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Abstract

Lead exposure remains a global public health issue, and the recent Flint water crisis has renewed 

public concern about lead toxicity. The toxicity of lead has been well established in a variety of 

systems and organs. The gut microbiome has been shown to be highly involved in many critical 

physiological processes, including food digestion, immune system development and metabolic 

homeostasis. However, despite the key role of the gut microbiome in human health, the functional 

impact of lead exposure on the gut microbiome has not been studied. The aim of this study is to 

define gut microbiome toxicity induced by lead exposure in C57BL/6 mice using multi-omics 

approaches, including 16S rRNA sequencing, whole genome metagenomics sequencing and gas 

chromatography-mass spectrometry (GC-MS) metabolomics. 16S rRNA sequencing revealed that 

lead exposure altered the gut microbiome trajectory and phylogenetic diversity. Metagenomics 

sequencing and metabolomics profiling showed that numerous metabolic pathways, including 

vitamin E, bile acids, nitrogen metabolism, energy metabolism, oxidative stress and the defense/

detoxification mechanism, were significantly disturbed by lead exposure. These perturbed 

molecules and pathways may have important implications for lead toxicity in the host. Taken 

together, these results demonstrated that lead exposure not only altered gut microbiome 

community structures/diversity but also greatly affected metabolic functions, leading to gut 

microbiome toxicity.
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Introduction

As one of the oldest known and most widely studied metals, lead has been recognized as a 

toxin since antiquity. The primary sources of lead exposure are water, food, soil, paint, 

leaded gasoline, food preparation utensils and electronic waste.1–3 The phasing out of lead 

in gasoline and the restriction of the amount of lead permitted in paint substantially lowered 

the blood lead levels in the U.S. population.4 However, the Flint water crisis has renewed 

public awareness of lead toxicity. After the city’s water source was changed from Lake 

Huron to the Flint River, increases were observed in the lead concentration in Flint’s water 

supply and the blood lead levels in children.5 Children are more susceptible to lead toxicity 

than adults, and cognitive development problems make childhood lead exposure a special 

public health concern.6 In addition to its neurobehavioral toxicity, lead exposure has 

destructive effects on the reproductive, hematopoietic, cardiovascular, gastrointestinal, 

circulatory, immunological and renal systems and deleterious effects on the urinary tract, 

liver and kidney.1, 7–10 Lead causes oxidative stress and impairs the antioxidant defense 

systems.11 Antioxidants, such as herbs, bioactive peptides, vitamin E and N-acetylcysteine, 

have been demonstrated to protect against lead toxicity.12, 13

The gut microbiome, which is also known as our “second genome”, has received much 

attention recently due to its involvement in human health and disease.14 The gut microbiome 

plays a key role in gut permeability and inflammation, energy harvest and lipid 

metabolism.15, 16 Disruption or dysbiosis of gut bacteria is associated with diverse diseases, 

such as allergies, gastric cancer, autism, obesity, anorexia, Crohn’s disease, inflammatory 

bowel disease and diabetes.17 Host-microbiome metabolic interactions can trigger biological 

effects both locally and systemically.18 For example, the gut microbiome produces short-

chain fatty acids (acetate, propionate and butyrate), vitamins and other cofactors through the 

digestion of polysaccharides.19 The gut microbiome also produces metabolites through 

amino acid fermentation, such as cresol and indole, which can be toxic to the host.20 

Likewise, the gut microbiome biotransforms primary hydrophilic bile acids to secondary 

hydrophobic bile acids in the large intestine via deconjugation, oxidation, epimerization and 

dihydroxylation.21 Bile acids can facilitate fat and fat-soluble vitamin absorption and 
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maintain cholesterol homeostasis.22 Furthermore, bile acids are viewed as signaling 

molecules that bind to nuclear receptor FXR and the G-protein-coupled receptor TGR5.21, 23

