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Abstract

The RNA binding protein Human antigen R (HuR) interacts with specific AU-rich domains in 

target mRNAs and is highly expressed in many cell types, including cardiomyocytes. However, the 

role of HuR in cardiac physiology is largely unknown. Our results show that HuR undergoes 

cytoplasmic translocation, indicative of its activation, in hypertrophic cardiac myocytes. 

Specifically, HuR cytoplasmic translocation is significantly increased in NRVMs (neonatal rat 

ventricular myocytes) following treatment with phenylephrine or angiotensin II, agonists of two 

independent Gαq-coupled GPCRs known to induce hypertrophy. This Gq-mediated HuR activation 

is dependent on p38 MAP kinase, but not canonical Gq-PKC signaling. Furthermore, we show that 

HuR activation is necessary for Gq-mediated hypertrophic growth of NRVMs as siRNA-mediated 

knockdown of HuR inhibits hypertrophy as measured by cell size and expression of ANF (atrial 

natriuretic factor). Additionally, HuR overexpression is sufficient to induce hypertrophic cell 

growth. To decipher the downstream mechanisms by which HuR translocation promotes 

cardiomyocyte hypertrophy, we assessed the role of HuR in the transcriptional activity of NFAT 

(nuclear factor of activated T cells), the activation of which is a hallmark of cardiac hypertrophy. 

Using an NFAT-luciferase reporter assay, we show an acute inhibition of NFAT transcriptional 

activity following pharmacological inhibition of HuR. In conclusion, our results identify HuR as a 

novel mediator of cardiac hypertrophy downstream of the Gq-p38 MAPK pathway, and suggest 

modulation of NFAT activity as a potential mechanism.
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1. Introduction

Human antigen R (HuR) is a widely expressed RNA binding protein that interacts with 

specific AU-rich domains in target mRNAs and exerts post-transcriptional regulation of 

target mRNA by a number of means including RNA stability, translation, splicing, 

polyadenylation, or microRNA targeting.[1-4] While relatively little is known about the role 

of HuR in the myocardium, RNA binding proteins such as HuR are becoming recognized as 

potentially central regulators of cardiac physiology and pathology.[5,6] Recent work by 

Krishnamurthy et al suggests that HuR is likely to play a central role in the cardiac response 

to stress.[7,8] They showed that HuR expression increased following ischemic injury and 

knockdown with shRNA delivered via intra-myocardial injection significantly reduced post- 

infarct remodeling and was accompanied by a decrease in transforming growth factor-β 
(TGF-β) expression. However, it is unclear from this work whether HuR plays a direct role 

in cardiac myocytes. Furthermore, this prior work focused on the role of HuR on fibrosis and 

ventricular remodeling following acute ischemic injury, but its role in the development of 

cardiac hypertrophy is completely unknown.

The initial development of hypertrophy is a beneficial and compensatory response to 

maintain cardiac output in the face of hemodynamic stress. However, cardiac hypertrophy in 

response to pathological etiologies such as hypertension or valvular dysfunction is a known 

driver of heart failure, and some reports have also questioned its necessity as a compensatory 

development and suggest a benefit to suppressing the initial development of hypertrophy.[9] 

Determination of the functional role of HuR in pathological cardiac hypertrophy would 

represent a significant advancement of our current knowledge of hypertrophic signaling 

pathways. Thus, the goal of this work is to determine the role that HuR activation in 

cardiomyocytes plays in hypertrophic signaling. Herein, we demonstrate the activation of 

HuR in hypertrophic cardiac myocytes via a Gαq-p38 MAPK-dependent signaling pathway. 

Importantly, this activation of HuR appears to be necessary for hypertrophic cell growth in 

NRVMs (neonatal rat ventricular myocytes), as siRNA-mediated knockdown or 

pharmacological inhibition of HuR prevents hypertrophic cell growth and activation of the 

pro-hypertrophic transcription factor NFAT (nuclear factor of activated T cells). In addition, 

HuR overexpression alone is sufficient to induce NRVM hypertrophy. Thus, these results 

demonstrate for the first time that HuR is necessary and sufficient to induce hypertrophic 

signaling in cardiac myocytes.

