparticles using low boiling point perfluorocarbons. Biomaterials. 2012; 33:3362–3369.

7. Matsunaga TO, Sheeran PS, Luois S, Streeter JE, Mullin LB, Banerjee B, Dayton PA. Phase-
Change Nanoparticles Using Highly Volatile Perfluorocarbons: Toward a Platform for 
Extravascular Ultrasound Imaging. Theranostics. 2012; 2:1185–1198. [PubMed: 23382775] 

8. Sheeran PS, Rojas JD, Puett C, Hjelmquist J, Arena CB, Dayton PA. Contrast enhanced ultrasound 
imaging and in vivo circulatory kinetics with low-boiling-point nanoscale phase-change 
perfluorocarbon agents. Ultrasound Med Biol. 2015; 41:814–831. [PubMed: 25619781] 

9. Sheeran PS, Luois S, Dayton PA, Matsunaga TO. Formulation and acoustic studies of a new phase-
shift agent for diagnostic and therapeutic ultrasound. Langmuir. 2011; 27:10412–10420. [PubMed: 
21744860] 

10. Xie F, Gao S, Wu J, Lof J, Radio SJ, Vignon F, Shi W, Powers J, Unger E, Everbach EC, Liu J, 
Porter TR. Diagnostic Ultrasound Induced Inertial Cavitation to Non-invasively Restore Coronary 
and Microvascular Flow in Acute Myocardial Infarction. Plos One. 2013; 8:e69780. [PubMed: 
23922797] 

11. Wu J, Xie F, Lof J, Sayyed S, Porter TR. Utilization of Modified Diagnostic Ultrasound and 
Microbubbles to Reduce Myocardial Infarct Size. Heart. 2015; 101:1468–1474. [PubMed: 
26109588] 

12. Cerqueria M, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, Pennell DJ, Rumberger 
JA, Ryan T, Verani MS. Standardized myocardial segmentation and nomenclature for tomographic 
imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging 
Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 
2002; 105:539–542. [PubMed: 11815441] 

13. Kaul S, Jayaweera AR. Myocardial capillaries and coronary flow reserve. J Am Coll Cardiol. 
2008; 52:1399–1401. [PubMed: 18940530] 

14. Liao AH, Hsieh YL, Ho HC, Chen HK, Lin YC, Shih CP, Chen HC, Kuo CY, Lu Y- Wang CH. 
Effects of Microbubble Size on Ultrasound-Mediated Gene Transfection in Auditory Cells. 
Biomed Research Int. 2014; 2014:1–11.

Porter et al. Page 9

Circ Cardiovasc Imaging. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



15. Reznik N, Lajoinie G, Shpak O, Gelderblom EC, Williams R, de Jong N, Versluis M, Burns PN. 
On the acoustic properties of vaporized submicron perfluorocarbon droplets. Ultrasound Med Biol. 
2014; 40:1379–1384. [PubMed: 24462162] 

16. Couture O, Faivre M, Pannacci N, Babataheri A, Servois V, Tabeling P, Tanter M. Ultrasound 
internal tattooing. Med Phys. 2011; 38:1116–1123. [PubMed: 21452748] 

17. Kaul S, Kelly P, Oliner JD, Glasheen WP, Keller MW, Watson DD. Assessment of regional 
myocardial blood flow with myocardial contrast two-dimensional echocardiography. J Am Coll 
Cardiol. 1989; 13:468–482. [PubMed: 2913121] 

Porter et al. Page 10

Circ Cardiovasc Imaging. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Clinical Perspective

This study demonstrates the potential for transthoracic ultrasound to target both the 

activation and imaging of systemically administered acoustic droplets that are less than 

one micron in size. Consistent real time visualization of myocardial contrast 

enhancement was possible at 1.3 and 1.7 MHz frequencies. This targeted acoustic 

activation of intravenous perfluorocarbon droplets has not been previously demonstrated. 

Since these droplets range in size from 50 to 600 nanometers, and do not become 

microbubbles until acoustically activated, they could be used for prolonged periods of 

time following intravenous injection, and could be used to accurately identify the 

transmural extent and size of infarction in real time at a high mechanical index.
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Figure 1. 
The typical appearance of the C3 nanodroplets diluted to 15% in normal saline prior to 

infusion. Note the near complete absence of any microbubbles.
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Figure 2. 
An example of C3 droplet activation during a continuous infusion of the droplets as 

mechanical index is increased at the 1.3 MHz frequency. Image frame rate was 30 Hertz
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Figure 3. 
Triggered 1.3 MHz high MI imaging during a C3 nanodroplet infusion in a pig with a small 

previous small inferoseptal myocardial infarction (arrows).
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Figure 4. 
Real time high mechanical index imaging of microcirculatory microbubbles activated during 

real time 1.7 MHz transthoracic imaging during acute LAD ischemia. Frame rate is 64 Hz; 

MI is 1.3.

Porter et al. Page 15

Circ Cardiovasc Imaging. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Demonstration of the washout of the myocardial and left ventricular cavity contrast after the 

C3 has been injected using a 1:1 triggering imaging technique. Using Q Lab software, this 

intensity was plotted on the accompanying graph to demonstrate the corresponding 

disappearance of contrast as a function of time, verifying that the contrast in the 

myocardium is not coming from trapped microbubbles within the microcirculation.
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Figure 6. 
A representative image and graphical display of the myocardial contrast enhancement 

achieved at 1:1 triggering at end systole versus real time imaging at the same high 

mechanical index (1.2). The comparisons (n=19) were done in three separate pigs. There 

was a slight, but highly significant (p<0.0001), increase in signal intensity while in the 

triggering mode. This would indicate that some simultaneous generation and destruction of 

microbubbles is occurring in the microcirculation while in the real time high MI. *p<0.0001 

compared to real time imaging.
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Figure 7. 
Correlations between TTC derived infarct area (left panel) and averaged defect size from 1.3 

MHz/2.6 MHz transthoracic triggered imaging and 1.7/3.4 MHz real time harmonic imaging 

(r=0.95; p<0.001). During repeat left anterior descending occlusion, the Evans Blue (EB) 

unstained area correlated closely with perfusion defect size using either the triggered 1:1 

high MI setting or real time high MI setting. Data points are the same as pig number, and the 

correlations represent the average of measurements from the 1.3 MHz triggered data and 1.7 

MHz real time data for each pig.

Porter et al. Page 18

Circ Cardiovasc Imaging. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
Representative examples of infarction (arrows) detected using the 1.7 MHz real time (Case 

1) and 1.3 MHz real time (Case 2) frequencies at a high mechanical index in real time. The 

accompanying TTC images are also displayed.
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Table

Hemodynamic changes following a C3 or C4 infusion. No significant changes were observed in any 

parameter.

Agent MAP
before

MAP
after

O2 sat
Before

O2 sat
After

HR
Before

HR
After

C3 infusion 68.0 68.1 98.5 94.1 85.8 89.6

C3/C4 infusion 69.3 71.8 97.8 96.4 82.4 85.5
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