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One of the fundamental structural properties of many networks is triangle closure. Whereas the

influence of this transitivity on a variety of contagion dynamics has been previously explored,

existing models of coevolving or adaptive network systems typically use rewiring rules that

randomize away this important property, raising questions about their applicability. In contrast, we

study here a modified coevolving voter model dynamics that explicitly reinforces and maintains such

clustering. Carrying out numerical simulations for a variety of parameter settings, we establish that

the transitions and dynamical states observed in coevolving voter model networks without clustering

are altered by reinforcing transitivity in the model. We then use a semi-analytical framework in terms

of approximate master equations to predict the dynamical behaviors of the model for a variety of

parameter settings. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4972116]

A central pursuit of network science has been the study

of how network topology influences dynamics occurring

on a network. Here, we study the interplay between a spe-

cific topological property, transitivity, and coevolving

voter network dynamics. Through numerical exploration

and study of approximate equations, we demonstrate the

significant role of transitivity in the processes of coevolv-

ing collective opinion formation, including the transitions

induced in voter dynamics and in the structural features

of the underlying network by dynamic reinforcement of

transitivity. Our analysis includes a semi-analytical

approach in terms of approximate master equations

(AMEs), which we show is capable of capturing several

key features of these rather complex dynamics.

I. INTRODUCTION

The study of dynamics on networks has led to a number

of successes identifying how the structure of the underlying

network impacts the dynamics occurring on the network and

whether dynamics taking place on the network also promote

organizing features of the network structure itself.1–6 Within

this larger research theme, significant attention has been paid

to exploring the role of network structures in the spread of

contagions and opinions,7–10 including efforts to understand

and quantify features in the spread of contagions due to dif-

ferent local and global structural properties.11,12 The study of

opinions spreading in social networks has gained additional

interest due to the rise of social media and its role in mobiliz-

ing and framing public opinion,13 including elections and

advertising campaigns.14 Hence, understanding and quantify-

ing the interplay between network structures and contagion

dynamics is of broad interest and scope.1

The processes involved in collective opinion formation

and the role of network properties in these processes are

extremely complex.15 We thus aim to study the properties

emerging from a simple local model for interactions that

incorporate only some of the essential features involved.

This modeling approach is similar to the simplifications in

studying a susceptible-infected contagion model on a speci-

fied, fixed network7 or under simple adaptive network rewir-

ing rules.8 The coevolving voter model is a simple generic

model for studying the interplay between opinion formation

and the underlying network. In this model, connected nodes

with discordant opinions are resolved by one neighbor in the

pair either changing its opinion or dropping the connection

(in favor of a newly rewired connection to another node in

the network). This model reproduces several complex fea-

tures observed in collective opinion formation and has led to

a variety of computational and analytical results on different

aspects of the model.9,10,15–18 Even though the voter model

is excessively over-simplified compared to real social pro-

cesses, recent work on a variant of the model demonstrated

that it was able to capture the statistical features of U.S. pres-

idential elections.18 Meanwhile, substantial empirical evi-

dence exists in support of using the voter model as a possible

economic model for “public choice” as well as a model of

biological population dynamics.19–22 Moreover, the coevolv-

ing voter model belongs to the class of binary state dynamics

on adaptive networks,17,23 which have found applications in

game theory, disease spread, and spin systems.12,17,21–24

However, nearly all previous variants of this model

(including those studied by the present authors) have ignored

one of the most fundamental features of networks, namely,

the higher propensity for a connection between two nodes

that are both already connected to a third node, closing the

triangle between them.5 Specifically, the rewiring rules in

these models (and in a wide variety of other adaptive net-

works models) ignore clustering, pushing the network struc-

ture further towards independently distributed edges (up to

the coupling with node states). The probability of closing a

triangle along a potential edge in a connected triplea)Electronic mail: nishant.malik@dartmouth.edu
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converges over time in these models to the same probability

for that edge in the absence of those other connections. That

is, only trivial levels of local clustering are observed. As

such, the applicability of such models for describing real sys-

tems is highly questionable.

Here we consider a generalization of the coevolving

voter model that explicitly reinforces transitivity to obtain

networks with more realistic local clustering. We modify the

rewiring step to preferentially rewire to neighbors of neigh-

bors, mimicking the common social phenomena that friends

of friends are more likely to be friends. Recently, a similar

model has also been used for studying multilayer networks,25

as motivated to study the distribution of community sizes in

an online multiplayer game. Ref. 25 includes observations

similar to our results below about the sizes of components at

consensus, and also includes exploration of these sizes in a

multiplex setting. In contrast, our present results include fur-

ther exploration and modeling of the resulting levels of tran-

sitivity and the degree distributions, including semi-

analytical calculations in terms of approximate master equa-

tions (AMEs) to describe the effects of different parameter

choices.