The gut microbiome can be affected by many factors, including genetics, gender, age and 

antibiotics. Recent studies showed that the gut microbiome was disturbed by heavy metals, 

such as arsenic, cadmium and lead.24–27 A previous study investigated the impact of eight 

weeks of oral lead ingestion at a 100 or 500 ppm concentration on the gut bacterial 

compositions of mice via pyrosequencing of the 16S rRNA gene.28 However, the functional 

effects of lead on the gut microbiome remain unknown. Functional characterization of gut 

microbiome changes is clearly more important and informative than bacterial composition 

profiling by itself. Therefore, in the present study, we applied 16S rRNA sequencing, whole 

genome metagenomics sequencing and gas chromatography-mass spectrometry (GC-MS) 

metabolomics profiling to explore the effects of lead exposure on the gut microbiome and its 

functions and to define gut microbiome toxicity. The 16S rRNA sequencing provided the 

phylogenetic and taxonomic information needed to infer the microbial community 

structures. Whole genome metagenomics sequencing not only identifies the abundance and 

diversity of the microbial community but also reveals the gene contents and functional 

potential of genes encoded in the whole genomes of the microbial community.29 This 

approach can be coupled with metabolomic profiling to better understand the impact of lead 

exposure on the metabolic functions of the gut microbiome. Taken together, these system-

level approaches reveal that lead exposure has a profound effect on gut microbiome 

development and numerous key metabolites and metabolic/cellular pathways of gut bacteria, 

leading to gut microbiome toxicity.

Materials and Methods

Animals and exposure

Specific pathogen-free C57BL/6 female mice (~7 weeks old) were purchased from Jackson 

Laboratory and housed at the University of Georgia animal facility for one week before the 

experiment. The mice were allowed to consume tap water ad libitum. Before and throughout 

the experimental period, the mice were housed under environmental conditions of 22°C, 40–

70% humidity and a 12:12 hr light:dark cycle and were provided a standard rodent pellet 

diet. At the start of experimentation, the mice were randomly assigned to either a control or 

a lead-treated group (n=5). Lead chloride (Sigma-Aldrich, catalog number 449865) was 

administered to the mice in their drinking water at a concentration of 10 ppm (based on the 

lead content) for a study period of 13 weeks. This concentration was equivalent to ~2 mg/kg 

body weight/day. The control mice received water alone. The animal protocol was approved 

by the University of Georgia Institutional Animal Care and Use Committee. The animals 

were treated humanely with attention to the alleviation of their suffering.

16S rRNA gene sequencing

16S rRNA gene sequencing was performed as previously described using fecal pellets 

collected before exposure (day 0) and 4 weeks (week 4) and 13 weeks post-exposure (week 

13).27 Briefly, total DNA was extracted from the fecal pellets collected during necropsy 

using the PowerSoil® DNA Isolation Kit according to the manufacturer’s instructions. For 
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16S rRNA gene sequencing, DNA was amplified using the 515F and 806R primers,30 which 

target the V4 region of the 16S rRNA gene, followed by normalization and barcoding. The 

resulting DNA was pooled, quantified using the Qubit 2.0 Fluorometer and sequenced at the 

Georgia Genomics Facility using an Illumina MiSeq (500 cycles v2 kit). Operational 

taxonomic unit (OTU) picking and the diversity analysis were performed with the 

Quantitative Insights into Microbial Ecology (QIIME) software package.

Metagenomics sequencing

DNA (10 ng/μL) was fragmented using the Bioruptor UCD-300 sonication device, followed 

by sequencing library construction using the KAPA Hyper Prep Kit according to the 

manufacturer’s instructions. The resulting DNA was pooled, quantified and sequenced at the 

Georgia Genomics Facility using an Illumina NextSeq High Output Flow Cell. Raw FASTQ 

files were imported into the MG-RAST metagenomics analysis server (version 3.5). The 

sequences were assigned to the M5NR Subsystems database for functional analysis with a 

maximum e-value cutoff of 10−5, a 75% minimum identity cutoff and a minimum alignment 

length cutoff of 35. Notably, metagenomics reveals changes only at the gene level and not at 

the protein level. The relative abundance of specific genes was determined by the MG-RAST 

pipeline with multiple steps to address inter-sample variability, including normalization 

using DEseq, log 2 transformation and scaling (0–1).