2. Methods

2.1 Neonatal Rat Ventricular Myocyte Isolation and Cell Culture

NRVMs were isolated using collagenase digestion and adhesion differential from fibroblasts 

as described.[10] Briefly, Sprague Dawley neonatal rats (1-2 days old) (Taconic) were 

decapitated and the hearts were isolated. Following removal of the atria, the ventricles were 
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cut into small pieces and digested first in .05% trypsin/EDTA (Corning) overnight, then in 

collagenase II (Gibco) for 30 minutes. Cells were then spun at 100 × g followed by a 40 

minute pre-plating process on non-treated plates to allow the fibroblasts to adhere. The non-

adherent NRVMs were then transferred to cell culture-treated dishes in MEM alpha media 

(Gibco) with 10% FBS.

The study was performed under protocol #13-08-29-01, which has been approved by the 

University of Cincinnati Institutional Animal Care and Use Committee, and the animals 

received humane care in compliance with the National Research Council's criteria as 

outlined in the Guide for the Care and Use of Laboratory Animals prepared by the National 

Institutes of Health.

2.2 HuR siRNA-mediated gene silencing and overexpression

To achieve siRNA-mediated knockdown of HuR expression, NRVMs were seeded at ∼75% 

confluency and transfected with HuR or non-targeting control siRNA (80 nM) (Santa Cruz 

Biotechnology) 24 hours after plating using Lipofectamine 3000 (ThermoFisher Scientific) 

as per manufacturer's instructions. Cells were grown for 48 hours post-transfection prior to 

treatment with phenylephrine (PE). To achieve HuR overexpression, the full-length HuR 

coding region was cloned from mouse cDNA via PCR and inserted into a modified pGL4.1 

expression vector driven by a constitutively active CMV promoter. NRVMs were seeded at 

∼75% confluency and transfected with either HuR overexpression vector or equal amounts 

of a control vector (coding for overexpression of luciferase). Cells were grown for 24 hours 

post-transfection prior to treatment with PE. HuR knockdown (>80%) and overexpression 

(∼5-fold, Fig. S1) was confirmed via Western blotting.

2.3 RNA Isolation and qRT-PCR

RNA was isolated using a Macherey-Nagel NucleoSpin RNA kit and cDNA was synthesized 

using a BioScript All-in-One cDNA Synthesis SuperMix (Biotool). Samples were run on 

Stratagene Mx3005P (Agilent Technologies) using SYBR Green qPCR Master Mix 

(Biotool) to assess levels of GAPDH, ANF (atrial natriuretic factor), and RCAN1 (Regulator 

of Calcineurin 1). Results were analyzed using the ΔΔCt method.[11] Primers are as listed: 

GAPDH, F, 5′-ACCACAGTCCATGCCATCAC-3′, R, 5′-

TCCACCACCCTGTTGCTGTA-3′; ANF, F, 5′-AGGAGAAGATGCCGGTAG-3′, R, 5′-

GCTTTTCAAGAGGGCAGA-3′; RCAN, F, 5′-GGGCCAAATTTGAATCCCTCTTC-3′, 

R, 5′-GGAGCCAGGTGTGAACTTCC-3′.

2.4 Protein Isolation and Western Blotting

Total protein was isolated from in vitro cell cultures using a solution of 10 mM HEPES, (pH 

9), 1.5 mM MgCl2, 10 mM KCl, 0.5 mM DTT, 0.2 mM sodium-orthovanadate, and a 

protease inhibitor mixture tablet (Complete mini; Roche Applied Science). 25 ug of protein 

extract per lane was separated on a 10% polyacrylamide gel and transferred to a 

nitrocellulose membrane. Blocking was performed for 1 hour at room temperature using 5% 

dry milk in 0.1% Tween 20, tris-buffered saline (T-TBS). Primary antibodies for HuR or 

GAPDH (Santa Cruz Biotechnology) were incubated overnight at 4 °C, and secondary 

antibodies were incubated for 1–2 h at room temperature in T-TBS.
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2.5 Immunohistochemistry, Wheat Germ Agglutinin Staining, and Microscopy

