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The Ediacaran Period is characterized by the most profound negative carbon isotope (δ13C) excursion in Earth
history, the ShuramExcursion. Various hypotheses – including themassive oxidation of dissolved organic carbon
(DOC) in the oceans, the weathering of terrestrial organic carbon, or the release and oxidation of methane hy-
drates and/or expelled petroleum from the subsurface – have been proposed as sources of the 13C-depleted car-
bon.More recently, it has been suggested that global-scale precipitation of early authigenic carbonates, driven by
anaerobic microbial metabolism in unconsolidated sediments, may have caused the Shuram Excursion, but em-
pirical evidence is lacking. Here we present a comprehensive analysis of a Shuram-associated interval from the
uppermost Doushantuo Formation in South China. Our study reveals petrographic evidence of methane-derived
authigenic calcite (formed as early diagenetic cements and nodules) that are remarkably depleted in 13C – sug-
gesting a buildup of alkalinity in pore fluids through the anaerobic oxidation of methane (AOM) – and systemat-
ically depleted in 18O relative to co-occurring dolomite. Early authigenesis of theseminerals is likely to be driven
by increased microbial sulfate reduction, triggered by enhanced continental weathering in the context of a
marked rise in atmospheric oxygen levels. In light of the finding of methane-derived authigenic carbonates at
Zhongling, and based on our basin-scale stratigraphic correlation, we hypothesize that the marked 13C and 18O
depletion (including their co-variation noted worldwide) in the Shuram Excursion may reflect an episode of
authigenesis occurring within a sulfate–methane transition zone (SMTZ). If true, the Shuram Excursion was
then a global biogeochemical response to enhanced seawater sulfate concentration in the Ediacaran ocean driven
by the Neoproterozoic oxidation of surface environments. This paleo-oceanographic transition may have there-
fore paved theway for subsequent evolution and diversification of animals. Our study highlights the significance
of an integrated approach that combines petrography, mineralogy, and texture-specific micro-drilling geochem-
istry in chemostratigraphic studies.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

On geological time scales, the global carbon cycle involves the ex-
change of carbon reservoirs between the atmosphere, the hydrosphere,
and the deepmantle (Hayes andWaldbauer, 2006). The carbon flux de-
rived from the mantle via volcanic outgassing is transferred to the rock
record in the form of carbonates and organic carbon, which are subse-
quently subducted back into the deep Earth, thereby completing the
long-term carbon cycle (Schidlowski, 1987; Hayes, 1994; Kump and
Arthur, 1999).
ndNASA Astrobiology Institute,
Authigenic carbonates are not typically addressed in models of
the global carbon cycle, although they could potentially be an impor-
tant flux in carbonate burial and thus play an important role.
Authigenesis (i.e., the process of authigenic mineralization) refers to
any post-depositional processes, includes early diagenesis related to
both seawater and meteoric alteration, or late diagenesis during deep
burial. Authigenic carbonates formed during early diagenesis may be
particularly important to the global carbon cycle insofar as they are
normally formed under the influence of anaerobic microbial processes,
including sulfate or iron reduction, whichmodify pore water chemistry
and result in the dissolution, replacement, or cementation of pre-
existing marine sediments (Berner, 1981; Kastner, 1999; Glenn et al.,
2000; Lein, 2004; McMurtry, 2009). It has been suggested that modern
authigenic carbonate accounts for at least 10% of global carbonate burial
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(Sun and Turchyn, 2014), and this proportion may have been signifi-
cantly larger in Precambrian oceans (Schrag et al., 2013) given that
these were incompletely oxygenated (Kah et al., 2004; Canfield et al.,
2008; Lyons et al., 2014; Planavsky et al., 2014; Sperling et al., 2015;
Liu et al., 2016).

Largely based on numerical modeling (Higgins et al., 2009), it was
hypothesized that authigenic carbonates may have played a critical
role in the Precambrian carbon cycle (Schrag et al., 2013). The Shuram
Excursion in the Ediacaran Period (ca. 635–541 Ma) (Grotzinger et al.,
2011; Xiao et al., 2016) presents an ideal opportunity to test this hy-
pothesis. The Shuram Excursion in Oman is characterized by carbonate
δ13C values that plunge to a nadir of ca.−12‰ over a short stratigraphic
interval and then rise steadily over hundreds of meters before recover-
ing to baseline values (Burns and Matter, 1993; Fike et al., 2006; Le
Guerroué, 2006). This profound carbon cycle anomaly is further charac-
terized by: (1) covariations of carbon and oxygen isotopes in carbonates
(Derry, 2010a; Grotzinger et al., 2011), (2) decoupling between carbon-
ate carbon and organic carbon isotope compositions (Fike et al., 2006;
McFadden et al., 2008; Lee et al., 2013), (3) a strong negative δ34S excur-
sion recorded in both pyrite and carbonate-associated sulfate (CAS)
(Fike et al., 2006; Kaufman et al., 2007; McFadden et al., 2008), and
(4) a progressive increase in 87Sr/86Sr isotopes (Melezhik et al., 2009;
Sawaki et al., 2010; Cui et al., 2015; Xiao et al., 2016). This negative
δ13C excursionmay result from the influence of 13C-depleted authigenic
carbonates (Macdonald et al., 2013; Schrag et al., 2013; Cui et al.,
2016c), but to evaluate this possibility requires new detailed petro-
graphic and geochemical data.

A pronounced negative δ13C excursion in the uppermost
Doushantuo Formation in the Yangtze Gorges area of South China is
widely regarded as an equivalent of the Shuram Excursion (Jiang et al.,
2007; McFadden et al., 2008; Lu et al., 2013; Tahata et al., 2013; Zhu et
al., 2013; Wang et al., 2016; Xiao et al., 2016). However in outer-shelf
environment, this excursion is only expressed by a few negative δ13C
data points (Zhou and Xiao, 2007; Zhu et al., 2007; Li et al., 2010). It is
the inconsistent chemostratigraphic expression of this excursion
between intra-shelf and outer-shelf environments that drew our initial
attention (Cui et al., 2015). In this study, we present a comprehensive
sedimentological, petrographic, and geochemical analysis of carbonates
in both depositional and authigenic phases preserved in the
Doushantuo Formation at the outer-shelf Zhongling section, and ex-
plore the biogeochemical origin and potential causal link to the global
Shuram Excursion.

2. Materials and methods

This study is focused on the Doushantuo Formation at two sections
in South China including the intra-shelf Jiulongwan section at the Yang-
tze Gorges area and the outer-shelf Zhongling section in Hunan Prov-
ince (Fig. 1). The detailed geology of these sections has been described
in previous publications (see McFadden et al., 2008; Jiang et al., 2011;
Cui et al., 2015; Cui et al., 2016c). The Jiulongwan section preserves a
typical Shuram Excursion (i.e., the EN3 interval in McFadden et al.,
2008), with carbonate δ13C values consistently around −9‰ in the
upper 50 m of the Doushantuo Formation. In contrast, the upper 50 m
of the Doushantuo Formation at the Zhongling section is characterized
by highly variable δ13C values, with only a few data points reaching
nadir values of ca. −5‰ (Zhu et al., 2007; Li et al., 2010; Cui et al.,
2015). In the field, the upper 50 m of the Doushantuo Formation at
Zhongling ismainly composed of intraclastic, oolitic, or fine-grained do-
lomitic facies associated with three discrete levels of phosphorite, sug-
gesting deposition in an outer shelf carbonate shoal environment
(Jiang et al., 2011; Cui et al., 2015) (Figs. 2, 3).

The entire Doushantuo Formation at Zhongling was systematically
sampled at high stratigraphic resolution. Detailed sedimentological ob-
servations were made in the field. During sampling, we observed centi-
meter-scale, white-colored calcite nodules that are distributed along
sedimentary bedding in dolostone or phosphorite facies, as well as dis-
tinct white-colored calcite cement among dolomitic or phosphatic
intraclasts (Fig. 2G–J). Late stage calcite veins were also observed in
the host carbonates, and they often cross-cut sedimentary bedding
(Fig. 2G–H). To provide a texture-resolved chemostratigraphy, detailed
petrographic observation (Figs. 3, 4) and geochemical analysis ofmicro-
drilled powders (Figs. 5–7) were conducted. All isotope analyses were
performed using routine methods (e.g., McFadden et al., 2008; Cui,
2015; Cui et al., 2015, 2016a, 2016b, 2016c), which are briefly outlined
below.