Metabolomics analysis

Metabolites were isolated using the previously described method with modifications27. 

Briefly, two fecal pellets (~20 mg) were vortexed with 1 mL of methanol/chloroform/water 

solution (2:2:1) for 20 minutes, followed by centrifugation at 1,000 x g for 15 minutes. The 

resulting upper and lower phases were transferred to a flat-bottomed high-performance 

liquid chromatography (HPLC) vials and dried for 4 hours in a SpeedVac, followed by 

derivatization with methoxyamine-HCl and N,O-bis(trimethylsilyl)trifluoroacetamide 

(BSTFA). Then, the samples were injected into an Agilent GC-MS that was running in full 

scan mode. XCMS was used for peak-picking, alignment and extraction of the peak 

intensities. Molecular features with significant changes (p<0.05 and fold change >1.5) were 

identified using the National Institute of Standards and Technology (NIST) Standard 

Reference Database and searched against the Human Metabolome Database to obtain 

function and pathway information.

Statistical analysis

Differences in the gut microbiome composition were analyzed using a nonparametric test in 

the Metastats software as previously described.31 Principle coordinate analysis (PCoA) was 

used to compare gut microbiome profiles between the control and treated samples and 

examine differences in beta diversity based on the UniFrac distance metric.32 Alpha 

diversity was also analyzed to examine the species richness in given samples. A two-tailed 

Welch’s t-test was used to initially profile individual metabolite differences between the 

control and treatment groups (p<0.05), as described elsewhere.27, 33 Partial least squares 

discriminant analysis (PLS-DA) was used to compare the metabolomics profiles between the 

control and lead-treated groups.
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Results

Lead exposure disrupted gut microbiome trajectories

First, we used 16S rRNA gene sequencing to examine changes in the gut bacterial 

compositions over time using beta and alpha diversity metrics. Beta diversity evaluates the 

diversity in a microbial community between samples, whereas alpha diversity reflects the 

species richness in given samples. One of the key features of the gut microbiome is that it is 

a highly dynamic system, with the gut microbiome composition or abundance changing over 

time (Figure S1). A 3D PCoA plot (Figure 1A) showed that the trajectories of the gut 

microbiome community structures at the genus level were readily differentiated between the 

control and lead-treated mice. At day 0, the gut microbiome community structures were 

similar for all animals at baseline. Conversely, the microbial community structures were 

significantly different between the control and lead-treated animals at weeks 4 and 13. The 

different trajectories between the control and treated animals indicated a strong effect of lead 

on disrupting gut microbiome development. Consistently, the phylogenetic diversity or 

species richness of the control animals increased over time based on the phylogenetic 

diversity (PD) whole tree, which is an alpha diversity metric (Figure 1B). However, the 

alpha diversity increased to a much lesser extent in the lead-treated mice than in the control 

animals. The alpha diversity of the lead-treated animals at week 13 was equivalent to that of 

the control mice at week 4. These dynamic changes in alpha diversity demonstrated that 

disruption of the gut microbiome had already occurred at week 4 post-exposure, which was 

the earliest time point assessed. Notably, the alpha diversity was not significantly increased 

at week 4 compared to that at week 0 for the lead-treated animals, indicating that the 

development of phylogenetic diversity was severely inhibited by lead exposure. Figure 2 

illustrated the fold changes of significantly perturbed gut bacterial genera that were induced 

by lead exposure at weeks 4 and 13 compared to the controls (see Tables S1 and S2 for 

individual variations in all bacterial genera). The majority of the altered bacterial genera 

were reduced due to lead exposure.