This paper is arranged as follows. First, we provide

the details of the model and discuss different consensus

states that can result from the two-opinion model with rein-

forced transitivity. We then analyze the structural proper-

ties of the evolving networks and transitions. Finally, we

use approximate master equations (AMEs) to predict

model behavior in different parameter regimes. Additional

details about the analytical derivations and numerical

experiments are provided in the accompanying Appendixes

(A–D).

II. MODEL WITH REINFORCED TRANSITIVITY

Consider a graph G with N nodes and l edges (links) with

each node holding one of two opinions (0 and 1). We call an

edge discordant if it connects nodes with different opinions

and let l01 be the fraction of edges that are discordant.

Similarly, let l00 and l11 be the fractions of the two types of

harmonious edges (connecting nodes with the same opinion).

At each step of the model process, a discordant edge is cho-

sen. (That is, we study an adaptive network version of the

link-update voter model, as opposed to the “direct” or

“reverse” voter models.26) With probability 1� a, a node at

one end will adopt the other’s opinion; otherwise, that is with

probability a, one of the nodes breaks this link and rewires to

another node to which it is not already connected.

We emphasize that this opinion adoption and rewiring are

mutually exclusive events, with only one or the other occur-

ring in a given step. In terms of model social interactions, an

opinion adoption step represents one person convincing the

other to change their opinion, whereas the rewiring step corre-

sponds to a person choosing instead to quit the interaction

because of the disagreement and purposely seeking a new

friend.

The essential reinforcement of transitivity occurs in this

rewiring step: with probability c, the new neighbor is

selected from the set (if non-empty) of second-nearest

neighbors—that is, nodes that are neighbors of neighbors,

two steps away. Otherwise (that is, selected initially with

probability 1� c or, alternatively, if the set of second-

nearest neighbors is empty), a node is selected uniformly at

random from the rest of the network not already in the neigh-

borhood of the node.

The total number of edges l at time t is conserved,

with the edge fractions obeying l01ðtÞ þ l00ðtÞ þ l11ðtÞ ¼ 1.

In the simulations presented here, we use a network with

N¼ 100, 000 nodes, to minimize finite size effects, with

average degree hki ¼ 2l=N ¼ 4, initialized as an Erd}os-

R�enyi random graph (that is, edges are placed indepen-

dently and identically distributed between all possible pairs

of nodes). The two opinions are initially distributed uni-

formly over the nodes, with each opinion selected with

probability 1/2.

III. CONSENSUS STATES

The final state of the model reached at t¼ tf is a con-
sensus state with l01ðtf Þ ¼ 0, i.e., there are no discordant

edges remaining and no further evolution of the system

takes place. We loosely classify consensus states into two

broad categories: hegemonic and segregated, based on the

fraction of nodes holding the minority opinion at consen-

sus, q. The hegemonic consensus is characterized by small

q; in contrast, the segregated consensus is characterized by

minimal change in the populations of the two opinions,

q � 0:5 [see Fig. 1(a)], with opinions distributed in sepa-

rate connected components that are each in internal con-

sensus. Similarly, in Fig. 1(b) we see that the fraction of

nodes in the largest connected component at consensus, s1,

is approximately 0.5 in the segregated consensus and

increases with decreasing a as the consensus becomes

more and more hegemonic.

Generalizing from the “rewire-to-random” model in

Ref. 9, corresponding to the c¼ 0 case here, and noting the

relatively small changes with increasing c in most of Fig. 1,

FIG. 1. (a) The fraction of nodes holding the minority opinion in the consen-

sus state, q. (b) The fraction of nodes in the largest connected component at

consensus, s1. Both (a) and (b) indicate that the critical rewiring probability

acðcÞ decreases with increasing triangle closure probability c. Below acðcÞ,
the segregated consensus gives way to an ever more hegemonic consensus

with decreasing a. These visualizations were generated on a regular grid

through bilinear interpolation, leading to some grid artifacts.
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we expect the consensus state to be qualitatively consistent

with Ref. 9 for small triangle-closing probability c, with a

critical value for the rewiring probability, acðcÞ, above which

only a segregated consensus state exists. Below acðcÞ, the

consensus becomes more and more hegemonic for decreas-

ing a. The argument c in acðcÞ signifies the dependence on

the tendency to close triangles in rewiring. As observed in

Fig. 1, this critical value acðcÞ appears to decrease consis-

tently with increasing c before sharply changing as c gets

closer to 1. This transitivity reinforcement is thus important

in altering the dynamics of the coevolving voter model, yet

appears to preserve many of the qualitative features of the

consensus states, at least for c not too close to 1.