Carbonate carbon (δ13Ccarb) and oxygen (δ18Ocarb) isotopes were
measured by continuous-flow isotope ratio mass spectrometry in the
Paleoclimate Laboratory at the University of Maryland (UMD). Samples
loaded into 3.7 mL Labco Exetainer vials and sealed with Labco septa
were flushed with 99.999% Helium and manually acidified at 60 °C.
The CO2 analyte gas was isolated via gas chromatography, and water
was removed using a Nafion trap prior to admission into an Elementar
Isoprime stable isotope mass spectrometer fitted with a continuous
flow interface. Data were corrected via automated MATLAB scripting
on the VPDB and LSVEC scale using periodic in-run measurement of in-
ternational reference carbonate materials and in-house standard car-
bonates, from which empirical corrections for signal amplitude,
sequential drift, and one or two-point mean corrections were applied
(Evans et al., 2016). Both isotopes are reported relative to VPDB. Preci-
sion for both is routinely better than 0.1‰.

Strontium isotopes (87Sr/86Sr) were analyzed for selected limestone
and calcite nodule samples at the UMD Thermal Ionization Mass Spec-
trometry (TIMS) Laboratory. Detailed method has been fully described
in our previous publications (Cui et al., 2015, 2016a, 2016c). Final data
have been corrected for instrumental fractionation using the standard
value 86Sr/88Sr = 0.1194. Repeated analysis of the NBS SRM987 stan-
dard yields an average value of 87Sr/86Sr = 0.710245 ± 0.000011 (2σ)
during the analytical window.

Major and trace elemental abundances of micro-drilled carbonates
in both depositional phases and authigenic phases were analyzed for a
few representative samples in order to better evaluate the degree of dia-
genetic alteration. Aliquots of the micro-drilled carbonate powders
were dissolved in 0.4MHNO3, centrifuged, and only analyzed for the so-
lutions. Petrographic observations indicate that these powders were
largely free of siliciclastics; any clays, if present, would not have been
dissolved by the dilute acid. The resulting solutions were analyzed on
a Thermo Scientific® iCAP-Q ICP-MS (Inductively Coupled Plasma –
Mass Spectrometry) at the Carnegie Institution of Washington. Preci-
sion of these analyses as determined by repeated measurements of a
house standard carbonate was b5% (2σ) for major elements with high
concentrations and b10% (2σ) for the REEs.

In order to better evaluate the diagenetic effect and quantitatively
constrain themineralogical abundances,we also conducted detailed pet-
rographic observation andmineralogical analysis of representative sam-
ples using backscattered electron (BSE) imaging, elemental mapping,
quantitative X-ray powder diffraction (XRD), and cathodoluminescence
(CL) imaging in the X-ray Crystallographic Center at UMD, the
Geobiology Laboratory at Virginia Tech, and the CL Laboratory at the
Smithsonian Institution.
3. Sedimentology, petrography, and paragenesis

Detailed petrographic observations (Figs. 3, 4) were conducted in
order to reconstruct the paragenesis of multiple mineralogical phases
in the Doushantuo Formation. In the samples studied here, the well-
preserved dolostone or phosphorite includes intraclasts, peloids, and
ooids (Fig. 3C–F), suggesting a shallowmarine shelf depositional environ-
ment.Well-preserved sand-sized phosphatic ooids generally have homo-
geneous fine-grained phosphatic cores coated with multiple cortical
layers of dolomicrite (Fig. 3E, F).
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Fig. 1. (A) Geologicalmap of China, with the Yangtze Craton in yellow. (B) Reconstructed Ediacaran depositional environments on the Yangtze Craton (Jiang et al., 2011). Red dots indicate
the location of the Zhongling and Jiulongwan sections. (C) Simplified litho-, bio-, and chrono-stratigraphy of the Ediacaran Doushantuo and Dengying formations in South China.
Modified from Chen et al. (2013) and Cui et al. (2016c). Radiometric ages from Condon et al. (2005) and Schmitz (2012). Thickness is not to scale. Cam= Cambrian; Cryo= Cryogenian.
(D) Reconstructed redox architecture during the deposition of the upper Doushantuo Formation. Sedimentology (Jiang et al., 2011; Zhu et al., 2013) and chemostratigraphy (Cui et al.,
2015; Wang et al., 2016) suggest that the Doushantuo Formation at Jiulongwan section was deposited in an intra-shelf environment, while the Zhongling section were deposited in an
outer-shelf environment. The euxinic conditions on the platform were largely restricted in intra-shelf lagoonal settings (Cui et al., 2015), rather than an open shelf environment (Li et al.,
2010). Sectionswith phosphorite deposits (e.g., inner shelf sections at Baokang, Zhangcunping, and Xiaofenghe; outer shelf sections at Zhongling, Yangjiaping andWeng'an) andwithout
phosphorite deposits (e.g., intra-shelf section at Jiulongwan and slope section at Siduping, Taoying, and Minle) are marked in different symbols for reference. Modified from Cui et al.
(2016c).
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Based on the occurrence of phosphatic allochems and oolite, the
bedded fine-grained dolostone and phosphorite were likely to have
formed in well agitated seawater, and then dolomitized in the outer-
shelf environment prior to lithification. Likemostwell-preserved Prote-
rozoic dolostones, the Doushantuo dolostones are pervasively fine-
grain sized, which are here interpreted to record either primary precip-
itation, or very early dolomitization in marine environments (Tucker,
1982, 1983; Tucker and Wright, 1990). No mineralogical evidence for
the metamorphic growth of silicate mineral phases was observed in
the thin sections.
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Fig. 2. Sedimentological observation of the Doushantuo Formation at the outer-shelf Zhongling section, South China. The numbers in the lower right represent stratigraphic heights in the
Doushantuo Formation above theMarinoan (Nantuo) diamictite. Scales are circled in each view. (A) Bedded limestones of themiddle Doushantuo Formation (rock hammer for scale). (B)
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H) Stream exposure reveals interbedded calcitic and dolomitic layerswith abundantwhite calcite nodules along sedimentary bedding. Late-stage calcite veins are also visible in this view,
but aremostly irregularly distributed and cross cut bedding planes (pencil for scale). (I)Massivewhite-colored calcite nodules surrounded by silicawithin a phosphorite horizon. (J) Lens-
shaped authigenic calcite interbedded with the lower Dengying dolostone.

62 H. Cui et al. / Chemical Geology 450 (2017) 59–80
To various degrees, the phosphorite and dolostonewere dissolved, re-
placed, and cemented by authigenic quartz and calcite (Fig. 4). The most
distinct feature we observed in the field is the occurrence of white-
colored calcite nodules aligned with sedimentary bedding in the upper-
most Doushantuo and lower Dengying formations (Fig. 2G–J). These cal-
cite nodules are primarily composed of coarse euhedral calcite crystals,
which appear as coalescedpatches undermicroscopic observation. Coarse
calcite also fill remaining voids among intraclasts and ooids (Fig. 4). Most
of the calcite nodules are linedwith a silica rim. Quartz crystals in the rim
grow centripetally inward towards the center of the nodule, suggesting
that they formed prior to, or simultaneously with the calcite (e.g., Xiao
et al., 2010; Cui et al., 2016c). Under CL microscopy, the calcite phase is
dull and quartz is black (Fig. 4I). It is also notable that disseminated pyrite
is widespread in the studied samples (Fig. 3H, I) (Cui et al., 2016c).

Based on the above petrographic observation, together with similar
observation in the nearby Yangjiaping section ~4 km to the east (Cui et
al., 2015, 2016c), we reconstruct the following paragenetic sequence.
(1) Dissolved phosphate in the water column was transported to the
marine sediments via the “Fe–P shuttle” (Shaffer, 1986; Glenn et al.,
1994; Muscente et al., 2015; Cui et al., 2016c). The release of Fe-
bound phosphorous in the iron reduction zone after deposition raised
pore-water phosphate saturation levels, resulting in the precipitation
of authigenic phosphate alongwith dolomite. (2) The presence of phos-
phatic intraclasts and oolitic dolostone suggests sedimentary reworking
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and local transportation in a high-energy shoal environment. (3) After
final deposition, these allochems were cemented by authigenic calcite,
or replaced by authigenic calcite and quartz as distinct nodules forming
alongbedding planes. (4) Late-stage calcite veins also occur in some inter-
vals, which cross cut sedimentary bedding planes and must have formed
after the sediments were lithified. In summary, the Doushantuo samples
from the shallow outer-shelf region at Zhongling recorded primary
depositional and authigenic events in the sedimentary environment.