Lead exposure reduced vitamin E and bile acids in the gut microbiome

Since the gut microbiome plays a key role in metabolic processing, next we used 

metabolomics to examine metabolic changes associated with gut microbiome perturbations. 

Lead exposure perturbed the metabolic profiles of the gut microbiome, leading to the 

identification of 1314 molecular features with p<0.05 and fold changes >1.5. The control 

and lead-treated groups could be readily differentiated using metabolite features (Figure S2), 

and excellent separation of the control and lead-treated animals was achieved using the first 

two components of the PLS-DA. Metabolites with diverse structures were identified (Table 

S3). For example, two forms of vitamin E (α-tocopherol and γ-tocopherol), the primary bile 

acids cholic acid (CA) and ursodeoxycholic acid (UDCA), the secondary bile acid 

deoxycholic acid (DCA) and cholesterol and its derivative coprostanol were significantly 

down-regulated, as shown in Figure 3.

Lead exposure altered the nitrogen metabolism of gut bacteria

Nitrogen metabolism is a key component of the metabolic functions in the gut microbiome. 

We used metagenomics and metabolomics to examine whether lead exposure altered 
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pathways and metabolites related to nitrogen metabolism. As shown in Figure 4A, the lead-

treated group had a higher level of UreE gene than the control group. UreE is an accessory 

protein of urease and plays a key role in urease activation.34, 35 The abundance of gene 

encoding creatinine amidohydrolase was also increased (Figure 4B); this gene is involved in 

nitrogen metabolism by catalyzing creatinine to creatine.36, 37 Urea was significantly 

reduced in the gut bacteria after lead exposure (Figure 4C). Lead exposure also led to a 

significant decrease in hydroxylamine (Figure 4D), which is a precursor of nitrite in 

bacteria. Simultaneously, the gene encoding nitrite reductase [NAD(P)H] (Figure 4E), which 

reduces nitrite to ammonium, decreased, whereas the gene encoding copper-containing 

nitrite reductase, which catalyzes nitrite to nitric oxide, increased (Figure 4F).

Lead exposure altered energy metabolism

The gut microbiome plays a key role in regulating energy metabolism and harvest for the 

host. Therefore, examining the effects of lead on energy metabolism by the gut microbiome 

would be highly informative. The impact of lead exposure on energy metabolism is shown in 

Figure 5. Carbon metabolism was significantly perturbed by lead exposure, with saccharide 

transport being highly activated. The abundance of related genes, including the glucose 

transporter, xylose ABC transporter and hydroxymethyl pyrimidine ABC transporter, was 

increased in the gut bacteria of the lead-treated mice (Figures 5A–C). A key metabolite of 

cellular energy metabolism (glycerol-3-phosphate) was reduced (−2.5-fold, Figure 5D). The 

gene encoding the glycerol-3-phosphate transporter decreased (Figure 5E), whereas the gene 

encoding the acyl-phosphate:glycerol-3-phosphate O-acyltransferase PlsY increased 

following lead exposure; this latter enzyme uses glycerol-3-phosphate as a substrate (Figure 

5F).38 Conversely, the gene encoding deoxyribose-phosphate aldolase increased, as shown in 

Figure 5G; this enzyme can catalyze the lysis of 2-deoxyribose-phosphate to eventually 

produce glycerol-3-phosphate. Two genes encoding pyruvate carboxyl transferase subunit A 

and phosphoenolpyruvate-dihydroxyacetone phosphotransferase, which are involved in 

gluconeogenesis, were down-regulated (Figure 5H and 5I).39, 40 Correspondingly, the carbon 

storage regulator, which negatively regulates gluconeogenesis, was significantly increased 

(Figure 5J). This finding indicates that gluconeogenesis may be inhibited after lead 

exposure.