NRVMs were grown on coverslips (pre coated with 0.2% gelatin) in 12-well plates, and 

treated with PE (10 μM), angiotensin II (AngII, 100 nM), PMA (2 μM), SB203580 (10 μM), 

or chelerythrine (10 μM) for the indicated amount of time. Following treatment, cells were 

fixed with 4% paraformaldehyde for 15 minutes, followed by permeabilization with 100% 

methanol for 15 minutes, dehydration with 70% ethanol for 15 minutes and blocking with 

6% bovine serum albumin (BSA) for 1 hour at RT. Cells were incubated in primary antibody 

for HuR (1:500) for 1 hour at RT followed by secondary antibody for Alexa Fluor 488 

(1:2000) (ThermoFisher) for 1 hour at RT. All antibodies were made up in 0.6% BSA in 

PBS. For wheat germ agglutinin (WGA) staining, a Texas Red-X conjugate was used per 

manufacturer's instructions (ThermoFisher). All slides were imaged with the BioTek 

Cytation 3 image reader and quantitative assessment of HuR translocation was measured as 

the ratio of cytoplasmic to nuclear fluorescent intensity (adjusted for mean background 

fluorescence and integrated area) using ImageJ

2.6 NFAT-Luciferase Reporter Assays

NRVMs were transfected with 75 ng per well (in a 96-well plate) of NFAT-luciferase 

reporter plasmid acquired from AddGene (51941).[12] 48 hours after transfection, cells were 

treated with 10uM PE for 24 hours to induce NFAT reporter activity. To quantify luciferase 

reporter expression, cells were rinsed with sterile PBS and then lysed with 50 μL Cell Lysis 

Buffer (Promega) for 5 min at room temperature, followed by addition of 100 μL luciferase 

assay reagent (Promega); luminescence was read immediately on the BioTek Cytation 3 

image reader. HuR inhibitors were previously identified by Wu et. al., and used here as 

described.[13]

2.7 Statistical Analysis

All results represent an N of at least 3 per group and are reported as the mean ± SEM. 

Results were analyzed with unpaired Student's t-tests and one-way ANOVA as appropriate. 

Statistical significance between groups was considered at P ≤ 0.05.

3. Results

3.1 HuR is activated in hypertrophic neonatal rat ventricular myocytes (NRVMs)

HuR activation is regulated by phosphorylation, and activation is commonly marked by 

translocation from the nucleus to cytoplasm.[2] Our results show a significant increase in 

HuR translocation to the cytoplasm in hypertrophic myocytes (Fig. 1).

First, we demonstrate an increase in total cell area indicative of hypertrophic cell growth 

following 24 hours of treatment with 10 μM phenylephrine using wheat germ agglutinin 

(WGA) staining (1.29 ± .08-fold increase in cell area in 24 hr PE-treated cells compared to 

vehicle treated control cells; P<0.01) (Fig. 1A; top panel and 1B). Next, we show an increase 

in HuR translocation in hypertrophic NRVMs. HuR nuclear-cytoplasmic translocation was 

quantified following immunostaining by measuring the ratio of cytoplasmic to nuclear 

fluorescent intensity, and is significantly increased in hypertrophic cells (0.71 ± 0.04 in 
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vehicle control vs. 1.82 ± 0.08 in 24 hr PE-treated cells; P<0.001) (Fig. 1A; lower panel and 

1C).

3.2 HuR knockdown or pharmacological inhibition reduces cardiomyocyte hypertrophic 
growth

To determine if HuR is necessary for PE-mediated NRVM hypertrophy, expression of HuR 

protein was knocked down via transient transfection with HuR siRNA (Fig. 2A; top panel). 

Results show that while transfection of non-targeting control siRNA had no effect on 

hypertrophic cell growth, HuR knockdown significantly reduced the PE-mediated increase 

in cell area as determined via WGA staining (1.23 ± 0.07-fold increase in cell size in non-

targeting control siRNA + PE treated cells vs. 0.87 ± 0.05-fold in HuR siRNA + PE-treated 

cells; P<0.01) (Fig. 2A; bottom panel and 2B). Furthermore, we show that the PE-induced 

increase in expression of ANF, a common gene marker of cardiac myocyte hypertrophic 

growth, is completely inhibited by HuR knockdown (1.95 ± 0.3 fold-induction in control 

siRNA + PE treated cells vs. 0.80 ± 0.35 fold-induction in HuR siRNA + PE-treated cells; 

P<0.05) (Fig. 2C).