4. Geochemical results

4.1. Geochemical analysis by micro-drilling

After petrographically characterizing the sedimentary textures and
minerals, various carbonate fabrics were micro-drilled and analyzed
for δ13C and δ18O compositions (Figs. 5–7, Tables S1–2) in order to con-
struct chemostratigraphic profiles (Fig. 8). Within the scale of a single
hand sample, we findmarked heterogeneity in both δ13C and δ18O com-
positions. The δ13C of authigenic calcite phases reveals extraordinarily
negative values, ranging from ca. −5 to as low as −37‰, whereas the
dolomitic or phosphaticmatrices ranges from ca.−2 to+7‰. Similarly,
authigenic calcite phases preserve more negative δ18O values
(ca. −9‰) compared with depositional phases (ca. −5‰). The
lower 200 m of the Doushantuo Formation at the Zhongling section
(Fig. 2A–D) have also been carefully investigated, but no distinct calcite
nodules were found at lower levels (Fig. S1). Thus, the phase-correlated
δ13Ccarb and δ18Ocarb heterogeneity is only restricted to the upper 60 m
of the Zhongling section (Fig. 8J, K).

Elemental concentration and strontium isotope analyses were also
conducted on representative samples in order to compare primary de-
positional and secondary authigenic phases and to evaluate the overall
degree of diagenetic alteration. In this regard, both dolomite matrices
and authigenic calcites were micro-drilled. In all the analyzed samples,
authigenic calcites had significantly higher Sr concentration and much
lower Fe, Mn, and Rb concentration when compared with the dolomite
matrix (Table S3). In addition, 87Sr/86Sr compositions of the authigenic
white calcite nodules and cements (ranging from 0.7080 to 0.7083
among all samples) are typically less radiogenic than the dark-colored
dolomitic phase (range from 0.7080 to 0.7088 among all samples) in
which they are hosted (Figs. 5A, 6A, B, 9A).
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4.2. Compiled chemostratigraphic profiles

The chemostratigraphic data are plotted using different symbols in
the illustrations so that different texture, mineralogy, and paragenetic
stages can be better distinguished and evaluated during interpretation.
Chemostratigraphic profiles of the Doushantuo Formation at the intra-
shelf Jiulongwan section and outer-shelf Zhongling section reveal
many similarities, but also some distinct variations. For example, the
δ13Ccarb profile of the Doushantuo at Jiulongwan (Fig. 8A) shows three
pulsed Ediacaran Negative (EN) excursions: EN1 in the basal cap car-
bonate, EN2 in the middle section, and EN3 at the top (McFadden et
al., 2008). EN2 has been proposed to be correlated with themiddle Edi-
acaranGaskiers glaciation (Tahata et al., 2013), although this age assign-
ment remains amatter of intense debate (Narbonne et al., 2012; Xiao et
al., 2016). EN3 iswidely regarded as an equivalent of the ShuramExcur-
sion recognized worldwide (Jiang et al., 2007; McFadden et al., 2008;
Grotzinger et al., 2011). However, the δ13Ccarb profile of typical marine
carbonates at Zhongling reveals only a few scattered and moderately
negative data points (Fig. 8J). Plotting our data from authigenic calcite
phases, the integrated δ13Ccarb profile at Zhongling reveals three distinct
intervals with extremely negative δ13Ccarb values (Fig. 8J). The δ18Ocarb

profile of the EN3 interval at Jiulongwan show an overall negative ex-
cursion down to−10‰, which broadly co-varies with the δ13Ccarb pro-
file (Fig. 8B). In contrast, the δ18Ocarb profile at Zhongling preserves
three small and discrete negative excursions corresponding to the
three negative δ13Ccarb spikes (Fig. 8K).

Compared to the record of carbonate carbon isotope variations, the
δ13Corg profile at Jiulongwan is generally invariant with ca. −30‰
values through most of the section, with the exception of an abrupt de-
crease down to almost −40‰ in the uppermost black shale interval
(Fig. 8C) (McFadden et al., 2008). At Zhongling, the δ13Corg profile in
the lower 40m shows an overall increase that parallels the correspond-
ing δ13Ccarb profile, and then remains steady at ca. −25‰, with only a
slight decrease towards the top of the section (Fig. 8L). It is notable
that the δ13Ccarb and δ13Corg profiles at the uppermost Doushantuo
Formation are decoupled, which has similarly been observed in Shuram
equivalent strata in Oman (Fike et al., 2006; Lee et al., 2013; Lee et al.,
2015) and Australia (Calver, 2000).

Sulfur and strontium isotopeprofiles in the inner and outer shelf sec-
tions also reveal significant differences. The δ34S profiles based on both
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Fig. 5. Paired carbonate carbon and oxygen isotope data for micro-drilled spots in samples from the first stratigraphic interval of authigenic calcite in the Doushantuo Formation at the
Zhongling section. See Fig. 8J for the stratigraphic position of the three intervals of authigenic calcite. Each pair of data shows δ13Ccarb (‰, VPDB) and δ18Ocarb (‰, VPDB), respectively.
Organic carbon isotope (δ13Corg, VPDB) data of bulk acidified residues are also given for each sample. All scale bars are 2 cm long. Sample names were provided together with the scale
bars. Stratigraphic height above the Marinoan (Nantuo) diamictite for each sample is provided in parentheses after each sample name. Yellow, white, and blue labels represent
authigenic calcite phases, depositional phases, and late-stage veins, respectively. 87Sr/86Sr values are also shown for selected spots and samples when available.
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Fig. 6. Paired carbonate carbon and oxygen isotope data for micro-drilled spots in samples from the second stratigraphic interval of authigenic calcite in the Doushantuo Formation at the
Zhongling section. See Fig. 8J for the stratigraphic position of the three intervals of authigenic calcite. Each pair of data shows δ13Ccarb (‰, VPDB) and δ18Ocarb (‰, VPDB), respectively.
Organic carbon isotope (δ13Corg, VPDB) data of bulk acidified residues are also given for each sample. All scale bars are 2 cm long. Sample names were presented together with the
scale bars. Stratigraphic height above the Marinoan (Nantuo) diamictite for each sample is provided in parentheses after each sample name. Yellow, white, and blue labels represent
authigenic calcite phases, depositional phases, and late-stage veins, respectively. 87Sr/86Sr values are also shown for selected spots and samples when available.
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pyrite and carbonate-associated sulfate (CAS) analyses at Jiulongwan
record parallel negative trends from 0‰ to −20‰, and from +20‰
to 0‰, respectively, in the EN3 interval (Fig. 8D) (McFadden et al.,
2008). However, at the Zhongling section, δ34S values of pyrite and
CAS remain invariant at around +20‰ and +40‰, respectively
(Fig. 8M). At the intra-shelf Jiulongwan section, 87Sr/86Sr values are con-
sistently low (ca. 0.7080) throughout most of the Doushantuo Forma-
tion, with a notable rise from 0.7080 up to 0.7090 during the EN3
interval (Fig. 8E) (Sawaki et al., 2010). In contrast, 87Sr/86Sr data mea-
sured from calcite/limestone phases of the Zhongling section remain



Fig. 7. Paired carbonate carbon and oxygen isotope data for micro-drilled spots in samples from the third stratigraphic interval of authigenic calcite in the Doushantuo Formation at the
Zhongling section. See Fig. 8J for the stratigraphic position of the three intervals of authigenic calcite. Each pair of data shows δ13Ccarb (‰, VPDB) and δ18Ocarb (‰, VPDB), respectively.
Organic carbon isotope (δ13Corg, VPDB) data of bulk acidified residues are also given for each sample. All scale bars are 2 cm long. Sample names were presented together with the
scale bars. Stratigraphic height above the Marinoan (Nantuo) diamictite for each sample is provided in parentheses after each sample name. Yellow, white, and blue labels represent
authigenic calcite phases, depositional phases, and late-stage veins, respectively. 87Sr/86Sr values are also shown for selected spots and samples when available.
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steady at ca. 0.7080 in most of the section except for a slight rise to
0.7083 in the uppermost 10 m (Fig. 8N).