Lead induced oxidative stress and activated the defense/detoxification mechanism in gut 
bacteria

Lead is known to induce oxidative stress, but whether lead can also cause oxidative stress 

responses in the gut microbiome is unknown. Therefore, we combined metagenomics and 

metabolomics to define the role of lead exposure in oxidative stress and the associated 

detoxification mechanisms in the gut microbiome. Figure 6 shows that lead exposure 

induced oxidative stress and activated the defense mechanism in the gut microbiota. The 

primary toxic effects of lead are due to oxidative stress.41, 42 As shown in Figure 6, the 

abundance levels of several genes involved in resisting oxidative stress were perturbed after 

lead exposure. For instance, the gene encoding coenzyme A disulfide reductase (CoADR) 

was induced by lead exposure (Figure 6A). CoADR is a key gene in redox systems in some 

bacteria that plays a key role in maintaining the reduced state of cells and is involved in the 

robust oxygen defense systems.43, 44 Another related gene (the disulfide-bond regulator) was 
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also increased in the lead-treated animals (Figure 6B). Additionally, MutT was increased in 

the lead-treated mice (Figure 6C); this gene encodes a hydrolase that converts 8-oxodGTP to 

8-oxodGMP and thus is involved in preventing the incorporation of the 8-oxo-Gua lesion 

into the DNA.45, 46 In addition to the induction of DNA damage by oxidative stress, the 

abundance of some genes involved in DNA modification changed after lead exposure. For 

example, the tyrosine recombinase gene XerC was significantly increased in the gut bacteria 

of the lead-treated mice, whereas the gene encoding the type III restriction-modification 

system StyLTI enzyme was reduced (Figures 6D and E).

Defense mechanisms were activated in gut bacteria in response to lead exposure. For 

example, the gene encoding the heavy metal-translocating P-type ATPase, which is involved 

in lead efflux in bacteria, was up-regulated (Figure 6F).47, 48 Likewise, the gene encoding 

the phosphate ABC transporter was significantly increased (Figure 6G), which was 

consistent with the highly reduced phosphoric acid level (Figure 6H). These findings suggest 

that gut bacteria may increase lead precipitation by increasing the extracellular phosphoric 

acid concentration.49, 50

Discussion

We combined 16S rRNA gene sequencing, whole genome metagenomics sequencing and 

metabolomics to study the effects of lead exposure on the gut microbiome and its metabolic 

functions. We demonstrated that lead exposure changed the gut microbiome taxonomic 

composition and the functional metagenome and metabolic profiles in C57BL/6 mice. These 

results highlighted the functional impact of lead exposure on the gut microbiome. Moreover, 

lead perturbed the trajectories of the gut microbiome over time and significantly reduced or 

inhibited the normal development of gut bacterial phylogenetic diversity. Additionally, we 

identified a number of important perturbed metabolites and metabolic pathways. These 

metabolic and cellular signaling pathways include bile acids, vitamins, nitrogen metabolism, 

oxidative stress and defense mechanisms and energy metabolism, which may have important 

implications for lead-induced diseases.

We clearly demonstrated that lead exposure altered gut microbiome community structures. 

In particular, lead interfered with the normal development of gut bacteria over time. We 

showed that lead exposure decreased or inhibited the establishment of normal phylogenetic 

diversity in the gut microbiome, as illustrated in Figure 2, which was an extremely important 

observation. The establishment and development of the gut microbiome is a temporal and 

sensitive process in children. Having a normal gut microbiome is critical for many 

physiological processes, including immune system development, metabolic processing, 

energy production, food digestion and epithelial homeostasis. Lead exposure in children is 

common, and children were found to have increased blood lead levels in the recent Flint 

water crisis. Thus, lead could significantly impact gut microbiome development in children, 

which may contribute to many lead-induced diseases in later life. Clearly, further study is 

warranted to shed light on this possibility.

We found that the abundance of both primary and secondary bile acids was significantly 

reduced by lead exposure (Figure 3). The gut microbiome can transform primary hydrophilic 
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bile acids into secondary hydrophilic bile acids in the large intestine through deconjugation, 

dehydroxylation and dehydrogenation.51 Here, we observed that the secondary bile acid 

DCA was decreased by 2.9-fold in the lead-treated mice relative to that in the control mice. 