We also show that a similar reduction in PE-induced hypertrophic growth can be achieved 

via pharmacological inhibition of HuR using newly developed small-molecule inhibitors of 

HuR that act through disruption of HuR binding to target mRNA.[13] Simultaneous 

treatment with the HuR inhibitors CMLD1 and CMLD2 (both at their respective IC50 

values) significantly inhibits the increase in PE-induced cell size (1.39 ± 0.07-fold increase 

in cell size in vehicle + PE treated cells vs. 1.02 ± 0.03-fold in CMLD1/2 + PE-treated cells; 

P<0.01) (Fig. 3A; bottom panel and 3B). Similar to siRNA-mediated knockdown of HuR, 

we also show that pharmacological inhibition of HuR reduces PE-induced ANF expression 

(5.4 ± 1.4 fold-induction in vehicle + PE treated cells vs. 1.3 ± 0.1 fold-induction in 

CMLD1/2 + PE-treated cells; P<0.05) (Fig. 3C). These results indicate that HuR is 

necessary for PE-induced NRVM hypertrophy.

3.3 HuR translocation downstream of Gαq-coupled receptors is dependent on p38 MAPK, 
but not canonical Gq-PKC signaling

PE induces myocyte hypertrophy downstream of Gαq-coupled α1-adrenergic receptors (α1-

ARs), and the heterotrimeric Gq proteins have long been known to be necessary and 

sufficient for the development of pathological cardiac hypertrophy.[14] Thus, to determine if 

the signaling pathways by which HuR is activated in cardiac myocytes are downstream of 

Gαq, we treated NRVMs with agonists of two independent Gαq-coupled receptors: PE (an 

α1-AR agonist) and AngII (an angiotensin I receptor, AT1, agonist). Indeed, results show a 

significant cytoplasmic translocation of HuR within 15 minutes after treatment with either 

PE or AngII (0.71 ± 0.04 in vehicle control vs. 1.05 ± 0.06 in 15 hr PE-treated cells, 

P<0.001 vs. Ctrl and 1.06 ± 0.04 in 15 hr AngII-treated cells, P<0.001 vs. Ctrl) (Fig. 4).

It has previously been shown that HuR is activated downstream of p38 MAPK and PKC in 

other tissue types, and both p38 MAPK and PKC are known to signal downstream of Gq 

proteins and play a role in pathological hypertrophy.[15,16] Thus, we employed 

pharmacological inhibition of p38 MAPK and PKC (via SB203580 and chelerythrine, 
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respectively) to determine the role of these kinases in PE/AngII-mediated translocation of 

HuR prior to myocyte hypertrophy. Our results demonstrate that HuR translocation 

downstream of both PE and AngII is dependent on p38 MAPK, but not PKC (Fig. 4). 

SB203580-mediated inhibition of p38 MAPK significantly reduced HuR translocation 

following treatment with either PE (0.68 ± 0.08, P<0.001) or AngII (0.76 ± 0.07, P<0.01) 

compared to PE alone (1.05 ± 0.06). Given that treatment with chelerythrine had no effect 

on HuR translocation, proper inhibition of PKC was confirmed by showing a reduction of 

PKC substrate phosphorylation (Fig. S2). A lack of HuR translocation following application 

of a direct activator of PKC (PMA, 2 μM) also confirms that PKC activation alone is 

insufficient to induce HuR translocation in cardiac myocytes (Fig. 4B). These results 

identify p38 MAPK as an upstream signaling mediator of HuR translocation in hypertrophic 

cardiac myocytes.

3.4 HuR mediates the activity of the pro-hypertrophic transcription factor NFAT

To begin to decipher the downstream mechanisms by which HuR translocation promotes 

cardiomyocyte hypertrophy, we assessed the effect of HuR knockdown and inhibition on the 

transcriptional activity of NFAT, the activation of which is a hallmark of cardiac 

hypertrophy.[12] First, we show that the PE-induced expression of the NFAT target gene 

RCAN1, a commonly used downstream gene marker of NFAT activation, is inhibited 

following siRNA-mediated knockdown of HuR (4.43 ± 0.77 fold-induction in PE treated 

cells vs. 1.04 ± 0.19 fold-induction in HuR siRNA + PE-treated cells; P<0.05) (Fig. 5A).