4.3. Co-variation of carbonate δ13C and δ18O

Pervasively fine-grained carbonates with alternating calcite and
dolomite-rich laminations from the upper Doushantuo Formation
show strong heterogeneity of δ13Ccarb and δ18Ocarb on a centime-
ter-scale (Figs. 5–7, 9). For example, specimen 12ZL–49.8 (Fig. 9)
– which has a grain size typical of most Ediacaran carbonates, in-
cluding those deposited during the Shuram Excursion – reveals dif-
ferent proportional abundances of fine-grained dolomicrite and
authigenic calcite in alternating sedimentary layers (Fig. 9B–E). The
δ13Ccarb and δ18Ocarb data from each layer fall onto a well-correlated
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mixing line (Fig. 9F) with one end member represented by the deposi-
tional dolomicrite phase (δ13Ccarb= ca.+3‰ and δ18Ocarb= ca.−5‰),
and the other by the authigenic calcite phase (δ13Ccarb = ca. −34‰
and δ18Ocarb = ca. −10‰). XRD analyses of each layer were
employed to quantify the abundance of depositional dolomicrite
and authigenic calcite (Fig. S2, Table S4). We found that the magni-
tude of 13C- and 18O-depletion in each layer is strongly dependent
on the relative abundance of authigenic calcite (Fig. 9F–I). Notably,
the δ13Ccarb data range widely over 40‰ (from ca. +3‰ to −34‰),
while δ18Ocarb data have a relatively narrow range (from ca. −5‰
to−10‰) in this sample. Similar mineralogical and isotopic system-
atics were noted in additional samples from different horizons in the
Zhongling section (Fig. 10).

5. Discussion

5.1. An early authigenic origin for the 13C-depleted calcite

5.1.1. Integrated sedimentological, petrographic, and geochemical evidence
Based on our detailed sedimentological, petrographic and geochem-

ical analyses, we interpret the calcite nodules and cements from the
upper Doushantuo Formation at Zhongling as early authigenic in origin
having formed in unconsolidated sediments at or near the seafloor. At
Zhongling, the preservation of authigenic calcite in nodules, cements,
and fine-grained micrite intimately mixed with dolomicrite is associat-
ed with the three bedded phosphatic horizons (Fig. 2G–J). Due to pref-
erentially weathering of calcite, weathered surfaces reveal an
alternation of micrite- and dolomicrite-dominated laminations (Fig.
2G). No visible change in lithology or porosity was found within the
phosphorite or dolostone horizons, nor did we observe any late-stage
karst or metamorphic features that would otherwise suggest very late
growth and preservation of the nodules.

In contrast to the calcite nodules and cements, the late-stage calcite
veins are not strongly depleted in 13C (most have δ13C values N −5‰;
Figs. S1D\\F, 5B, F, H, 6C, D, F), but are notably more depleted in 18O
(Fig. 8K). The carbon and oxygen isotope contrast between bed-cutting
calcite veins and the horizontally aligned calcite nodules suggests that
the two calcitic textures were not precipitated from the same fluids,
and that the late-stage veins likely developed from hydrothermal wa-
ters during deep burial.

Further support for an early authigenic origin of the 13C-depleted
calcite nodules and cements comes from their 87Sr/86Sr compositions
and elemental abundances. Within each single sample, 87Sr/86Sr of
dark-colored dolomitic phases (ranging from 0.7080 to 0.7088) are typ-
ically slightly more radiogenic than white-colored calcite phases (rang-
ing from 0.7080 to 0.7083). This is the likely consequence of Sr loss
during dolomitization and the addition of 87Sr from 87Rb decay in
admixed clay minerals. On the other hand, the compositions of the cal-
cite phases are remarkably consistentwith contemporaneous Ediacaran
seawater values recorded globally (Burns et al., 1994; Melezhik et al.,
2009; Sawaki et al., 2010; Cui et al., 2015; Xiao et al., 2016), including
bedded limestones lower in the Doushantuo Formation (Fig. 8N).
Thus, the calcite nodules and cements are likely to more accurately re-
flect seawater Sr isotope compositions than the dolomites and phos-
phorites in which they are hosted. Elemental analyses for selected
samples further indicate that calcite phases have much higher Sr
concentration and much lower Fe, Mn, and Rb concentration when
compared with dolomite matrices (Table S3), supporting their early
authigenic origin. Similarly cathodoluminescence (CL) imaging of
our samples show very dull color for the authigenic calcite nodules
(Fig. 4I), which is consistent with an early diagenetic origin.

5.1.2. Comparison with methane-derived authigenic carbonates in cap
carbonates

Similar to the calcite nodules and cements we have identified from
the uppermost Doushantuo Formation, calcitewith strong 13C depletion
also occurs as discrete textures in the cap dolostone at the base of the
unit in the Yangtze Gorges area. On one hand, these isotopically anom-
alous calcites have been proposed as remnants of the oldest cold seep
deposits, which formed during destabilization of methane hydrates in
the aftermath of Marinoan glaciation (Jiang et al., 2003, 2006a, 2006b;
Wang et al., 2008; Zhou et al., 2010, 2016). On the other, the same
phases have been re-interpreted as the result of post-depositional hy-
drothermal events, based on petrographic observation (Lin et al.,
2011), clumped isotope analyses (Bristow et al., 2011), and combined
organic matter and clay mineral analysis (Derkowski et al., 2013).
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Notably, the 87Sr/86Sr ratios in the basal Doushantuo cap dolostone are
highly radiogenic (up to ca. 0.7130) (Fig. 8E), and furthermore these
phases are spectacularly enriched in Mn (over 20,000 ppm resulting in
Mn/Sr up to 600) (Sawaki et al., 2010; Bristow et al., 2011; Huang et
al., 2011). These observations suggest significantwater-rock interaction
after burial (Marshall, 1992; Jacobsen and Kaufman, 1999).

In contrast, the calcite nodules and cements discovered in this study
from the upper Doushantuo Formation at Zhongling all preserve typical
Ediacaran seawater 87Sr/86Sr values (ca. 0.7080), suggesting an early
authigenic origin for these phases, which appear to have been in diffu-
sive contact with a dominantly marine Sr source. Authigenic carbonates
with seawater Sr signals are common inModernmarine sediments (e.g.,
Hovland et al., 1987; Aharon et al., 1997; Naehr et al., 2000; Greinert et
al., 2001; Peckmann et al., 2001; Joseph et al., 2012).Whenmarine sed-
iments are still unconsolidated with free diffusion of Sr from seawater,
authigenic carbonates will capture seawater Sr isotope compositions.
The high concentration of Sr and low concentration of Mn, Fe and Rb
in the Zhongling authigenic calcite phases is also in strong contrast
with those from the basal Doushantuo cap carbonate, which supports
our view that each has a unique origin.

In summary, sedimentological, petrographic, and geochemical ob-
servations of the isotopically-distinct calcite phases from the uppermost
Doushantuo Formation at Zhongling support the view that they are
early authigenic in origin. They appear not to be associated with post-
lithification hydrothermal events (e.g., Bristow et al., 2011; Derkowski
et al., 2013; Hohl et al., 2015). Thus, we interpret the bedded, fine
grain-sized, phosphatic or dolomitized carbonates as depositional
phases, and these textually- and isotopically-distinct calcite cements
and nodules as syndepositional authigenic phases.