IV. NETWORK PROPERTIES: TRANSITIVITY AND
DEGREE DISTRIBUTION

The primary distinction of the present model is the

presence of non-trivial levels of transitivity, reinforced by

triangle closing steps. Of course, changes to the underlying

dynamics may change the resulting networks and consensus

states, as highlighted for instance by the contrasts between

the “rewire-to-same” and “rewire-to-random” models in

Ref. 9 or in the early fragmentation possible in the directed

network version studied in Ref. 24. However, without

explicit triangle closure, non-trivial levels of transitivity do

not persist. Moreover, as we observe below, increased trian-

gle closure frequency leads to larger changes in the degree

distributions.

To better understand the role of triangle closure in the

dynamics, in Fig. 2(a) we plot the evolution of transitivity in

simulations with a¼ 1 (no opinion switching). As our results

show, even after initializing with an Erd}os-R�enyi random

graph, we see that transitivity reinforcement causes transitiv-

ity to increase over time in these simulations, except in the

c¼ 0 (no reinforcement) case, with larger c driving larger

transitivity. The transitivity in the consensus states, Cðtf Þ, is

highlighted in the Figure by circles. Using a simple mean

field argument that assumes convergence to statistically sta-

tionary levels of transitivity (see Appendix A), we estimate

Cðtf Þ ¼ 3c=ð3hki � 2Þ. Even though the clustering is still

increasing with time in Fig. 2(a), we observe in Fig. 2(b) that

this theoretical estimate matches well with the clustering

coefficients at consensus in the simulations.

The interplay of opinion changes (without rewiring) and

the rewiring steps alters the degree distribution of the net-

work. In Fig. 3, we illustrate the variations induced in the

degree distribution of the consensus state at different ða; cÞ
values. At a¼ 0, there is no rewiring and the degree distribu-

tion at consensus is the same as the initial Poisson degree

distribution (grey bands in Fig. 3). For a ¼ 0:2 and a ¼ 0:4,

the consensus degree distribution deviates more and more

from the initial distribution as c is increased. Whereas each

random rewiring step can only maintain or decrease the num-

ber of discordant edges, an opinion switching step can

increase the total amount of disagreement, slowing down the

convergence to consensus.9,10,15,16 For smaller a, it typically

takes more steps to reach consensus, giving a greater oppor-

tunity for increased c (closing a greater number of triangles)

to cause deviations in the degree distribution. For a > acðcÞ,
we observe only a minor departure from the initial degree

distribution, even for higher values of c, as the rewiring step

dominates and the graph quickly disintegrates into connected

components that are each in internal consensus. Indeed, the

number of steps for segregated consensus is OðN log NÞ (for

a given average degree),9 yielding fewer rewiring steps over-

all and limiting the total change in the degree distribution.

To further quantify the influence of c on the consensus

degree distribution, we have identified the following fit to

the data plotted in Fig. 3:

p kð Þ ¼

hkik

k!
e�hki; if a ¼ 0 ;

b1

1:25hki
k

1:25hki

� �b1�1

e�
k

1:25hkið Þb1

; if a 6¼ 0 ;

8>>><
>>>:

(1)

where the a 6¼ 0 cases are fit by Weibull distributions with

shape parameter b1 and scale parameter fixed constant equal

to 1:25hki (see also Figs. 7 and 8). The Weibull distribution

is used here to capture the additional observed variance com-

pared to the initial Poisson degree distribution. The values of

the shape parameter b1 are plotted in Fig. 8. In particular, we

observe lower values of b1 for a ¼ 0:2 and 0.4 as compared

to a ¼ 0:8 and 1.0. (See also Appendix B.)

FIG. 2. (a) Time evolution of the clustering coefficient in a¼ 1 (no opinion

switching) simulations for different c. Circles highlight the clustering coeffi-

cient in the consensus state, i.e., Cðtf Þ. (b) The value of clustering in the con-

sensus state, comparing simulations (circles) and the theoretical estimate

(see Appendix A). See also Fig. 6 for comparison at other a values, demon-

strating good agreement with the theory except for small a with large c.