DCA is biochemically synthesized from the primary bile acid CA, which was reduced 3.9-

fold in the lead-treated mice compared to that in the controls (Figure 3C). Clearly, bile acid 

homeostasis is significantly altered by lead exposure, which may affect many other 

biological processes due to the key roles of bile acids. As signaling molecules, bile acids 

bind or activate host nuclear receptors to regulate a number of downstream signaling 

pathways.20 Bile acids exert both hepatic and extra-hepatic effects ranging from regulating 

their own biosynthesis to lipid, cholesterol, glucose, lipoprotein, and energy metabolism, 

local gut mucosal defenses and inflammatory responses.23, 52 Primary bile acids are formed 

from cholesterol by multiple enzymes through the modification of the sterol ring and 

oxidation and shortening of the side chains.53 In turn, the formation of bile acids maintains 

cholesterol homeostasis.54 Here, we observed that cholesterol was decreased by 4.5-fold in 

the lead-treated mice (Figure 3F). In addition to cholesterol reduction, we also observed that 

the cholesterol derivative coprostanol was decreased in a corresponding manner (Figure 3E). 

A previous study identified specific gut bacteria associated with fecal cholesterol and 

coprostanol using integrated metabolomics and microbiome analyses.55 Specifically, a total 

of 63 gut microbes were identified, including a number of Ruminococcus and 

Lachnospiraceae species.55 In the present study, we found that Ruminococcus and several 

Lachnospiraceae genera were significantly reduced (Figure 2). Thus, lead exposure greatly 

affected the gut bacterial genera that are highly involved in regulating the homeostasis of 

cholesterol and its derivatives.

Vitamin E is part of a family of eight essential fat-soluble nutrients. Four of the compounds 

carry a tocol structure, and the other four carry a tocotrienol structure.56 A reduction in two 

forms of vitamin E was observed in the lead-treated mice compared with the levels in the 

control mice. The α-tocopherol and γ-tocopherol levels were decreased by 2.8 and 2.2-fold, 

respectively. Vitamin E exhibits both antioxidant and non-antioxidant activities, such as gene 

expression modulation, cell proliferation, platelet aggregation and bone mass regulation.57 

Vitamin E absorption can be affected by many factors, including gut permeability, dietary fat 

availability and a bile salt-dependent carboxyl ester hydrolase.56, 58, 59 Since the gut 

microbiome affects gut permeability,60 lipid metabolism61 and the bile acid pool,52 the 

disturbance of the gut microbiome by lead may affect vitamin E homeostasis. Perturbed bile 

acid pools in lead-treated mice may be attributed to alterations in bile salt-dependent 

enzymatic hydrolysis for vitamin E. Consequently, the absorption of vitamin E could be 

disrupted. Consistent with our results, a previous study showed that the monocolonization of 

germ-free mice affected vitamin E metabolism.62 Likewise, previous studies showed that 

vitamin E could protect cells against lead-induced oxidative stress;2, 13 thus, the reduction in 

vitamin E may also reflect oxidative stress in the gut bacteria arising from lead exposure. 

Interestingly, a few previous human studies found an inverse relationship between the 

vitamin E level and the lead concentration in the blood.63–65 Here, we found reduced 

vitamin E levels in the gut microbiome in the lead-exposed animals, suggesting a potential 

link between vitamin E in the gut microbiome and host tissues. Future studies are needed to 
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elucidate the role of the gut microbiome in the lead-perturbed homeostasis of vitamin E in 

host tissues.