5.2. Mechanism for authigenic mineralization

In our view, the biogeochemical processes responsible for authigenic
mineralization in the uppermost Doushantuo sediments prior to lithifi-
cation are directly related to variations in the pH and alkalinity of pore
waters due to microbial activity (Fig. 11) (Walter et al., 1993;
Langmuir et al., 1997; Morse, 2003). Geochemical consideration of mi-
crobial sulfate reduction (Eq. 1), which is often coupled with the
anaerobic oxidation of methane (Eq. 2), indicates that the onset of this
metabolic activity initially lowers the pH, which would favor the disso-
lution of the pre-existing carbonates (Eq. 3) (Birnbaum and Wireman,
1984; Morse and Mackenzie, 1990; Walter and Burton, 1990; Walter
et al., 1993; Morse, 2003; Meister, 2013), as well as the precipitation
of authigenic silica (Eq. 4) (Stage 1 in Fig. 11). The production of sulfide
would result in the formation of pyrite so long as ferrous iron were
available in the sediments, and the observation of disseminated pyrite
(Fig. 3H, I) is a testament to this microbial process.

SO4
2− þ 2CH2O→HS− þ 2HCO3

− þHþ ð1Þ

SO4
2− þ CH4→HS− þHCO3

− þH2O ð2Þ

CaCO3 þHþ→Ca2þ þHCO3
− ð3Þ

SiO3
2− þHþ→SiO2 þ OH− ð4Þ

As sulfate reduction progresses, however, the pH is stabilized and
calcite saturation increases with the buildup of alkalinity (Morse and
Mackenzie, 1990; Walter et al., 1993; Morse, 2003; Meister, 2013), es-
pecially if methane is the primary organic substrate (Moore et al.,
2004) (Stage 2 in Fig. 11). As alkalinity in porewaters rises and becomes
increasingly saturated, the concomitant rise in pH would favor the dis-
solution of pre-existing silica and authigenic precipitation of 13C-deplet-
ed calcite (Eq. 5) (e.g., Berner, 1971; Ritger et al., 1987).

Ca2þ þ CO3
2−→CaCO3 ð5Þ

In light of the intimate association between authigenic calcite and
the three phosphatic intervals, microbial iron reduction during the
phosphorite formation, which is also known as the “Fe-P shuttle”
(Muscente et al., 2015; Cui et al., 2016c), may have also played a role
in the production of alkalinity and authigenic mineralization. Carbonate
saturation would also increase during microbial iron reduction (Eq. 6)
(Riedinger et al., 2014). Microbial reduction of FeOOH is a strong sink
of H+ that increases pore water pH and can promote carbonate precip-
itation (Coleman and Raiswell, 1995):

4FeOOHþ CH2Oþ 7Hþ→4Fe2þ þHCO3
− þ 6H2O ð6Þ

In addition, abiological reduction of FeOOH by sulfide produced via
microbial sulfate reduction (Eq. 7) may also consume acidity and pro-
mote authigenic carbonate formation:

2FeOOHþHS− þ 5Hþ→2Fe2þ þ S0 þ 4H2O ð7Þ

It is notable that disseminated and framboidal pyrite is widespread
in the studied samples, and its authigenic formationmayhave been pro-
moted by the coupling of sulfate and iron reduction by a consortium of
micro-organisms. Ferrous iron in pore fluids could be produced by mi-
crobial iron reduction, and react with sulfide produced bymicrobial sul-
fate reduction to form authigenic pyrite (Eq. 8).

Fe2þ þHS−→FeSþ Hþ; FeSþ S0→FeS2 ð8Þ

An integrated reaction combining microbial sulfate and iron reduc-
tion is summarized below (Eqs. 9, 10):

6CH2Oþ 3SO4
2−→6HCO3

− þ 3H2S ð9Þ

2FeOOHþ 3H2Sþ S0→2FeS2 þ 4H2O ð10Þ

In summary, well-preserved authigenic precipitates, including
authigenic calcite nodules and cements, authigenic silica rim surround-
ing the calcite, and disseminated pyrite, recorded multiple stages of
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early authigenic mineral growthmediated by a consortium ofmicrobes.
This process is accompanied by varying pH conditions in pore water,
and is controlled by the flux of sulfate, silicon, and iron from seawater
through unconsolidated marine sediments.

5.3. Conceptual model for the δ13C anomaly

5.3.1. Progressive deepening of the sulfate–methane transition zone
In the uppermost Doushantuo Formation at Zhongling, highly nega-

tive δ13C values (as low as−37‰) of authigenic calcite suggest that the
anaerobic oxidation of methane bymicrobial sulfate reduction occurred
in pore waters within the sulfate–methane transition zone (SMTZ)
(Fig. 12) (Jørgensen and Kasten, 2006; Xu, 2010). Inmodernmarine en-
vironments rich in sulfate, the upwardmethane flux is exhausted in the
SMTZ through sulfate reduction (Jørgensen, 1982), except in localized
cold seeps where excess methane can escape to seawater (Greinert et
al., 2001; Haeckel et al., 2004; Campbell, 2006; Suess, 2014). The
SMTZ denotes a microbial transition within an anoxic sediment column
where pore water sulfate and methane concentration profiles intersect
at non-detectable levels (Fig. 12C). The depth of SMTZ depends on the
relative size of upwardmethane flux from the depth and the downward
diffusion of sulfate from overlying seawater (Borowski et al., 1996,
1999).

In light of the observation in this study, we propose that the anom-
alous negative carbon isotope signals in the uppermost Doushantuo
Formation may have formed from syndepositional authigenesis in a
shallow SMTZ. To allow for the progressive deposition of early
authigenic carbonates, we hypothesize that the inferred SMTZwas like-
ly to be immediately below the sediment–water interface (Fig. 12B)
(Greene et al., 2012; Husson et al., 2015b; Meister, 2015; Saitoh et al.,
2015). We realize that similar analogues in modern marine environ-
ments are lacking, but insofar as redox conditions in terminal Proterozo-
ic oceans were likely to be quite different from those of the modern, a
non-actualistic approach (e.g., Catling et al., 2007; Grotzinger et al.,
2011; Schrag et al., 2013; Meister, 2015; Zhou et al., 2015) is required
in order to reconcile the observations described above.

In modern marine sediments, the depth of SMTZ may vary strongly
among different localities, ranging from centimeter to hundreds of me-
ters in scale depending on thewater depth, organicflux, and the balance
between the downward flux of sulfate and the upward flux of methane
(Borowski et al., 1996, 1999). Generally, the SMTZ is shallowwhere the
methane flux dominates (e.g., above localized gas hydrate reservoirs),
and is deeperwhere diffusion of seawater sulfate dominates the system.
Insofar as marine sulfate concentration progressively increased in the
Neoproterozoic (Halverson and Hurtgen, 2007; Canfield and Farquhar,
2009; Cui et al., 2016b), the position of the SMTZ in marine sediments
may have been initially located near the sediment–water interface,
and then moved deeper over time in response to the increasing flux of
the oxidant (e.g., sulfate or iron oxide) as the result of elevated oxidative
weathering or an increase in bioturbation.

With the emergence of bioturbation in the terminal Ediacaran and
Cambrian periods (Bottjer et al., 2000; Carbone and Narbonne, 2014),
ventilation of the deep ocean (Logan et al., 1995; Butterfield, 2009,
2011; Lenton et al., 2014; Chen et al., 2015), and a larger seawater sul-
fate pool (Halverson and Hurtgen, 2007; Canfield and Farquhar, 2009;
Cui et al., 2016b), the Phanerozoic SMTZwould have been progressively
deeper compared with the SMTZ in Precambrian time (Fig. 12C) (see
Wright and Cherns, 2016 for a Phanerozoic analogue). Conversely, dur-
ing most of the Precambrian, due to the very low sulfate concentration
in the ocean, the SMTZ may not exist in marine sediments, and the bio-
genic methane flux may have directly escaped into the atmosphere
(e.g., Halverson et al., 2002; Pavlov et al., 2003; Catling et al., 2007;
Ader et al., 2009; Bristow and Grotzinger, 2013; Li et al., 2015; Shen et
al., 2016) (Fig. 12A).