Using a luciferase reporter assay to more directly probe NFAT transcriptional activity, we 

also show a significant inhibition of NFAT reporter activity after a 24-hour exposure to PE 

using pharmacological inhibition of HuR (Fig. 5B). Treatment with the HuR inhibitors 

CMLD1 or CMLD2, (each at their determined IC50 values for HuR inhibition of 4.0 μm, 2.4 

μm, respectively [13]) has no significant effect on basal NFAT activity. However, when 

administered simultaneously with PE, CMLD1 and CMLD2 completely inhibited the 

increase in PE-mediated NFAT reporter activity (1.19 ± 0.30-fold vs. vehicle control in PE + 

CMLD1 treated and 1.30 ± 0.14 in PE + CMLD2 treated compared to 5.02 ± 0.98 in cells 

treated with PE alone, both are P<0.001 vs. PE alone) (Fig. 5B). Taken together with the 

reduction in NFAT-dependent RCAN expression, these results demonstrate that HuR 

inhibition prevents transcriptional activation of NFAT.

3.5 HuR overexpression is sufficient to drive hypertrophic cell growth

Finally, our results demonstrate that overexpression of HuR resulted in a significant increase 

in NRVM cell size (1.31 ± 0.03-fold larger than cells treated with a control plasmid, 

P<0.001) (Fig. 6A and B). In addition, overexpression of HuR was found to induce a 2.2-

fold increase in NFAT reporter activity compared to control plasmid (P<0.001) (Fig. 6C). 

This suggests that not only is HuR necessary for the development of hypertrophic signaling 

in cardiac myocytes, but also the overexpression of HuR is sufficient to induce hypertrophic 

signaling.
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4. Discussion

This work is the first to show that HuR plays a direct role in cardiomyocyte hypertrophy. 

Not only does HuR knockdown or pharmacological inhibition prevent myocyte hypertrophy 

in an established model of phenylephrine-induced NRVM hypertrophy, but HuR 

overexpression is alone sufficient to induce hypertrophic signaling. To begin to elucidate the 

mechanisms by which HuR promotes hypertrophy, we also show that cytoplasmic 

translocation of HuR downstream of two separate Gαq-coupled GPCRs (AT1 and α1-AR) is 

dependent on p38 MAPK but not PKC. In addition, the downstream mechanisms of HuR in 

cardiomyocyte hypertrophy appear to be mediated through transcriptional activation of the 

pro-hypertrophic transcription factor NFAT.

Activation of heterotrimeric Gαq (Gq) proteins downstream of Gq-coupled GPCRs such as 

angiotensin receptors (AT1) or α1-ARs is a known mediator of pathological hypertrophy.

[14,17] Furthermore, cardiac specific overexpression of Gq is sufficient to induce cardiac 

hypertrophy.[18] Activation of the Gq-protein is observed downstream of nearly every 

stimulus of pathological hypertrophy, but the specific mechanisms by which its activation 

results in cardiac hypertrophy have yet to be fully elucidated. Thus, identification of HuR as 

a key signaling node downstream of Gq activation in the hypertrophic myocyte would 

represent a significant enhancement in our understanding of Gq-mediated hypertrophy.

Prior work demonstrates that both p38 MAPK and PKC are known to signal downstream of 

Gq proteins and play a role in pathological cardiac hypertrophy.[15,16] HuR has also been 

shown to be targeted by both PKC (S158, S221, and S318) and p38 MAPK (T118), with 

phosphorylation at each of these sites shown to induce HuR translocation and RNA binding 

activity in other cell types.[19-23] However, these results are the first to show a functional 

link between Gq signaling pathways and HuR activation via p38 MAPK in cardiac 

myocytes. Surprisingly, our data suggests that PKC activity does not mediate acute HuR 

translocation in cardiac myocytes. This was an unexpected result given prior work showing 

that PKC modulates HuR translocation downstream of AngII in human mesangial cells.[19] 

Conversely, our results suggest that non-selective inhibition of all PKC isoforms using 

chelerythrine shows a trend to enhance HuR translocation in myocytes. While our results 

suggests that PKC does not mediate HuR translocation in cardiac myocytes, it is possible 

that PKC still plays a role in HuR binding to target mRNA. To this end, Schulz et al showed 

that the effect of PKC phosphorylation on HuR function is dependent on the specific site of 

phosphorylation.[24] Specifically, they used phosphor-mimetic mutants to show that only 

PKC phosphorylation of Ser221 mediates HuR nucleo-cytoplasmic shuttling, while 

phosphorylation at either Ser158 or Ser318 mediates RNA binding specificity.[24] Future 

work will be needed to identify the role that specific HuR phosphorylation sites play in 

myocyte hypertrophy.