In mammals, nitric oxide (NO) is involved in various physiological and pathophysiological 

events in multiple organs, including the gastrointestinal tract.66, 67 Endogenous NO in the 

gut regulates the mucosal blood flow, mucus generation, gut motility and host defense 

responses.66 Recent studies have revealed that gut bacteria can also generate NO and may 

play an important role in gut physiology.68 As shown in Figure 4, we found that the gene 

encoding copper-containing nitrite reductase, which catalyzes the conversion of nitrite to 

NO, increased after lead exposure. Conversely, we observed decreased abundance of the 

nitrite reductase [NAD(P)H] gene, which is involved in an alternative nitrite metabolism 

pathway. These results may indicate that lead exposure increases NO generation in the gut 

bacteria.

The energy metabolism of the gut bacteria was also dramatically perturbed by lead exposure. 

Our data revealed that genes related to saccharide absorption were highly activated, which 

should increase the energy levels in the gut bacteria. However, other genes, such as 

laminarinase, cyclomaltodextrin glucanotransferase, 5-deoxy-glucuronate isomerase, D-

malate dehydrogenase and glycerol-3-phosphate transporter, were decreased by lead 

treatment. These genes generally promote the degradation of saccharides. In addition, the 

glycerol-3-phosphate level was reduced. Two gluconeogenesis-related genes (pyruvate 

carboxyl transferase subunit A and phosphoenolpyruvate-dihydroxyacetone 

phosphotransferase) were decreased after lead exposure, which was consistent with the up-

regulation of the carbon storage regulator gene that suppressed gluconeogenesis, glycogen 

biosynthesis and catabolism and activated glycolysis and acetate metabolism.69, 70 Taken 

together, these data show that lead exposure disturbs energy production and causes energy 

starvation in gut bacteria, although the specific perturbed steps of glycolysis or respiration 

are unknown. The significant decrease in fatty acids, hexadecanoic acid and linoleic acid in 

lead-treated gut bacteria (Table S3) also partially supports the finding of an energy-deprived 

condition in the gut bacteria.

Lead is known to induce oxidative stress in different systems.41, 42 Lead can generate 

reactive oxygen species to cause damage in cells.41 Two primary redox systems are widely 

adopted by bacteria for protection from oxidative stress: the glutathione thiol/disulfide redox 

system and the reduced CoA thiol/disulfide redox system.42, 43 Glutathione reductase (GSR) 

and coenzyme A disulfide reductase (CoADR) are the key enzymes of each redox system, 

respectively. Coenzyme A disulfide reductase (CoADR) is a key enzyme in an alternative 

redox system in some bacteria that do not contain the glutathione thiol/disulfide redox 

system; this system plays an important role in maintaining the reduced state of cells and is 

involved in robust oxygen defense systems.43, 44 Although we did not observe changes in 

GSR gene abundance, the up-regulation of the CoADR and disulfide-bond regulator genes 

supports the hypothesis that lead induces oxidative stress in gut bacteria. Likewise, the 

increased gene abundance of MutT, which is an oxidative DNA damage repair gene, 

suggests lead-induced oxidative stress. The consequences of lead-induced oxidative stress in 

gut bacteria are not well understood yet.
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As a ubiquitous environmental toxicant, lead can cause severe cellular dysfunction in 

animals, plants and bacteria.71 Bacteria have evolved several mechanisms to resist lead, 

including adsorption by extracellular polysaccharides, precipitation as insoluble phosphates, 

and efflux to the cell exterior via metal-resistant ion channels.50 The gene encoding the 

heavy metal-translocating P-type ATPase significantly increased in the gut bacteria under 

lead exposure. The increased gene abundance of the phosphate ABC transporter gene and 

the greatly reduced phosphoric acid level indicated that gut bacteria might also resist lead by 

sequestering it in the form of phosphate salts, as shown in Figure 6. The activation of lead 

resistance mechanisms suggests an essential role for the gut microbiota in protecting the host 

from lead exposure.