Our conceptual model offers an attractive scheme to explain the
uniqueness of the ShuramExcursion in Earth's history. The stratigraphic
expression of the Shuram Excursionmay have been triggered by a mid-
Ediacaran development of a sulfate-methane transition zone near the
seafloor. Continuous syndeposition of early authigenic carbonates in
this shallow redox zone led to full expression of the Shuram Excursions
in stratigraphic records of continentalmarginswhere sulfate concentra-
tion increased to threshold levels (ca. 10 mM, see the next section for
quantitative constraints) in response to the Neoproterozoic Oxygena-
tion Event. Overall low sulfate condition during most of the Precambri-
an may have significantly inhibited the development of the sulfate-
methane transition zone (Catling et al., 2007), resulting in the absence
of Shuram-like excursions. Conversely, too high concentration
(N10 mM) of seawater sulfate and the emergence of bioturbation dur-
ing most of the Phanerozoic may have played a role in driving the sul-
fate-methane transition zone into much deeper depths, consequently
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switched the depositional pattern of authigenic carbonates from syn-
deposition to post-deposition. In summary, the uniqueness of the
ShuramExcursion in Earth's historymay result from an overall irrevers-
ible increase of seawater sulfate concentration (due to oxidative
weathering associated with orogeny, reflected in the rise of seawater
87Sr/86Sr compositions, and coupled with the buildup of oxygen in the
atmosphere), and an enhanced activity of bioturbation during the Phan-
erozoic. These two factorsmay have influenced the depth of the sulfate-
methane transition zone where syn-deposition or post-deposition of
authigenic carbonates occurred.

5.3.2. Quantitative constraint on seawater sulfate concentration
If our conceptual model of shallow authigenesis holds true for the

middle Ediacaran Shuram Excursion, quantitative constraint on seawa-
ter sulfate concentrationmight be possible (Fig. 12). Inmodern environ-
ment with sulfate concentration at ca. 28 mM (Star 3 in Fig. 12C),
methanogens are typically outcompeted for substrates (e.g. lactate
and acetate) by sulfate reducers, so the SMTZ is only developed when
pore-water sulfate concentration is lower than ca. 10 mM within the
sediments (Jørgensen and Kasten, 2006) (Star 2 in Fig. 12C). Extrapolat-
ing this sulfate threshold to a shallow SMTZ just beneath the sediment–
water interface (Star 2 in Fig. 12B), the seawater sulfate concentration
should have been no N10 mM if authigenesis occurs immediately
above the sediment–water interface (evidenced by seafloor crystal
fans in some localities; Pruss et al., 2008; Hall et al., 2013; Loyd et al.,
2013). At Zhongling, the sulfate concentration in seawater might have
been slightly higher than 10mM to allow the growth of authigenic nod-
ules in SMTZ within shallowmarine sediments. This estimate is consis-
tent with a recent model based on time-series sulfur isotope variation,
which suggests that oceanic sulfate concentration was low (b5 mM)
in the aftermath of the Marinoan ice age (ca. 635 Ma), but rose sharply
(to ca. 10 mM) near the Ediacaran–Cambrian boundary (Algeo et al.,
2015).

5.4. Origin of co-varying carbon and oxygen isotopes

5.4.1. Published models for δ13Ccarb and δ18Ocarb covariation
The recognition of alternating laminations dominated bymicrite and

dolomicrite in outcrop allowed for petrographic and isotopic tests of the
authigenic hypothesis, and a possible connection to the Shuram
Excursion. Several hypotheses have been proposed to interpret positive
correlations between δ13Ccarb and δ18Ocarb (Fig. 13). The progressive in-
crease of fluid-rock interaction during carbonate diagenesis could cause
different degrees of depletion in 13C and 18O (Jacobsen and Kaufman,
1999). Based on simple boxmodeling, δ18Ocarb could be reset more eas-
ily (i.e., less rock-buffered) than δ13Ccarb compositions, thereby forming
a hyperbolic relationship (Fig. 13A). This mechanism may be true for
some sample sets (e.g., Lohmann, 1988; Bishop et al., 2014), but does
not explain the linear relationship of δ13Ccarb and δ18Ocarb revealed in
this study (Figs. 9, 10).

Based on the positive δ13Ccarb–δ18Ocarb correlations in modern ma-
rine sediments, which results from meteoric water alteration (e.g.,
Gross and Tracey, 1966; Quinn, 1991; Swart and Kennedy, 2012;
Oehlert and Swart, 2014), Knauth andKennedy (2009) interpreted sim-
ilar observations in Ediacaran sedimentary rocks as a result of globally-
distributed diagenetic event associated with the flushing of meteoric
waters depleted in both 13C and 18O through shallowmarine sediments.
This model assumes a widespread terrestrial biosphere during the Edi-
acaran Period (Fig. 13B), and has beenwidely adopted as a universal cri-
terion for diagenetic evaluation in chemostratigraphic studies (e.g., Xiao
et al., 2012; Lu et al., 2013; Tahata et al., 2013; Osburn et al., 2015;
Schobben et al., 2016).

Alternatively, the isotopic covariation has also been interpreted as
resulting from a series of fluid-rock interactions associated with deep
burial long after deposition (Fig. 13C) (Derry, 2010a, 2010b). Contrary
to the Jacobsen and Kaufman (1999) model, which describes only “pas-
sive” trace element or isotopic exchange, but does not include any
chemical reactions between fluid and rock, Derry (2010a) used another
approach. It takes an initial system containing fluid and minerals in
equilibriumat a given temperature, and then this system reactswith ad-
dition of a new infiltrating “reactant” fluid of a different composition at
progressively higher water/rock ratio. Thus mineral and fluid composi-
tions are continuously re-calculated from equilibrium relationships as
the system composition evolves. This approach may better reflect the
porewater condition as the burial depth becomes progressively deeper.
Indeed, with this revised approach, the linear relationship in δ13Ccarb vs.
δ18Ocarb could be well explained by this model.

These hypotheses, however, are inconsistent with the excellent
preservation of fine-grained and texturally complex carbonates with
geochemically-distinct and mineralogically-dependent heterogeneity.
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For example, if meteoric water percolated the strata, we would expect
pervasive alteration, as opposed to the preservation of well aligned cal-
cite nodules surrounded by distinct quartz rim. Late diagenesis con-
trolled by sediment porosity and permeability could indeed cause
strong heterogeneity (e.g., Moore, 1989, 2004; Ahr, 2011; Morad et al.,
2013), but this scenario can be ruled out considering the pervasively
fine grained dolomicrite host carbonates in the upper Doushantuo For-
mation. Moreover, both meteoric water alteration and deep burial dia-
genesis could not sufficiently explain the extremely negative δ13Ccarb
and typical Ediacaran seawater 87Sr/86Sr signals exclusively preserved
in the calcite nodules. Thus, we disfavor these diagenetic models as ex-
planations for the covariance in δ13Ccarb and δ18Ocarb revealed in the
Zhongling carbonates.

5.4.2. An authigenic mixing model
In light of the sedimentological, petrographic, and isotopic observa-

tion in the uppermost Doushantuo Formation (Figs. 2–8), we propose
that the strong δ13Ccarb–δ18Ocarb correlation likely resulted from varia-
tions in the degree of authigenic carbonate mineralization (Fig. 13D).
BSE images reveal sedimentary layers of fine-grained dolomicrite with
variable amount of authigenic calcite (Fig. 9), resulting in δ13Ccarb and
δ 18Ocarb compositions that fall on a mixing line between end-member
compositions. XRD analyses of each layer were employed to quantify
the relative abundance of depositional dolomicrite and authigenic cal-
cite, and we found that the magnitude of 13C- and 18O-depletion is
strongly dependent on the relative abundance of authigenic calcite
(Fig. 9H, I).

The differences in δ18Ocarb compositions of the calcite and
dolomicrite end members in our samples from Zhongling samples are
on the order of ca. 5‰, with calcite being systematically depleted in
18O (Figs. 8K, 9, 10). This may reflect an isotope effect between calcite
and dolomite during precipitation or dolomitization. Both experimental
studies (Northrop and Clayton, 1966; O'Neil and Epstein, 1966;
Sheppard and Schwarcz, 1970; Horita, 2014) and natural samples
(Degens and Epstein, 1964; Gross and Tracey, 1966; Sass et al., 1991;
Metzger and Fike, 2013; Li et al., 2016) have shown ca. +5‰ enrich-
ment of 18O in co-existing dolomite relative to calcite forming from
the same solution. This isotopic effect may be responsible for the
δ18Ocarb variation during themixing between authigenic calcite and de-
positional dolomite in the studied samples.

