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Summary

The Collaborative Cross (CC) is a panel of reproducible recombinant inbred mouse strains with 

high levels of standing genetic variation, thereby affording unprecedented opportunity to perform 

experiments in a small animal model containing controlled genetic diversity while allowing for 

genetic replicates. Here, we advance the utility of this unique mouse resource for immunology 

research, as it allows for both examination and genetic dissection of mechanisms behind adaptive 

immune states in mice with distinct and defined genetic makeups. This approach is founded on 

quantitative trait locus mapping: identifying genetically variant genome regions associated with 

phenotypic variance in traits-of-interest. Furthermore, the CC can be utilized for mouse model 

development; distinct strains have unique immunophenotypes and immune properties, making 

them suitable for research on particular diseases and infections. Here, we describe variation in 
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cellular immune phenotypes across F1 crosses of CC strains, and reveal quantitative trait loci 

responsible for several immune phenotypes.

eTOC Blurb

Graham et al. advance the use of the Collaborative Cross (CC), a panel of reproducible 

recombinant inbred mouse strains, for immunology research. They demonstrate that the CC better 

models the phenotypic diversity in human T-cell immunity, and use quantitative trait locus 

mapping to reveal candidate genes linked to T-cell phenotypes.
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Introduction

In seeking to understand the complex interactions and pathways of the human immune 

response, researchers have long turned to inbred mouse models. 99% of mouse genes are 

shared with humans (Boguski, 2002), and inbred laboratory mouse strains are well 

characterized, reproducible, and allow for the use of unique immunological tools such as 

transgenic or knockout mice. However, given the diverse breadth of clinical outcomes and 

immune responses observed in the human population, any single traditional inbred mouse 

model cannot fully capture the range of immune phenotypes expressed across genetically 

diverse humans. Indeed, while estimates vary, there is a clear contribution of genetic 

variation in driving diversity throughout human immune responses (Salvetti et al., 2000), 

and this diversity cannot be fully identified through study of a single gene knockout (KO). In 

order to fully investigate these complex networks, additional studies in a model that better 

captures the genetic diversity of humans is critical.

Defining the genetic basis of immune responses and regulation requires approaches and 

model systems that move beyond classical genetic screens, such as targeted KO mouse 
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strains on a C57BL/6 (B6) background, or random N-ethyl-N-nitrosourea (ENU) 

mutagenesis studies, which both typically study one gene at a time (Gondo et al., 2010; 

Mountz et al., 2001; Yates et al., 2009). The Collaborative Cross (CC) mouse genetic 

reference panel presents a resource which specifically models complex genetic interactions, 

and therefore expands upon classic approaches within traditional (e.g. B6) mouse models. 

The CC strains are a recombinant inbred (RI) panel, and are derived from eight founder 

strains: five classical inbred strains (C57BL/6J, A/J, 129S1/SvImJ, NOD/ShiLtJ, and NZO/

SH1LtJ) and three wild-derived strains (CAST/EiJ, PWK/PhJ, and WSB/EiJ). These eight 

founder strains represent the three major Mus musculus subspecies (domesticus, musculus, 
and castaneus), and capture nearly 90% of common genetic variation in laboratory mouse 

strains, with this variation uniformly distributed across the genome (Churchill et al., 2004; 

Threadgill et al., 2011),(Threadgill and Churchill, 2012). CC-RI strains were created by 

three generations of funnel breeding to incorporate genomic contributions of all eight 

founder strains within each CC strain, followed by at least 20 generations of inbreeding 

(Collaborative Cross, 2012). The CC thereby provides a reproducible experimental model of 

many aspects of genetic variation within the human genome. In these studies, F1 progeny 

from crosses between CC-RI strains (CC-RIX, recombinant intercross) were used (Graham 

et al., 2015). These RIX lines were heterozygous for the H-2bb major histocompatibility 

complex (MHC) haplotype, thereby allowing for use of reagents such as tetramers to 

examine T cell responses in these mice, which is critical to enable study of T cell-mediated 

immunity.