FIG. 3. Degree distribution in the consensus state for different ða; cÞ parame-

ters. Simulations start from Erd}os-R�enyi random networks with hki ¼ 4,

with the Poisson degree distribution indicated by thick grey bands.
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V. APPROXIMATE EQUATIONS

In discussing Fig. 1, we noted the transition between the

hegemonic and segregated consensus states in terms of the

critical parameter acðcÞ, extending its identification in Ref. 9

to the c > 0 transitivity reinforcing dynamics considered

here. Further generalizing Ref. 9, we observe that the frac-

tion of discordant edges at time t, l01ðtÞ, for a < acðcÞ obeys

an approximate relationship describing a family of quasi-

stationary states that behave as attracting sets for the dynam-

ics, with l01ðtÞ ¼ c1ð1� n1ðtÞÞn1ðtÞ þ c2, where n1ðtÞ is the

fraction of nodes holding opinion 1, and c1 and c2 are con-

stant-in-time values dependent on ða; cÞ. Solving the qua-

dratic equation for the l01 ¼ 0 consensus state yields

n16
¼ 1

2
ð16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4c2=c1

p
Þ, where n1þ (respectively, n1� )

represents the state when n1 is the majority (minority) opin-

ion. That is, q ¼ 1
2
ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4c2=c1

p
Þ. In Figs. 4(a) and

4(b), we plot the arches approximated by these parabolae. As

a and c are increased, these arches disappear for a > acðcÞ.
In Fig. 4(b), we observe that as c is increased the arches

become squeezed, decreasing the area enclosed under the

arches.

Estimates for c1 and c2 from the simulation data [see

Figs. 4(a) and 4(b)] are plotted in Fig. 9 in Appendix C. We

also observe (in Fig. 10) that the ratio of these coefficients

appearing in the formula for q above approximately follows

c2=c1 � � 1
2
a2:1 expð�0:75cÞ. Using this observation of the fitted

arch parameters to identify the c dependence of acðcÞ, in Fig.

4(c) we plot q vs. a expð�0:75cÞ for different a and c. As evident

from the figure, acðcÞ � ð0:72Þ expð0:75cÞ
accurately quantifies

the shift in ac with c. Moreover, from Fig. 4(c) we observe

that this rescaling of the q vs. a relationship below the criti-

cal value falls onto nearly the same curve for c < 0:8.

Further details about the quasi-stationary states may

be approximated through reduced-order model equations.

Mean field and pair approximation methods are popular

tools for describing binary state dynamics on networks, but

have been found inadequate in many complex models.23 A

more powerful approach is in terms of Approximate

Master Equations (AMEs), with coupled differential equa-

tions describing the evolution of binary states of nodes

and their neighbors.23 We have generalized the AMEs of

Ref. 9 for c > 0 transitivity reinforcement, as presented in

Appendix D. In Fig. 5, we compare the quasi-stationary

states predicted by the AME with those observed in simu-

lations. Importantly, we note that the discrepancy between

the AME and simulation arches already present at c¼ 0 (in

agreement with Ref. 9) increases slightly as c is increased

but nevertheless captures the main changes as long as c is

not too large.

VI. SUMMARY

We observe that multiple features of our transitivity-

reinforcing model show continuous transitions in the consen-

sus states, in qualitative but not precise quantitative agree-

ment with the model without transitivity reinforcement

studied in Ref. 9 (corresponding to c¼ 0 here). Importantly,

we have found that the critical value for these transitions

depends on the extent of transitivity reinforcement in the

model. We thus conclude that reinforcement of clustering

alters the internal details of the coevolving voter model in

terms of reaching consensus and shifting the critical transi-

tions. Therefore, one should be careful in interpreting appli-

cability of results based on models without clustering. We

also demonstrate that the method of approximate master

FIG. 4. (a) Simulation dynamics in the space of variables l01 and n1. The trajectories of l01 and n1 rapidly relax to these arches. As a and c are varied, the shape

of the arches change, disappearing for higher a > acðcÞ. (b) l01 vs n1 for a ¼ 0:4. Observe the squeezing of arches as c is increased, breaking up for c ¼ 1:0.

(c) The minority opinion population q for different c and a. The abscissa has been transformed to a expð�0:75cÞ to provide a common location for the critical point

near 0.72 after rescaling, while collapsing most of the data for c < 0:8 onto a single curve.