5.4.3. An oxygen isotope enigma
It should be noted that the δ18Ocarb compositions in both deposition-

al phase and authigenic phase aremore negative thanmodern seawater
values (Rohling, 2007). To interpret the δ18Ocarb behavior in the studied
rocks, the Ediacaran seawater δ18O composition would need to be
known a priori, but this remains a matter of ongoing debate. On one
hand, lower seawater δ18O (ca. −7‰ PDB) has been proposed for the
Neoproterozoic ocean (Veizer et al., 1997, 1999; Kasting et al., 2006;
Jaffrés et al., 2007), but on the other hand it has also been argued that
the seawater δ18O composition through Earth historymay remain large-
ly constant (Muehlenbachs and Clayton, 1976; Muehlenbachs, 1998;
Knauth, 2005).

If the Ediacaran seawater δ18O is consistentwith themodern seawa-
ter value, then the question becomes: what mechanism leads to the de-
crease of δ18O data in the Precambrian carbonates, particularly in these
authigenic calcite revealed in this study? In both the meteoric water al-
teration model (Fig. 13B; Knauth and Kennedy, 2009) and the burial
diagenesis model (Fig. 13C; Derry, 2010a), the authors assumed that
the Ediacaran seawater δ18O was indistinguishable from the modern
and they therefore proposed diagenetic alteration as the only mecha-
nism for the decrease of Precambrian δ18O carbonate values. However,
this fundamental assumption should be treated with caution given the
controversial understanding of deep time δ18O evolution in the ocean
(Arthur, 2009).
Alternatively, if the Ediacaran seawater δ18O composition is indeed
much lower (e.g., −7‰; Kasting et al., 2006; Jaffrés et al., 2007) than
the modern seawater value, then the question becomes: what mecha-
nism leads the δ18O variability in mineralogically different carbonate
phases towards opposite directions on a centimeter scale? As revealed
from the uppermost Doushantuo Formation at Zhongling, the deposi-
tional phase (i.e., pervasively fine-grained dolomicrite) has generally
higher δ18O values, while the early authigenic phase (i.e., methane-de-
rived calcite) have generally lower δ18O values.

Variation in the δ18O of seawater or pore water during early diagen-
esis can result from local evaporation (Li and Ku, 1997; Kah, 2000;
Gomez et al., 2014; Horton et al., 2015), gas hydrate formation
(Davidson et al., 1983; Teichert et al., 2005; Kennedy et al., 2008;
Nyman and Nelson, 2011), or glacial ice buildup or melting (Zhao and
Zheng, 2010; Peng et al., 2013; Wang et al., 2014; Zhao and Zheng,
2015). Progressive changing in these environmental factors, or end-
member mixing among different reservoirs influenced by these fac-
tors could indeed cause potential correlation in δ13Ccarb vs. δ18Ocarb

(e.g., Li and Ku, 1997; Horton et al., 2015; Mishra et al., 2015). How-
ever, to link these potential mechanisms to the uppermost
Doushantuo Formation requires a comprehensive evaluation based
on integrated sedimentological, petrographic, and geochemical ob-
servations. At present, there is still no clear evidence for any of
these mechanisms. Laboratory experiments also reveal that solution
pH, alkalinity (Spero et al., 1997), carbonate precipitation rate
(Watkins et al., 2014), and salinity (Adkins et al., 2002) could also in-
fluence the δ18O compositions. However, these effects are modest,
only 1–2‰ at most.

The effect of early authigenesis on pore water δ18O compositions in
natural marine sediments remains largely unknown. Studies reveal
that δ18O compositions of early authigenic calcite are typically more de-
pleted in 18O than co-existing host carbonates (e.g., Sass et al., 1991;
Mozley and Burns, 1993; Melezhik et al., 2007). The detailed mecha-
nism remains unclear, but may be associated with either potential
mixing of more 18O-depleted sources (e.g., pore water sulfate, meteoric
water, glacial meltwater) during very early diagenesis, or in situ precip-
itation of 18O-enriched sinks (e.g., gas hydrate associated clathrate, clay
minerals) within sediments. Currently, there is still no data available to
test these hypotheses.

Clumped isotope analyses of other time-equivalent strata
(Bergmann, 2013; Loyd et al., 2015) suggest different degrees of dia-
genetic overprint by increasing fluid-rock interaction during deep
burial. This may partially support the late diagenesis model proposed
by Derry (2010a), but cannot be reconciled with a variety of sedi-
mentological observations that strongly point to an early authigenic
origin (Grotzinger et al., 2011). Thus, on one hand we recognize po-
tential diagenetic overprint in our samples (and probably in most
carbonate samples of Precambrian age); on the other hand, we re-
gard different degrees of authigenic mineralization during very
early diagenesis as the main reason for the tight δ13Ccarb–δ18Ocarb

correlation (Fig. 13D).
In summary, detailed sedimentological, geochemical, and petro-

graphic investigations suggest that the tight δ13Ccarb–δ18Ocarb correla-
tion results from progressive mixing of authigenic calcite in
depositional dolomite (Figs. 9, 10). The ca. 5‰ range in δ18Ocarb that is
generally lower than normal seawater values likely reflects a
superimposed effect by both calcite-dolomite fractionation and burial
diagenesis as evidenced by clumped isotopes (Loyd et al., 2015). If
true, our data support the view that δ18Ocarb is less rock-buffered and
more sensitive to diagenetic alteration than δ13C and 87Sr/86Sr
(Lohmann, 1988; Banner and Hanson, 1990; Jacobsen and Kaufman,
1999; Bishop et al., 2014; Loyd et al., 2015). However, to better interpret
the overall negative δ18Ocarb compositions in both depositional and
authigenic phases requires a better understanding of the Ediacaran sea-
water δ18O compositions, as well as the detailed knowledge about the
effect of authigenesis on pore water δ18O compositions.
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excursion. Barium concentrations [Ba] are new data from this study. Other data are from Zhou et al. (2012). Petrographic studies suggest that samples with high Mg/Ca and Mn/Sr ratios are altered during late dolomitization. In spite of
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5.5. Shuram Excursion and deep-time carbon cycles

5.5.1. Correlation of the uppermost Doushantuo between Zhongling and
Jiulongwan

The variable expression of the δ13C negative excursion in the upper-
most Doushantuo Formation across the basin (Xiao et al., 2012; Lu et al.,
2013; Cui et al., 2015; Wang et al., 2016) hampers our interpretation of
its origin and global implications (Fig. 8A, J). Construction of composite
chemostratigraphic sections should be based on a basin-wide analysis
rather than from measurements of any single section. Based on our in-
tegrated δ13C–δ34S–87Sr/86Sr–Ce/Ce* chemostratigraphy, we noted
that EN3 at the Zhongling section and the nearby Yangjiaping section
is incompletely preserved, and accordingly we have suggested that
the uppermost Doushantuo Formation at Zhongling is likely to be corre-
lated with the EN3a interval at Jiulongwan (Cui et al., 2015, 2016c). Our
revised correlation is also consistent with the progressive shallowing in
water depth on the basis of independent sedimentological observation
in the outer-shelf sections, where an increasing proportion of intraclasts
and oolites relative to fine-grained phases are deposited (Jiang et al.,
2011; Cui et al., 2015). The missing EN3b and EN3c in the outer-shelf
sections may be due to either a basin-wide unconformity (Lu et al.,
2013; Zhu et al., 2013; Wang et al., 2016), or the diachronous nature
of the lithologic boundary between Doushantuo and Dengying forma-
tions (Cui et al., 2015).

If our basin-scale correlation for the Doushantuo Formation is cor-
rect, the strongly 13C-depleted authigenic signatures revealed from the
uppermost Doushantuo Formation at Zhongling could immediately pre-
cedes EN3, or could be time-equivalent to EN3a at the Jiulongwan sec-
tion, suggesting a potential linkage between methane oxidation, sea
level regression, and the onset of the Shuram Excursion (Bjerrum and
Canfield, 2011). Indeed, sedimentological observations of the Shuram
Excursion from other sections in South China (Lu et al., 2013; Wang et
al., 2016), Death Valley (Summa, 1993; Corsetti and Kaufman, 2003;
Kaufman et al., 2007; Bergmann et al., 2011), Oman (Fike et al., 2006;
Le Guerroué et al., 2006b, 2006c; Lee et al., 2013; Osburn et al., 2014),
South Australia (Husson et al., 2012, 2015b), and NW Canada
(Macdonald et al., 2013) have also revealed a regression immediately
before the onset of the Shuram Excursion, supporting our hypothesis.