The CC provides the ability to assess the breadth of phenotypic differences under genetic 

control, and can also provide new mouse models for human diseases, as screens have 

identified variations in immune phenotypes and clinical disease symptoms for infections 

such as influenza (Ferris et al., 2013), Ebola (Rasmussen et al., 2014), West Nile virus 

(Graham et al., 2016; Graham et al., 2015), SARS (Gralinski et al., 2015), as well as 

spontaneous colitis (Rogala et al., 2014), cancer-related phenotypes (Reilly, 2016), and 

behavioral traits (Chesler, 2014). In our studies as part of the Collaborative Cross Systems 

Immunogenetics Group, we screened over 110 CC-RIX for a variety of immune response 

parameters at steady-state in adult male mice of 8–10 weeks of age. Importantly, within the 

screen we found a wide variation in each immune phenotype measured, and here, we fully 

describe a comprehensive screen of CC-RIX for cell subsets such as CD3+, CD4+, CD8+, 

and regulatory T cells (Treg), as well as activation markers and inflammatory cytokines. 

Included with these data are the identity of quantitative trait loci (QTL), or polymorphic host 

genome regions, and potential candidate genes within these regions which impact immune 

phenotypes. This initial proof-of-concept genetic mapping as well as our extensive dataset 

pave the way for future use of CC mice for genetic mapping of immune traits as well as 

targeted CC mouse strain selection for future immunology and immunogenetics studies. 

Similar to the expansion of immune phenotypes displayed in the so-called “pet store mice” 

or “dirty mice” as compared to mice maintained under specific pathogen-free (SPF) 

conditions, which has allowed for an improved mouse model that better accounts for the 

microbial colonization diversity in humans (Masopust et al., 2017), we demonstrate here that 

use of the Collaborative Cross can address another critical limitation of mouse research by 
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expanding on the genetic diversity and resultant immune phenotypes of murine study 

subjects to more effectively model human immunity.

Results

Screening CC-RIX lines for immune phenotypes

We conducted a comprehensive screen of 113 CC-RIX lines for immune response 

phenotypes in order to gauge the diversity of responses resulting from natural genetic 

variation. CC-RIX lines were bred to ensure that lines were heterozygous for the H-2b locus, 

having one copy of the H-2bb haplotype and one copy of the other various haplotypes at the 

MHC locus. This design was selected such that we could examine antigen-specific T cell 

responses for our parallel studies of immunogenetics of virus infection, while concurrently 

maintaining genetic variation throughout the rest of the genome. Through our screen, three 

to six adult, 8–10 week-old male mice were examined for each CC-RIX line, and we 

measured and catalogued an extensive list of T cell phenotypes within the spleen at steady-

state with no experimental manipulations. The range of phenotypes included frequency of T 

cell subsets, proportion of cells expressing various activation markers, frequency of cells 

producing inflammatory cytokines, and quantity of cells expressing tissue migration markers 

(Supp. Table 1 and Supp. Fig. 1). For each phenotype examined, we measured abundant 

variability between RIX lines (detailed below), as observed upon examination of any 

immune parameter in a human population. Indeed, even body weight varied extensively 

between RIX lines, despite careful age matching (Supp. Table 2, Supp. Fig. 2A). Together, 

we present an extensive array of steady-state immunity data for each animal in the screen 

garnered from our three thirteen-color flow cytometry panels as well as clinical 

observations. Each immune phenotype examined resulted in a high degree of variability by 

genetic background of the host, and exceeded the breadth of responses observed in the most 

commonly used inbred strains C57BL/6J and BALB/cJ (Supp. Table 3). Importantly, 

because our dataset is included (Supp. Table 4) and available on ImmPort, researchers can 

select from baseline phenotypes of interest for a particular infection or disease in order to 

perform a small subset of experiments rather than a large, time and resource consuming 

phenotypic screen. We anticipate that our dataset, along with these accompanying proof-of-

concept studies hereby detailing examples of genetic mapping of immune traits of interest, 

will advance the use of the CC in immunology and genetic mapping studies.

Variation in T cell frequencies across CC-RIX lines presents mouse models for 
immunological studies

Previous studies have demonstrated variation in T cell frequencies based on host genetics, 

though these studies have largely been restricted to a limited number of commonly used 

inbred strains of mice (Chen et al., 2005; Feuerer et al., 2007; Holler et al., 2007; Mostafavi 

et al., 2014; Paula et al., 2011; Petkova et al., 2008), (Bogue and Grubb, 2004; Grubb et al., 

2004). To put this previously described variation into context of a larger group of mice with 

increased genetic variation, we examined the frequency of T cell populations in the spleen of 