FIG. 5. Comparison of Approximate Master Equation (AME) solutions with

simulations at a ¼ 0:4. Different colors represent different values of c by the

same color scheme as in Figs. 2–4. Simulation results presented here corre-

spond to the arches fitted to raw simulation data as shown in Fig. 4(b).
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equations can be used in this setting to predict the impact of

transitivity reinforcement on shifting the macroscopic prop-

erties of the dynamics and the resulting consensus.
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APPENDIX A: MEAN FIELD ESTIMATE FOR THE
EVOLUTION OF CLUSTERING IN THE MODEL

Let T be the number of triangles and s be the number of

connected triplets of nodes (triads) in the network at a given

time t. Then the global clustering coefficient will be

CðtÞ ¼ 3T=s. Further, let sj be the number of triads centered

at node j. We note that sj ¼
�

kj

2

�
, where kj is the degree of

node j. If during the rewiring step, a link is removed from

node j and rewired to node m, the number of triads centered at

j reduces by
�

kj

2

�
�
�

kj � 1

2

�
¼ kj � 1, while the number of

triads centered at m increases by
�

km þ 1

2

�
�
�

km

2

�
¼ km.

Then the total change in the number of triads in a single rewir-

ing step is Ds ¼ km � kj þ 1: Assuming (without justification)

that the degrees of the nodes before losing and gaining the

rewired link are independent and identically distributed (iid),

then on average the change in the number of triads per rewir-

ing step is hDsi ¼ 1.

The rewiring rate at given time t is proportional to the

probability of rewiring, a, and we scale time so that the

expected instantaneous rate of change of s will be (on aver-

age, abusing notation for simplification) _s ¼ ahDsi ¼ a. We

remark that we have scaled time here per consideration of

any discordant edge. An alternative is to scale time so that

every discordant edge is considered on average once per unit

time, introducing multiplicative factors of the number of dis-

cordant edges in such a way that they cancel and do not

affect the steady state. We thus ignore these factors in what

follows.

The rewiring step also changes the number of triangles

T in the network. Let Tij be the number of triangles which

include the edge i–j. If this edge is removed during the

rewiring then Tij triangles will be eliminated. There are

two types of triads involved with edge i–j: the ki � 1 ones

centered at node i and the kj � 1 others centered at node j.
That is, the total number of triads involved with edge i–j is

ki þ kj � 2. We note that this count of these triads includes

each of the Tij triangles twice. We additionally note that

each of the Tij triangles associated with the i–j edge is

by definition associated with two other edges. Then, using

the fact that the clustering coefficient C represents the

fraction of triads that are involved in triangles, and assum-

ing independence and uniformity throughout, we obtain

Tij ¼ Cðki þ kj � 2Þ=2 as our estimate for the number of tri-

angles that will be eliminated in removing the i–j edge.

Again assuming that the node degree is iid, on average the

number of triangles removed per rewiring event will be

Cðhki � 1Þ.
Reinforcing transitivity is the counter mechanism

that rewiring to a neighbor’s neighbor occurs with probabil-

ity c. Continuing to assume uniformity and independence

throughout the present argument (as just one for example,

ignoring 4-cycles that might exist including both the old and

new edges), then each such step increases the number of tri-

angles by 1. That is, triangles are added by this mechanism

at rate ac.

Combining these mechanisms, we write the expected

net instantaneous rate of change of T as

_T ¼ �aCðhki � 1Þ þ ac : (A1)

From C ¼ 3T=s, the statistically steady level of clustering

( _C ¼ 0) is obtained when _Ts� T _s ¼ 0, giving

C ¼ 3T=s ¼ 3 _T= _s. After substituting in the rates above, this

becomes C ¼ 3a½c� Cðhki � 1Þ�=a. Solving for C we then

obtain

C ¼ 3c
3hki � 2

: (A2)

In Fig. 6, we plot the clustering coefficients over time

and at consensus for different ða; cÞ values, similar to the

a¼ 1 data presented in Fig. 2. Note the slightly longer time

scale in the left panels in Fig. 6 compared to Fig. 2, and that

consensus is not reached on the plotted time scale for smaller

values of a. The right panels plot the final value Cðtf Þ, dem-

onstrating good agreement with Eq. (A2) except for at the

larger values of c at smaller a.