An increase in multiple amino acids was evident in the lead-treated gut bacteria. Amino 

acids that increased after lead exposure included glycine, threonine, serine, glutamate, 

isoleucine, valine and proline. Only alanine was decreased. The metagenomics analysis 

revealed that a series of genes related to amino acid degradation and synthesis were altered 

by lead exposure. The abundance of genes encoding asparagine synthetase, glycine/

sarcosine/betaine reductase protein A, pyruvate carboxyl transferase subunit A, putrescine 

carbamoyltransferase and ornithine aminotransferase was decreased, whereas the abundance 

of the methionine gamma-lyase and aspartate 1-decarboxylase genes was increased in the 

lead-treated group (Figure S3). No simple conclusion could be provided to explain how lead 

influenced the amino acid levels due to the complex regulation of amino acid homeostasis. 

One potential explanation is that lead induces oxidative stress in gut bacteria and increases 

the levels of oxidized proteins, which will largely be degraded by cells and thus increase the 

free amino acid levels.42, 72

In summary, we demonstrated that lead exposure significantly altered the gut microbiome 

trajectories over time, phylogenetic diversity, key metabolites and metabolic and cellular 

signaling pathways. These perturbed molecules and pathways may have important 

implications for lead toxicity in the host and lead-induced diseases. Many issues require 

further study. For example, what is the dose-dependent response to lead exposure, 

particularly at environmental and human-relevant concentrations? What are the health 

effects of lead-induced gut microbiome perturbations in the host? Likewise, what are the 

roles of host responses in mediating the gut microbiome and its functions? Future studies are 

warranted to address these intriguing questions to better understand the complex functional 

interactions among lead, the gut microbiome and the host.
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GC-MS Gas chromatography-mass spectrometry

PCoA Principle coordinate analysis

PLS-DA Partial least squares discriminant analysis

CA Cholic acid

UDCA Ursodeoxycholic acid

DCA Deoxycholic acid

CoADR Coenzyme A disulfide reductase

GSR Glutathione reductase
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Figure 1. 
Lead exposure disturbed the trajectories of gut microbiome development as assessed by beta 

diversity metrics (A). Lead exposure also reduced/inhibited the phylogenetic diversity of the 

gut bacteria as examined using alpha diversity metrics (B). Here, 16S rRNA gene 

sequencing was performed, followed by bacterial taxonomic assignment via QIIME. Beta 

diversity evaluated the diversity in the microbial community between samples, whereas 

alpha diversity reflected the species richness.
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Figure 2. 
The fold changes of selected significantly changed gut bacterial genera between the controls 

and lead-treated mice (A. 4 weeks post-lead exposure; B. 13 weeks post-lead exposure). The 

fold changes were calculated using the group means for each bacterial genus.
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Figure 3. 
The abundance of key metabolites was measured by GC-MS to examine the impact of lead 

exposure on the metabolic functions of the gut microbiome. Vitamin E, bile acids and 

cholesterol and its derivative were significantly reduced in mice after exposure to lead for 13 

weeks (A. α-tocopherol, B. γ-tocopherol, C. cholic acid, D. deoxycholic acid, E. 

ursodeoxycholic acid; F. cholesterol; and G. coprostanol).
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Figure 4. 
Metagenomics and metabolomics analyses showing that lead exposure significantly alters 

the nitrogen metabolism of the gut bacteria, as evidenced by the perturbed key genes and 

metabolites (A. urease accessory protein UreE; B. creatinine amidohydrolase; C. urea; D. 

hydroxylamine; E. nitrite reductase [NAD(P)H]; and F. copper-containing nitrite reductase). 

N.D.: non-detectable.
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Figure 5. 
Energy metabolism, which is a key metabolic function of the gut microbiome, was disturbed 

by lead exposure, as demonstrated by the altered abundance of a number of bacterial genes 

and the key metabolite glycerol-3-phosphate. N.D.: non-detectable. Note: the relative 

abundance reflects only the gene levels and not the protein levels.
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Figure 6. 
Alterations in key genes and metabolites involved in oxidative stress and the defense 

response indicate that lead exposure activates cellular defense genes (A and B), DNA repair 

systems (C, D and E), and detoxification pathways (F, G and H).
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