113 CC-RIX lines as compared to the commonly used BALB/cJ and C57BL/6J model 

strains. We found a high degree of variability in the frequency of CD3+ T cells based on host 

genetics, with average frequencies in CC-RIX lines ranging from 16–62% of gated 
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lymphocytes, whereas C56BL/6J mice had an average frequency of 36.96% and BALB/cJ 

had an average frequency of 46.4% (Fig. 1A). Within these splenic CD3+ T cell populations, 

we further examined the frequencies of CD8+ T cells, CD4+ T cells, and also CD4+Foxp3+ 

regulatory T cells (Treg). Notably, CD8 T cell frequencies in CC-RIX lines ranged from 

14.1–65.3% of CD3+ T cells, with C57BL/6J and BALB/cJ average frequencies of 36.6% 

and 32.1%, respectively (Fig. 1B). The variability in CD4 T cell frequency in the spleen in 

CC-RIX mice ranged from 27–73.1% of CD3+ T cells, with C57BL/6J and BALB/cJ 

average frequencies of 58.96% and 64.5%, respectively (Fig. 1C). As expected due to this 

variability in CD8 and CD4 T cell frequency, there is also extensive diversity in the 

CD4/CD8 T cell ratio across CC-RIX lines (Supp. Fig. 2B–C). Finally, we quantified the 

frequency of Tregs as a percentage of CD4+ T cells, and found that CC-RIX lines had a 

range of 1.8–25.5% Tregs as compared to C57BL/6J and BALB/cJ average frequencies of 

10% and 12.5%, respectively (Fig. 1D). Importantly, the variability in Treg frequency 

modeled by the CC-RIX is similar to that observed in a large human cohort (Fig. 1E), 

thereby suggesting that the CC improves greatly upon the ability of two common laboratory 

strains to represent the diversity in T cell frequency observed in humans. In summary, we 

find that CC-RIX lines display greatly enhanced variation in the frequency of total T cells as 

well as CD8+, CD4+, and Foxp3+ subsets as compared to traditional inbred models. Further, 

we propose that this variation will be key to extend immunological mouse models as well as 

QTL mapping studies to identify genes regulating homeostatic T cell population dynamics 

and better understand the role that variant immune homeostasis plays on resultant 

immunological responses.

Variation in conventional T cell phenotypes across CC-RIX lines

In addition to examining T cell frequencies in mice with distinct CC-RIX genetic 

backgrounds, we performed an extensive phenotypic analysis of conventional T cells in 

order to classify them further into subtypes as well as catalog their activation and functional 

profiles (Supp. Tables 1 & 3). While the full dataset is available on ImmPort (ImmPort 

accession SDY1176), we here focus on the frequency of Ki67+ CD8 T cells, which indicates 

recently or actively proliferating cells; CD44+ CD8 T cells, indicating cells that have 

experienced antigen; CD62L− CD8 T cells, or activated CD8 T cells; as well as the 

frequency of CD8 T cells that secrete IFNg or IL-17 upon a polyclonal anti-CD3/CD28 

stimulation ex vivo (Fig. 2A–E). For reference, while C57BL/6J mice had an average of 

10.8% of CD8 T cells that were Ki67+ and BALB/cJ had 7.2%, CC-RIX lines ranged from 

averages of 2.5–22.5% (Fig. 2A), once again providing a much more diverse response which 

can be used downstream for unique mouse immunology model studies or for QTL mapping. 

In addition to this heterogeneous response based on host genetics, we additionally identified 

in CC-RIX lines a wide range of antigen-experienced CD8 T cell frequencies (Fig. 2B), 

activated CD8 T cells (Fig. 2C), IFNg-secreting CD8 T cells (Fig. 2D), and IL-17-secreting 

CD8 T cells (Fig. 2E). Importantly, all the mice used within these studies were bred within 

the same facility and experiments were similarly conducted in a common environment. 

Together, these data suggest that homeostatic immune responses and the propensity to 

initiate adaptive immunity is under strong genetic control, and this dataset may thus inform 

further studies of autoimmunity and tolerance.
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Similarly, we examined a wide range of conventional CD4 T cell phenotypes based on 

cellular expression of activation markers, homing and effector molecules (Supp. Tables 1 & 

3). As examples of the phenotypic diversity measured in CD4 T cells across different CC-

RIX lines, we demonstrate a large range of Ki67+ CD4 T cells, from 3.8–46.9% of total 

splenic CD4 T cells, whereas C57BL/6J and BALB/cJ mice had similar average frequencies 

of 8.9% and 8.5%, respectively (Fig. 2F). Similarly, the fraction of CD4 T cells that were 

positive for the transcription factor Tbet, and thus likely to be Th1 cells, ranged from nearly 