APPENDIX B: DEGREE DISTRIBUTIONS

As rewiring is introduced into the model (that is, a > 0),

the structure of the network evolves. We observe that the

degree distribution for a > 0 can be fitted by Weibull distri-

butions (see Eq. (1) and Fig. 7). In Fig. 8, we plot the shape

parameter b1 used to fit Eq. (1). We observe bigger disper-

sion in the values of b1 for small a’s (see a ¼ 0:2 and 0.4 in

the Figure). Larger values of the b1 shape parameter give a

larger spread of the degree distribution. In other words, nei-

ther a nor c changes the fundamental character of the distri-

bution; rather, their combination merely stretches or

contracts the spread of the degree distribution. It appears that

there are two regimes in the values of b1, coinciding with a
above and below the critical values acðcÞ. These two regimes

also correspond to two different time scales involved in the

evolution of the system: it takes a larger number of steps to

reach consensus for a below the critical value. We also note

that at these values of the shape parameter, the mean of the

Weibull distribution is very close to proportional to its scale
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parameter, fixed constant equal to 1:25hki in our fits here,

corresponding well to the fact that hki remains constant.

APPENDIX C: CHARACTERIZING THE QUASI-
STATIONARY STATES

The quasi-stationary states appear to be attracting in the

observed dynamics, in qualitative agreement with the obser-

vations in Refs. 9 and 16 (which correspond to the c¼ 0

dynamics considered here). In these quasi-stationary states,

the fraction of edges that are discordant, l01, is well approxi-

mated by

l01ðtÞ ¼ c1ð1� n1ðtÞÞn1ðtÞ þ c2; (C1)

where n1 is the fraction of nodes holding opinion 1, and c1

and c2 are constants over time (depending on the parame-

ters a and c). The values of c1 and c2 can be estimated

directly from the simulation data, such as that in Fig. 4(a),

as plotted here in Fig. 9. In doing so, we observe a fitting

form for combining the dependence on a and c through the

single value a expð�0:75cÞ. Moreover, we observe a simple

linear relationship approximating the ratio of the two con-

stants: c2=c1 � � 1
2
a2:1 expð�0:75cÞ for a < acðcÞ, as demon-

strated in Fig. 10.

Carrying forward from these observations for the fitted

values of c1 and c2, we plot the fraction holding the minority

opinion at consensus, q, versus the rescaled quantity

a expð�0:75cÞ in Fig. 4(c). In particular, the Figure demonstrates

the good agreement with acðcÞ � ð0:72Þ expð0:75cÞ
. For com-

parison and completeness, in Fig. 11 we consider other pos-

sible scalings of a with c, demonstrating different levels of

agreement with the critical value and with the overall col-

lapse of the curve for a < acðcÞ.

APPENDIX D: APPROXIMATE MASTER EQUATIONS
(AMES)

In the evolving voter model reinforcing transitivity, we

introduce effects due to a node rewiring to its neighbor’s

neighbor. Specifically, after selecting a discordant edge, the

probability of rewiring (versus opinion switching) is a, and

then within the decision to rewire the probability of a node

rewiring to its neighbor’s neighbor is given by the parame-

ter c. That is, among all steps of the model, the probability

(that is, the rate) of rewiring to a neighbors’ neighbor is ac,

while the probability to rewire to a node at random is

að1� cÞ.
For the purposes of this Appendix, let n0 be the fraction

of nodes with opinion 0, n1 be the fraction of nodes with

opinion 1, lab be the number of a–b oriented links, and sabc

be the number of a-b-c oriented triples having opinions a, b
and c, with a; b; c 2 f0; 1g. Note that in this notation,

l01 ¼ l10, and l00 counts every unoriented 0-0 link twice. Let

Sk;mðtÞ be the fraction of nodes with opinion 0 that have k
neighbors, m of which hold opinion 1, at time t. Similarly,

let Ik;mðtÞ be the fraction of nodes with opinion 1 that have k
neighbors, m of which hold opinion 1. We follow Refs. 9

FIG. 6. Left panels: Temporal evolu-

tion of the clustering coefficient for

different a; c parameters. Right panels:

The value of the clustering coefficient

in the consensus state, comparing sim-

ulations (circles) and the theoretical

estimate in Eq. (A2).
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and 23 to develop differential equations describing the evo-

lution of the quantities Sk;mðtÞ and Ik;mðtÞ.
We note that Sk;mðtÞ and Ik;mðtÞ conserve the number of

nodes, with

X
k;m

Sk;mðtÞ þ
X
k;m

Ik;mðtÞ ¼ 1 (D1)

and conserve the number of edges, with

X
k;m

kSk;mðtÞ þ
X
k;m

kIk;mðtÞ ¼ hki: (D2)

If fraction � of the nodes are initially (at t¼ 0) made to

hold opinion 1 uniformly at random, then the initial condi-

tions for Sk;m and Ik;m are given by

Sk;mð0Þ ¼ ð1� �Þpkð0Þ
k
m

� �
�mð1� �Þk�m

and

Ik;mð0Þ ¼ �pkð0Þ
k
m

� �
�mð1� �Þk�m;

where pkð0Þ is the initial degree distribution. In order to

match our simulations, pkð0Þ is the Poisson distribution with

mean hki ¼ 4, and we set � ¼ 0:5.