Transcriptional activation of NFAT is recognized as a hallmark event in pathological cardiac 

hypertrophy.[12] Our data shows that HuR knockdown using siRNA inhibits expression of 

the NFAT-dependent gene RCAN, while pharmacological inhibition of HuR blocks 

expression of an NFAT-luciferase reporter following phenylephrine. This acute inhibition of 

NFAT suggests a possible mechanism for reduced hypertrophic signaling following HuR 
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knockdown or inhibition, though a potential direct link between HuR and NFAT remains to 

be elucidated. Interestingly, HuR overexpression alone is also sufficient to induce NFAT 

transcriptional activity.

One significant aspect of this work is the application of novel pharmacological inhibitors of 

HuR recently described by Wu et al (Figures 3 and 5).[13] This is the first application of 

pharmacological inhibition of HuR in cardiac myocytes, and given the high recent interest in 

developing a pharmacological inhibitor of HuR for therapeutic use [13,25-27], represents a 

potential means for long-term translation of these basic science findings. Importantly, HuR 

knockdown or inhibition in basal/resting NRVMs appears to have very little effect. We 

confirmed this by performing RNA-sequencing on NRVMs following HuR-knockdown and 

found that only 24 total transcripts were changed between control and siRNA-treated cells 

(Supplemental Figure S3). This is significant in that it suggests that HuR plays only a very 

minor role in healthy, non-stressed cardiac myocytes and that HuR inhibition in these cells 

has little effect on cell function and/or gene expression. Thus, we believe that this work 

introduces HuR as a novel myocyte-centric target to manage hypertrophic growth of cardiac 

myocytes and these findings should be followed up using in vivo models.

5. Conclusions

In conclusion, this work identifies HuR activation downstream of p38 MAPK as a novel 

mediator of Gq-dependent cardiomyocyte hypertrophy, and suggests modulation of NFAT 

transcriptional activity as a potential mechanism for HuR-mediated hypertrophy. These 

results are the first to demonstrate that HuR is necessary and sufficient to induce 

hypertrophic signaling in cardiac myocytes.
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Highlights

• Activation (cytoplasmic translocation) of the RNA binding protein HuR 

is necessary and sufficient for the development of hypertrophy in 

cardiac myocytes.

• HuR translocation downstream of phenylephrine and angiotensin II, 

two pharmacological agonists of hypertrophy, is dependent on p38 

MAPK.

• HuR modulation of NFAT transcriptional activation is suggested as a 

likely mechanism for HuR-dependent hypertrophic signaling.

• This work is the first to demonstrate a role for the RNA binding protein 

HuR in cardiac hypertrophy.
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Figure 1. 
HuR nucleo-cytoplasmic shuttling correlates with an increase in cell size/hypertrophic 

growth in neonatal rat ventricular myocytes (NRVMs). Following a 24-hour exposure to PE 

(10 μM), NRVMs show a significant increase in cell area as indicated by WGA staining (A, 

top panel) and cytoplasmic translocation of HuR as determined by HuR IHC (A, bottom 

panel). (B) Cell surface area was quantitatively determined using NIH Image J, and is 

expressed as fold-increase in area compared to vehicle control treated cells. (C) HuR 

translocation was quantified as the ratio of cytoplasmic to nuclear fluorescent intensity. N ≥ 

4 for each group (each N represents the average measurement of 10 cells per well). *P ≤ 

0.05 vs. Veh control.
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Figure 2. 
Knockdown of HuR expression inhibits hypertrophic cell growth. (A) NRVMs were 

transfected with non-targeting control or HuR siRNA 48 hours prior to treatment with PE for 

24 hours to induce hypertrophic cell growth and stained with WGA to determine cell size. 