0 to 35.1% across CC-RIX lines, but again C57BL/6J and BALB/cJ mice had similar 

average frequencies of 2.5% and 2.3%, respectively (Fig. 2G), underscoring the utility of 

CC-RIX mice to establish unique mouse models of immune phenotypes beyond what can be 

modeled using C56BL/6J or BALB/cJ mice. Additionally, there are large differences in the 

frequencies of splenic CD4+ T cells able to secrete IFNg or IL-17 following a polyclonal ex 
vivo stimulus (Fig. 2H–I), as well as antigen-experienced CD44+ or activated CD62L− CD4 

T cells (Fig. 2J–K). In conclusion, both this dataset and the CC-RIX are an invaluable 

resource for investigators looking for an improved mouse model in which to study 

phenotypic diversity in T cells, as well as for use in genetic mapping studies of T cell 

phenotypes.

Genetic variation results in differential immunoregulation

Tregs, defined by the lineage marker forkhead box P3 (Foxp3), promote self-tolerance and 

limit autoimmunity (Belkaid and Tarbell, 2009; Campbell and Koch, 2011; Kim et al., 

2007), and altered Treg function is implicated in the manifestation of many autoimmune 

syndromes (Buckner, 2010). Most severely, in the complete absence of Tregs, as exemplified 

by Treg-deficient scurfy mice or individuals carrying non-functional versions of the Foxp3 
gene, life-threatening multi-organ autoimmunity and lymphoproliferative diseases manifest 

in early development (Brunkow et al., 2001; Gambineri et al., 2003). Given the importance 

of Tregs in regulating conventional T cells, we extensively examined activation and homing 

molecule expression patterns on Tregs within CC-RIX lines. Most notably, there is a full 

range of Treg expression levels of the immunosuppressive marker CD73 across CC-RIX 

mice, from 3.5–97.8% (Fig. 3A). Similarly, the average frequency of Tregs from CC-RIX 

lines that expressed CTLA-4, a critical suppressive mechanism, ranged from 11.2–86.2%. 

Finally, there were wide ranges of Tregs expressing CD44 and homing molecule β1 integrin 

(CD29) across CC-RIX lines (Fig. 3C–D). Thus, our thorough analysis demonstrates the 

variation in Treg-mediated immunoregulation dependent on host genetics, thus providing a 

rich resource for additional immunoregulatory and immunogenetics research.

Due to the large variation in frequency of Tregs that we observed in overtly healthy and age-

matched mice, similar to what has been observed in humans (Fig. 1E), we further 

interrogated for a possible relationship between the number of Tregs and their suppressive 

capacity to address the question of whether Treg function could compensate for altered Treg 

frequency so as to maintain overall health of the host. First, we performed a linear regression 

analysis of Treg number by CD4+ and CD8+ T cell proliferation, as indicated by Ki67 

expression, or activation indicated by CD44 or absence of CD62L expression. There was not 

a statistically significant correlation between Treg number and T cell proliferation or 

activation (Supp. Fig. 3), suggesting that mice with varying numbers of Tregs are equally 
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able to control T cell proliferation and activation. This finding supported our hypothesis that 

mice with lower Treg numbers may compensate for this by having increased Treg activation 

or Treg suppressive capacity in order to control immune activation similarly to mice with a 

higher number of total Tregs. Thus, we tested for correlations between Treg number and the 

frequency of various Treg activation or suppression markers, and found that there was 

indeed a statistically significant inverse correlation between the number of Tregs and the 

frequency of Tregs expressing CTLA-4, CXCR3, or ICOS (Fig. 3E–G). Thus, our data 

supports a model in which mice with lower numbers of Tregs may compensate for this by 

having increased activation or suppressive capacity of Tregs in order to maintain tolerance 

and overall health. Alternatively, mice with less functional or suppressive Tregs may have a 

compensatory expansion, perhaps because reduced suppression of T cells, mediated by 

CTLA-4, for example, results in abundance of IL-2 that can thus support expansion of the 

Treg population. Together, our data demonstrate that mice on different genetic backgrounds 

support a wide range of Treg frequencies while maintaining health, at least in part by 

altering the suppressive function of Tregs.