To write the differential equation governing the

evolution of Sk;m, we will require an estimate for the

probability of center node in the Sk;m count having a

neighbor’s neighbor (distance-2 neighbor) with opinion 0.

We denote this probability by Pðnn0jSk;mÞ and estimate

it as
FIG. 8. Values of the Weibull shape parameter b1 obtained by fitting degree

distributions at consensus (see Eq. (1) and Fig. 7).

FIG. 7. Fits to the degree distributions in the final consensus state for different values of a and c. See also Eq. (1), Figs. 3, and 8.
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P nn0jSk;m

� �
¼ m� 1

k � 1
� l10

1

2
l11 þ l10

þ k � m

k � 1
�

1

2
l00

1

2
l00 þ l01

:

Similarly, in our equations we need this probability for the

center node in the Sk;mþ1 count, given as

P nn0jSk;mþ1

� �
¼ m

k � 1
� l10

1

2
l11 þ l10

þ k � m� 1

k � 1
�

1

2
l00

1

2
l00 þ l01

:

Using these quantities, our AME ODE governing the time

evolution of the Sk;m compartment is

FIG. 11. Alternative scalings for the

parameter a with c, representing vari-

ous levels of agreement with the place-

ment of the critical value (dashed line)

and with the collapse of the data below

the critical value.

FIG. 9. The fitted constants describing

the quasi-stationary states (see Eq.

(C1)). Points where the mean squared

error of the polynomial fit is greater

than 0.001 have been removed. Error

bars indicate the 3r-standard error in

the estimate of c1 and c2.

FIG. 10. (a) The ratio c2=c1 plotted

against the scalings used in Fig. 4(c),

where c1 and c2 are the parameter esti-

mates for the quadratic polynomial fit-

ted to the arches in Figs. 4(a) and 4(b)

(see Eq. (C1)). Points where the mean

squared error of the polynomial fit is

greater than 0.001 have been removed.

Error bars indicate the 3r-standard

error in the ratio c2=c1. (b) The ratio

replotted to demonstrate approximately

linear dependence with a2:1 expð�0:75cÞ

for a < acðcÞ.
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d

dt
Sk;m ¼ ac � 1þ P nn0jSk;m

� �	 

mSk;m þ P nn0jSk;mþ1

� �
mþ 1ð ÞSk;mþ1 þ mþ 1ð ÞSkþ1;mþ1

� �
þa 1� cð Þf� 2� uð ÞmSk;m þ 1� uð Þ mþ 1ð ÞSk;mþ1 þ mþ 1ð ÞSkþ1;mþ1g

þac � m

k
� l10

1

2
l11 þ l10

0
@

1
A � l01

N0

þ k�m

k
�

1

2
l00

1

2
l00 þ l01

0
BB@

1
CCA � l01

N0

2
664

3
775 � Sk;m

8>><
>>:

� m

k
�

1

2
l11

1

2
l11 þ l10

0
BB@

1
CCA � l10

N1

þ k�m

k
� l01

1

2
l00 þ l01

0
@

1
A � l10

N1

2
664

3
775 � Sk;m

þ m� 1

k� 1
�

1

2
l11

1

2
l11 þ l10

0
BB@

1
CCA � l10

N1

þ k�m

k� 1
� l01

1

2
l00 þ l01

0
@

1
A � l10

N1

2
664

3
775 � Sk�1;m�1

þ m

k� 1
� l10

1

2
l11 þ l10

0
@

1
A � l01

N0

þ k�m� 1

k� 1
�

1

2
l00

1

2
l00 þ l01

0
BB@

1
CCA � l01

N0

2
664

3
775 � Sk�1;m

9>>=
>>;
þ a 1� cð Þ l01

N
�2Sk;m þ Sk�1;m�1 þ Sk�1;mf g

þ 1� að Þf�mSk;m þ k�mð ÞIk;mgþ 1� að Þf�bs k�mð ÞSk;m þ bs k�mþ 1ð ÞSk;m�1 � csmSk;m þ cs mþ 1ð ÞSk;mþ1g;
(D3)