5.5.2. Authigenic barite mineralization in SMTZ
Consistent with the interpretation of methane-derived authigenesis

at the Zhongling section, the enrichment of barium in the EN3 interval
at Jiulongwan further supports an authigenic connection to the Shuram
Excursion (Fig. 14). In modern marine sediments, authigenic barite
mineralization normally co-occurswith anaerobic oxidation ofmethane
in the SMTZ (Torres et al., 1996; Jørgensen and Kasten, 2006; Riedinger
et al., 2006; Feng and Roberts, 2011; Vanneste et al., 2013). When sul-
fate and organic carbon is available, a barite front forms in the SMTZ
where theflux of sulfate diffused from seawatermeetswith soluble bar-
ium diffusing upward from depth. Thus, an enrichment in barium (typ-
ically as authigenic barite) has been widely used as an indicator for the
reconstruction of paleo SMTZs in deep time records (e.g., Dickens, 2001;
Dickens et al., 2003; Lash, 2015; Zhou et al., 2015;Niu et al., 2016). Trace
element analyses of the EN3 interval at Jiulongwan reveal a strong en-
richment in barium (Fig. 14D). These measurements are consistent
with independent sedimentological observations of authigenic barite
crystals closely associated with carbonate concretions and black shales
(Fig. S3E). The co-occurrence of authigenic calcite and authigenic barite
has also been reported in sedimentary rocks deposited during the short-
lived Paleocene–Eocene Thermal Maximum (PETM) when gas hydrate
dissociation and methane oxidation was believed to have contributed
to the negative δ13C excursion (Dickens, 2001; Dickens et al., 2003).

If the model of a shallow SMTZ is true for the Shuram Excursion, it
could explain a variety of sedimentological observations. For example,
the ShuramExcursion is globally recorded by beddedmicritic limestone
(instead of dolomite) independent of sedimentary facies (Melezhik et
al., 2009; Grotzinger et al., 2011; Bergmann, 2013; Lu et al., 2013;
Husson et al., 2015b). The dominance of limestone in this interval may
well reflect an episode of enhanced authigenic mineralization of calcite
(or initially aragonite, see Husson et al., 2015a). Abundant seafloor-pre-
cipitated aragonite fans (Corsetti and Kaufman, 2003; Pruss et al., 2008;
Loyd et al., 2013; see also Greene et al., 2012 for a Phanerozoic ana-
logue), oolite (Corsetti and Kaufman, 2003; Bergmann, 2013), and hum-
mocky cross-stratification (Le Guerroué et al., 2006a, 2006b; Melezhik
et al., 2009; Husson et al., 2012) with strong 13C-depletion in the
Shuram-equivalent intervals worldwide further support our view of a
very shallow (probably near sediment–water interface) SMTZ during
the Shuram Excursion.

Heterogeneity in the stratigraphic expression of the ShuramExcursion
within individual basins have been reported from the Johnnie Formation
in Death Valley (Bergmann et al., 2011), the Gametrail Formation in NW
Canada (Macdonald et al., 2013), and the Doushantuo Formation in
South China (Jiang et al., 2007, 2008; Lu et al., 2013; Cui et al., 2015;
Wang et al., 2016). The development of basin-scale unconformities (Lu
et al., 2013; Wang et al., 2016) or mixture of various proportions of
authigenic carbonates (Macdonald et al., 2013)havebeenproposed to ex-
plain the intra-basinal heterogeneity in δ13C expression. Observational
evidence for methane-derived authigenesis stratigraphically associated
with the Shuram Excursion, however, is currently only limited to the
upper Doushantuo Formation at the outer-shelf sections in South China
(Ader et al., 2009; Macouin et al., 2012; Cui et al., 2016c; Furuyama et
al., 2016 and this study), and perhaps also the Mara Member in the
NamaGroup of southernNamibia (Kaufman et al., 2015). An active search
for these authigenic phases in the fully-expressed Shuram Excursion
worldwide may help to further test our hypothesis.

5.5.3. Beyond the Shuram Excursion
Our conceptual model proposed above may shed light on other per-

turbations of the ancient carbon cycle. These include negative δ13C fluc-
tuations in the Mesoproterozoic (e.g., Gilleaudeau and Kah, 2013), and
early Ediacaran time (e.g., Hoffman et al., 1998; Halverson et al., 2005;
Lang et al., 2016), as well as at the Ediacaran–Cambrian boundary
(e.g., Maloof et al., 2010a; Maloof et al., 2010b; Jiang et al., 2012), may
be explained by the variable admixture of early authigenic carbonates
driven by fluctuations of sulfate in the ocean. It is possible that oceanic
sulfate concentration was low prior to the Ediacaran Period (Kah et al.,
2004; Shen et al., 2006; Kah and Bartley, 2011; Loyd et al., 2012;
Crowe et al., 2014) such that methane could have been largely released
directly to the ocean and atmosphere rather than being oxidized
through microbial metabolism within sediments (e.g., Halverson et al.,
2002; Ader et al., 2009; Bristow and Grotzinger, 2013; Li et al., 2015;
Shen et al., 2016). As oceanic sulfate level increased in the Ediacaran Pe-
riod (Fike et al., 2006; Halverson and Hurtgen, 2007; Algeo et al., 2015),
however, early authigenic mineralization in shallow marine sediments
was enhanced via coupled sulfate reduction and anaerobic oxidation
of methane (Jørgensen and Kasten, 2006). Localized, but globally syn-
chronous, production of 13C-depleted authigenic carbonate may have
led to the strong negative δ13C excursions (e.g., Zhou et al., 2016).
More detailed studies that combine petrographic, mineralogical, and
fabric-specific geochemical investigations (e.g., Talbot and Kelts, 1986;
Kozdon et al., 2013; Bojanowski et al., 2015; Lash, 2015; Godet et al.,
2016; Śliwiński et al., 2016; Thomazo et al., 2016; Zhao et al., 2016)
are needed to test these hypotheses for δ13C excursions throughout
Earth's history.

6. Conclusions

Systematic sedimentological, petrographic, and chemostratigraphic
investigations were conducted for the Doushantuo Formation at the
outer-shelf Zhongling section in South China. Methane-derived
authigenic calcite cement and nodules with extreme 13C-depletion
(δ13Ccarb down to −37‰) were discovered, and are interpreted as
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direct empirical evidence of authigenesis potentially associatedwith the
profound ShuramExcursion. Combined BSE, XRD and isotopicmeasure-
ments ofmicro-drilled samples indicate that the cm-scale heterogeneity
in δ13Ccarb and δ18Ocarb reflects the relative abundance of authigenic cal-
cite and depositional dolomite. Based on integrated chemostratigraphic
correlation (Cui et al., 2015), these remarkable authigenic signatures at
the outer shelf Zhongling section are proposed to be time-equivalent to
the EN3a interval of the fully-defined Shuram Excursion at the
Jiulongwan section ~90 km to the north, suggesting a potential causal
link betweenmethane-derived authigenesis and the globally-expressed
Shuram Excursion. In light of these novel observations (Figs. 2–10) and
based on our basin-scale chemostratigraphic correlation(Cui et al.,
2015),we hypothesize that the ShuramExcursionmay be formed by lo-
calized, but globally synchronizedmineralization of authigenic calcite in
a paleo SMTZ located near the sediment–water interface. The onset of
this chemocline at the water-sediment interface is believed to be a re-
sponse to an increase in global seawater sulfate concentrations. Our
new conceptual model provides a non-actualistic interpretation for
the largest negative δ13C excursion in Earth history, and suggests a
unique geochemical transition in seawater during the Ediacaran Period.
Our study highlights the significance of an integrated approach that
combines petrography, mineralogy, and texture-specific micro-drilling
geochemistry in chemostratigraphic studies. Such approach is sug-
gested to be applied to fully-expressed Shuram-equivalent sections
(e.g., the Doushantuo Formation at Jiulongwan) in order to directly
test our hypothesis.
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