Mouse model development using the Collaborative Cross

As demonstrated above, there is tremendous phenotypic diversity generated within T cell 

subsets dependent on the natural standing genetic variation available within the 

Collaborative Cross. To provide an example of the utility of the CC for development of new 

mouse models for immunology research, we focused on the extreme diversity observed in 

the frequency of Tregs (Fig. 1D). The vast majority of research on Tregs over the past 15 

years has used C57BL/6J mice, which have a population of Tregs comprising approximately 

10% of the total CD4 T cell compartment within the spleen. In order to identify potential 

mouse models with different Treg frequencies (e.g. akin to the diversity observed in human 

cohorts (Fig. 1E)), we further examined the frequency of Tregs in CC-RI strains that served 

as dams or sires in matings that resulted in CC-RIX lines at the extreme ends of Treg 

frequency depicted in Fig. 1D. We found that CC-RI strains CC030/GeniUnc, CC061/

GeniUnc, CC051/TauUnc and CC003/Unc had average Treg frequencies of 12.03%, 7.05%, 

8.47%, and 4.66%, respectively (Fig. 3H). Notably, none of these RI lines had Treg 

frequencies that were elevated or decreased to the extremes observed in the CC-RIX screen, 

although CC030 does have a consistently lower frequency of Tregs and might represent a 

model of decreased Treg activity. These results highlight the potential for emergent 

phenotypes within heterozygous animals (e.g. due to epistatic genetic interactions), and 

further underscore the utility of assessing F1 crosses to increase both the genetic and 

phenotypic diversity assessed.

Quantitative trait loci mapping using the Collaborative Cross

The Collaborative Cross was initially conceived of as a powerful resource for genetic 

mapping studies and integrated systems genetics approaches (Churchill et al., 2004). To 

measure the amount of phenotypic variation attributable to genetic differences, we calculated 

the intraclass correlation (ICC) (Gelman and Hill, 2007) measures as an estimate of 

heritability (Supplemental Table 4). In addition, to demonstrate the overall immune system 

phenotypic diversity among CC-RIX lines, we performed principal component analysis 

(PCA) using the flow cytometry measures listed in Supplemental Table 4 (using strain 
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average values), and then plotted the top two PCs to show strain clustering within these 

composite immune phenotypes (Supp Fig. 4). This analysis demonstrates that there is 

tremendous overall immune system phenotypic diversity across the CC-RIX, and not just 

diversity within single immune measures, as demonstrated in Figs. 1–3. Further, while there 

is diversity among the lines with regard to multiple different cell populations, there are also a 

number of lines with quite extreme phenotypes, which may thus be suitable for follow-up 

studies.

Next, to demonstrate the utility of the CC for identifying QTL contributing to population-

wide variation in steady-state immune phenotypes, we performed QTL mapping on select T 

cell phenotypes using our flow cytometry data in combination with haplotype 

reconstructions of the CC strains generated from the mouse universal genotyping array 

(Mega-MUGA) platform (Morgan et al., 2015). Through these proof-of-concept studies, we 

identified several QTL candidates for follow-up, and below we highlight examples chosen 

due to high LOD scores and clear founder effects. First, we found a QTL (Host Immunity 1, 

HI1) driving the frequency of CD73+ Tregs within the X-chromosome near position 160Mb-

telomere (Fig. 4A) that appears to be driven largely by a PWK/PhJ founder effect (Fig. 4B). 

Confirming this locus, those CC-RIX lines with a PWK/PhJ haplotype at position 166Mb of 

the X-chromosome have frequencies of CD73+ Tregs that are on the upper end of the range 

we observed across all CC-RIX examined (Fig. 4C and 3A). This has clear implications on 

host immunoregulation at steady-state as there is an inverse correlation between CD73+ 

Treg frequency and the frequency of activated CD8 or CD4 T cells (Fig. 4D).

In an effort to narrow our QTL regions to likely candidate genes, we utilized whole genome 

sequence information from the 8 founder strains of the CC (Keane et al., 2011). Guided by 

the allele effects underlying the QTL analysis (estimates of which founder haplotype(s) 

causative genetic variants occur in), we sought to identify genetic variants within the QTL 

regions that were (a) consistent with allele effects underlying the QTL, and (b) also had an 

impact on the amino acid sequence and/or splice forms of a gene, as these variants would be 

the highest priority candidates for altering protein function. Accordingly, within the QTL, a 

total of 102,596 SNPs and 20,432 insertions/deletions (InDels) segregate across the CC 

population. Of these, 248 SNPs and 14 InDels cause coding or splice differences across 43 

genes. Since a PWK/PhJ allele was the sole allele contributing to phenotypic differences, we 

focused on private PWK/PhJ variants. We identified 36 private PWK/PhJ SNPs and 2 InDels 

within 22 genes (Table 1) as potential causal candidates.