FIG. 12. Illustration enumerating some

of the steps involved in construction of

Eq. (D3). (a) The two objects of inter-

est are Sk;m and Ik;m (see Eq. (D4) for

Ik;m). Panels (b) and (c) show some of

the sample steps that lead to changes

in the Sk;m population. Panel (b) con-

siders the case when a node at distance

2 rewires to the center (passive rewir-

ing), while (c) considers the case

where the center actively rewires to a

node at distance 2.
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where

bs ¼
P

k;mmSk;mP
k;mSk;m

¼ s001

l00

;

cs ¼
P

k;m k � mð Þ2Ik;mP
k;m k � mð ÞIk;m

¼ s010

l01

þ 1:

That is, bs is the number of 1 neighbors of a 0-0 edge

and cs gives the number of 0 neighbors of the 1 at the end

of a 0-1 edge and the þ1 counts the 0 on the conditioning

edge.

The first line of the right hand side of Eq. (D3) accounts

for the case when the center actively rewires to a distance-2

neighbor. The second line accounts for the case when the cen-

ter actively rewires to other nodes in the network. The third to

sixth lines account for the cases when the center is passively

rewired by its distance-2 neighbors and (in the latter part of

the sixth line) by other nodes. Finally, the last line represents

the voter step—i.e., no rewiring happens and the nodes simply

update their opinions. Fig. 12 illustrates some of these rewir-

ing steps.

We similarly obtain the following differential equation

governing the evolution of the Ik;m compartment:

d

dt
Ik;m ¼ ac � 1þ P nn1jIk;m

� �	 

k � mð ÞIk;m þ P nn1jIk;m�1

� �
k � mþ 1ð ÞIk;m�1 þ k � mþ 1ð ÞIkþ1;m

n o

þa 1� cð Þf� 1þ uð Þ k � mð ÞIk;m þ u k � mþ 1ð ÞIk;m�1 þ k � mþ 1ð ÞIkþ1;mg

þac � m

k
� l10

1

2
l11 þ l10

0
@

1
A � l01

N0

þ k � m

k
�

1

2
l00

1

2
l00 þ l01

0
BB@

1
CCA � l01

N0

2
664

3
775 � Ik;m

8>><
>>:

� m

k
�

1

2
l11

1

2
l11 þ l10

0
BB@

1
CCA � l10

N1

þ k � m

k
� l01

1

2
l00 þ l01

0
@

1
A � l10

N1

2
664

3
775 � Ik;m

þ m� 1

k � 1
�

1

2
l11

1

2
l11 þ l10

0
BB@

1
CCA � l10

N1

þ k � m

k � 1
� l01

1

2
l00 þ l01

0
@

1
A � l10

N1

2
664

3
775 � Ik�1;m�1

þ m

k � 1
� l10

1

2
l11 þ l10

0
@

1
A � l01

N0

þ k � m� 1

k � 1
�

1

2
l00

1

2
l00 þ l01

0
BB@

1
CCA � l01

N0

2
664

3
775 � Ik�1;m

9>>=
>>;

þa 1� cð Þ l01

N
�2Ik;m þ Ik�1;m�1 þ Ik�1;mf g þ 1� að Þ � k � mð ÞIk;m þ mSk;m

� �

þ 1� að Þf�bi k � mð ÞIk;m þ bi k � mþ 1ð ÞIk;m�1 � cimIk;m þ ci mþ 1ð ÞIk;mþ1g; (D4)

where

P nn1jIk;m

� �
¼ m

k � 1
�

1

2
l11

1

2
l11 þ l10

þ k � m� 1

k � 1
� l01

1

2
l00 þ l01

P nn1jIk;m�1

� �
¼ m� 1

k � 1
�

1

2
l11

1

2
l11 þ l10

þ k � m

k � 1
� l01

1

2
l00 þ l01

:

There are thus 2ðkmax þ 1Þ2 equations governing the evolu-

tion of Sk;mðtÞ and Ik;mðtÞ, where kmax is the maximum

degree allowed in the system. That is, all populations

above this maximum degree are fixed at zero; we here set

kmax ¼ 20. We numerically solve these equations using the

ode45 solver in MATLAB
VR

, up to times beyond which the

observed evolution is significantly slower. From the quasi-

steady populations obtained by these numerical solutions,

we plot the fraction of discordant edges versus the fraction

of nodes with opinion 1 in Fig. 13 for a ¼ 0:4 and different

c values, comparing with simulation results. We note in

particular, that the discrepancy between the AME predic-

tions and the observed simulation behavior increases

slightly as c increases.
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