(B) Cell surface area was quantitatively determined using NIH Image J. N ≥ 3 for each 

group (each N represents the average measurement of 10 cells per well). *P ≤ 0.05. (C) In 

addition, RNA was isolated from a subset of cells after 24 hours of PE treatment and 

expression level of ANF, a hypertrophic marker gene, was assessed by qRT-PCR. N ≥ 6. *P 
≤ 0.05.
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Figure 3. Pharmacological inhibition of HuR reduces hypertrophic cell growth and ANF 
expression
(A) NRVMs were treated simultaneously with PE and two novel small molecule inhibitors 

of HuR described by Wu et al.[13]. Hypertrophic growth was assessed 24 hours later via 

WGA staining. (B) Cell surface area was quantitatively determined using NIH Image J. N=6 

for each group (each N represents the average measurement of 10 cells per well). *P ≤ 0.05. 

(C) Total RNA was also isolated from a subset of cells and expression level of ANF was 

assessed by qRT-PCR. *P ≤ 0.05.
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Figure 4. Nucleo-cytoplasmic shuttling of HuR downstream of AngII and PE is dependent on p38 
MAPK, but not PKC
(A) NRVMs treated with AngII (100 nM) or PE (10 μM) show significant cytoplasmic 

translocation of HuR vs. control (vehicle) cells as measured by IHC 15 minutes after 

treatment. Treatment with the p38 inhibitor SB203580 shows that this translocation is 

dependent on p38 MAPK, but treatment with the PKC inhibitor chelerythrine does not affect 

HuR translocation in myocytes. (B) HuR translocation was quantified as the ratio of 

cytoplasmic to nuclear cell fluorescent intensity. N ≥ 5 for each group (each N represents the 

average measurement of 10 cells per well). *P ≤ 0.05.
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Figure 5. HuR knockdown or inhibition inhibits NFAT transcriptional activation and 
downstream gene expression
(A) Expression level of the NFAT-dependent gene RCAN was assessed via qRT-PCR in 

control or PE-treated NRVMs with and without siRNA-mediated HuR knockdown. N ≥ 3. 

*P ≤ 0.05. (B) NFAT transcriptional activation was directly assessed via transient 

transfection of NRVMs with an NFAT-luciferase reporter. Consistent with other assessed 

timepoints of NRVM hypertrophy, luciferase activity was measured 24 hours following 

treatment with PE and HuR pharmacological inhibition (via CMLD1 and CMLD2). N ≥ 8. 

*P ≤ 0.05.
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Figure 6. HuR overexpression is sufficient to induce hypertrophic cell growth and NFAT 
transcriptional activation
(A) Overexpression of HuR induces hypertrophic cell growth, as observed by an increase in 

total cell area, compared to treatment with a control plasmid. N ≥ 3. *P ≤ 0.05. (B) 

Overexpression of HUR is sufficient to induce NFAT-luciferase reporter expression 

compared to transfection with a control plasmid. N = 8. *P ≤ 0.05.

Slone et al. Page 19

Cell Signal. Author manuscript; available in PMC 2017 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	1. Introduction
	2. Methods
	2.1 Neonatal Rat Ventricular Myocyte Isolation and Cell Culture
	2.2 HuR siRNA-mediated gene silencing and overexpression
	2.3 RNA Isolation and qRT-PCR
	2.4 Protein Isolation and Western Blotting
	2.5 Immunohistochemistry, Wheat Germ Agglutinin Staining, and Microscopy
	2.6 NFAT-Luciferase Reporter Assays
	2.7 Statistical Analysis

	3. Results
	3.1 HuR is activated in hypertrophic neonatal rat ventricular myocytes (NRVMs)
	3.2 HuR knockdown or pharmacological inhibition reduces cardiomyocyte hypertrophic growth
	3.3 HuR translocation downstream of Gαq-coupled receptors is dependent on p38 MAPK, but not canonical Gq-PKC signaling
	3.4 HuR mediates the activity of the pro-hypertrophic transcription factor NFAT
	3.5 HuR overexpression is sufficient to drive hypertrophic cell growth

	4. Discussion
	5. Conclusions
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6