In addition to this QTL, we also identified a highly significant QTL (HI2) within the X-

chromosome at position 100–106 Mb driving the frequency of CXCR3+ Tregs (Fig. 5A), 

CXCR3+ CD4+, and CD8+ T cells (data not shown). When we examined the founder 

effects, we found that PWK/PhJ again was a significant driver of this QTL for all three 

phenotypes (Fig. 5B and data not shown), with a clear trend toward low levels of CXCR3 

expression on all three subsets of T cells of CC-RIX lines when there were PWK/PhJ 

variants at position 105.5Mb on the X-chromosome (Fig. 5C–D and data not shown). 

However, this QTL had a more complex pattern of allele effects depending on the 

phenotype. While in all cases a PWK/PhJ allele drives a decreased frequency of CXCR3+ T 

cells for any of the three subsets of T cells, there is additional evidence for phenotype-
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specific allele effects leading to increases in frequency of each of these specific cell types. 

Specifically, there is a WSB/EiJ haplotype associated with increased CXCR3+ CD8+ T 

cells, and also a NZO/HILtJ haplotype increasing CXCR3+ Tregs (Fig. 5B and 5E). In this 6 

Mb region, a total of 55082 SNPs and 12377 InDels segregate within the CC. This includes 

149 nonsynonymous SNPs and 11 InDels across 42 genes. PWK has 35 private SNPs and 5 

private InDels in 26 genes; NZO has 4 SNPs and 1 InDel in 4 genes (Table 1). WSB/EiJ has 

no private SNPs or InDels within this region, suggesting effects of the WSB/EiJ haplotype 

may be due to regulatory variation. Of note, genes within this X-chromosome QTL driving 

low frequency of CXCR3+ T cells include Cxcr3 itself (Table 1), thereby likely 

demonstrating novel gene variants that result in altered expression levels within T cells. 

CXCR3 is a critical chemokine receptor used by T cells and other immune cells to migrate 

to tissue sites of infection and sites of autoimmune reactions, and Tbet+ CXCR3+ Tregs 

have been shown to provide protection from autoimmune diabetes (Tan et al., 2016). Further 

study of CC-RI or CC-RIX with the PWK/PhJ haplotype in this region could better model 

human disease associated with altered T cell migratory activity, and also be used to study the 

importance and function of this chemokine receptor itself.

Finally, we identified a third candidate QTL within the X-chromosome at position 140–145 

Mb (HI3) driving the frequency of ICOS+ Tregs in the spleen (Fig. 6A). While this ICOS+ 

Treg result does not meet the threshold for statistical significance in our analysis, the allele 

effects are clear and we include it here as an example of the diverse allele effects seen in the 

RIX population. An examination of the founder allele effects at this locus revealed that the 

PWK/PhJ haplotype was associated with an increased frequency of ICOS+ Tregs (Fig 6B–

C), thereby accounting for the extreme frequency at the higher ranges (Fig. 6D). However, 

there also appeared to be a second, NZO/HILtJ allele which had an intermediate increase in 

ICOS+ Tregs relative to the other six haplotypes (Fig. 6B). Within this region there are a 

total of 51,137 SNPs and 10,884 InDels segregating in the CC. Of these, 58 SNPs and 5 

InDels cause coding or splice differences in 18 genes. PWK/PhJ has 17 private SNPs and 2 

private InDels across 11 genes (Table 1). In contrast, NZO/HILtJ has no SNPs or InDels 

either private or shared with PWK/PhJ in this region, suggesting the potential for regulatory 

variants to play a role in this locus. In summary, we hereby highlight examples of QTL 

analysis for immunoregulatory phenotypes at homeostasis, with several potential candidate 

genes under the QTL identified for follow-up studies.

Discussion

The highly genetically diverse Collaborative Cross was conceived of as an experimental 

system which could be used to understand how genetic variation could impact a variety of 

complex traits, while still maintaining the benefit of reproducibility and the legion of other 

advantages of a small animal model, such as controlled environment, diet, age, sex, and 

pathogen exposure. An early study using individual mice from 66 strains from incipient lines 

of the CC, or pre-CC, demonstrated diversity in the steady-state frequency of subsets of 

lymphocytes and antigen-presenting cells that was larger than that detected in the eight 

founder strains (Phillippi et al., 2014); here, we use the completed CC to extend these initial 

observations using replicate animals and a wider and comprehensive range of phenotypic 

analyses. A number of studies have shown that genetic variants circulating within the CC 
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population can lead to divergent responses to pathogens (Elbahesh and Schughart, 2016; 

Ferris et al., 2013; Graham et al., 2016; Graham et al., 2015; Gralinski et al., 2015; Leist et 

al., 2016; Lore et al., 2015; Rasmussen et al., 2014), inflammatory diseases (Rogala et al., 

2014), and drug responses (Nachshon et al., 2016). Here, we advance and expand on this 

growing body of work, with a demonstration of the unique benefits for immunology 

research. CC-RI and CC-RIX lines can provide exciting new and reproducible models for 

cellular immunology research, as well as provide us with a critical resource for mapping 

immune phenotypes to genetic loci and genes.

Importantly, each cellular immune phenotype that we examined as part of our screen 

resulted in a wide range of responses at homeostasis, with increased diversity beyond the 

most commonly used laboratory inbred strains of C56BL/6J and BALB/cJ. This consistent 

range of differences between CC recombinant inbred lines extends our ability to model 

human diversity in T cell frequency and phenotype, and potentially the unique resultant 

infection or disease outcomes, such as autoimmunity. For example, CC-RIX lines or CC-RI 

strains at the tails of the phenotypic distribution plots are useful for elucidating the 

underlying mechanisms of the high or low phenotype of interest. For example, as identified 

in Fig. 3H, CC-RI strain CC003/Unc and CC-RIX lines (CC003xCC062) and 

(CC070xCC003) all have splenic Treg frequencies that are about half that measured in 

C57BL/6J mice (Fig. 1D), although these lines are all overtly healthy and display no signs of 

autoimmunity within the 8–10 week age range. It has been previously noted that BALB/c 

mice have more CD4+CD25+ Tregs as compared to C57BL/6 mice, including greater 

suppression of their CD4+CD25− responder T cells (Chen et al., 2005), but the genetic loci 

regulating this difference were not identified. Here we confirm this finding of differential 

Treg frequency between Balb/cJ and C57BL/6J as well as within the CC-RIX (Fig. 1D), 

although due to the large and high-throughput nature of our screen, we cannot draw 

conclusions about the suppressive capacity of the Tregs across the CC-RIX lines, as in vitro 
suppression assays were not performed for each of the lines screened. Important follow-up 

studies include an examination of Treg suppressive capacity through use of standard 

suppression assays to determine if any of the CC-RIX lines represent unique mouse models 

of extreme immunoregulation mediated by Treg suppression. Further, such studies could be 

used to map the gene(s) responsible for differential Treg activity, which could have critical 

downstream implications for susceptibility to infection, autoimmunity, and tumorigenesis.

In addition to provision of mouse models for cell-type and disease-specific research, we 

hereby demonstrate that the T cell phenotypic diversity present within the CC affords us 

with an unprecedented ability to perform genetic mapping to identify loci controlling 

adaptive immune phenotypes and responses. Through the proof-of-concept QTL analyses 

performed by our group (Figs. 4–6), we identified 3 QTL underlying distinct 

immunoregulatory phenotypes at steady-state. Our ability to identify effects on the X 

chromosome was increased compared to autosomes because our mapping population 

consists of males only. In this case, significance thresholds for the X chromosome are 

somewhat lower than for autosomes due to the hemizygous genotypes of males, as there are 

no heterozygotes. Notably, a candidate gene under the X-chromosome QTL driving very low 

expression of CXCR3 on Tregs, CD4, and CD8 T cells is Cxcr3 itself, suggestive of a 

deleterious allele resulting in lowered levels of protein expression. Since CXCR3 is a 
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chemokine receptor important for lymphocyte migration toward chemokines CXCL9, 

CXCL10, and CXCL10, which are generally expressed in tissue regions of inflammation 

(Groom and Luster, 2011), mouse lines with this allele may represent a unique model in 

which to study the importance of this signaling pathway in various disease or infection 

states. In humans, CXCR3 polymorphisms have been associated with the risk of asthma 

(Cheong et al., 2005), pointing to a potential future use of the CC-RIX to improve mouse 

models of asthma research to better recapitulate human disease states. Additionally, the list 

of candidate genes provided in Table 1 requires follow-up studies in order to narrow in on 

the particular gene or genes causing the phenotypes of interest.

Genetic variants driving phenotypic differences can be due to both coding and regulatory 

differences. Indeed, many of the most significant human GWAS hits occur in regulatory 

regions (Zhang and Lupski, 2015). Here, we present an initial analysis where we instead 

focused on variants impacting protein sequence. Many studies in the CC have shown that 

differences in coding sequence can have large effects on phenotypic outcomes (Ferris et al., 

2013; Gralinski et al., 2015). Furthermore, regulatory variants are notoriously difficult to 

identify due to their condition and cell-type specific effects on gene expression, which itself 

does not always lead to differences in protein levels (Chick et al., 2016). Nevertheless, 

differentiating between protein functional and expression level differences in phenotypic 

responses provides critical hypotheses to address in future studies of the functions of variant 

regions on immune homeostasis.

Our study and the power of our dataset have several limitations. First, we cannot determine a 

role for distinct microbiota within CC-RIX lines or animals in driving some of the divergent 

immune phenotypes. Mice of different lines were not co-housed or co-fostered, although 

they were all bred within the same room of the same facility by the same technician across 

the entire study. Similarly, experiments were conducted within a consistent facility, so 

together these factors should minimize the impact of a variety of environmental factors. 

However, the microbiome could explain some of the observed variation, and while a study of 

this magnitude, performed over the course of 4 years, did not allow for an extensive 

examination of the microbiome as well, future studies will likely investigate the role of host 

genetics on microbiome colonization, as well as downstream effects of distinct microbial 

communities on immune phenotypes. An additional limitation of our study is that haplotype 

blocks are fairly large within this CC-RIX population. However, in contrast to classical 2-

allele mapping populations, the multiple founder haplotypes do allow us to reduce large 

haplotype blocks to much fewer numbers of candidate features, which we did here as an 

illustrative example of the use of this Resource and dataset.

In conclusion, we hereby advance that the Collaborative Cross is an invaluable resource for 

many types of immunology, immunogenetics, and disease research, as we have specifically 

demonstrated in the context of steady-state T cell phenotypes and frequencies. This dataset 

will be useful for individuals seeking to identify new mouse models with increased diversity 

of T cell phenotypes more akin to human diversity, as well as for additional QTL mapping 

studies. Finally, the data presented here provide a gateway for CC strain selection for future 

studies of cancer immunity, autoimmune conditions, and various infections, as investigators 

can tailor selection of strains based on the frequencies of particular T cell subsets, as well as 
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their activation status, steady-state cytokine expression, and other phenotypic selection 

parameters (Supp. Tables 1 & 4). As the need for mechanistic studies of immunity and 

disease persists, including the genetic mechanisms underlying such states, we propose that 

the Collaborative Cross represents an outstanding and unique model that incorporates 

genetic diversity while at the same time retaining beneficial features of mouse models such 

as reproducibility, low-cost, and ubiquity and availability of reagents and tools.

Experimental Procedures

Mice

CC RI mice were obtained from the Systems Genetics Core Facility at the University of 

North Carolina-Chapel Hill (UNC) (Welsh et al., 2012). For the screen, CC RIX lines were 

bred at UNC under specific pathogen free conditions. 6–8 week old F1 hybrid male mice 

were transferred from UNC to the University of Washington and housed directly into a 

BSL-2+ laboratory within an SPF barrier facility. Age- and sex-matched eight to ten week 

old mice were used for all experiments. All animal experiments were approved by the 

University of Washington Institutional Animal Care and Use Committee. The Office of 

Laboratory Animal Welfare of the National Institutes of Health (NIH) has approved UNC 

(#A3410-01) and the University of Washington (#A3464-01), and this study was carried out 

in strict compliance with the Public Health Service (PHS) Policy on Humane Care and Use 

of Laboratory Animals. Genotypes of interest in this study, H2b, were obtained from the 

Systems Genetics Core Facility at UNC (Welsh et al., 2012).

Cell preparation for flow cytometry assays

Following euthanasia, mice were perfused with 10 ml PBS to remove any residual 

intravascular leukocytes. Spleens were homogenized, treated with ACK lysis buffer to 

remove red blood cells, washed, and resuspended in FACS buffer (1X PBS, 0.5% FBS). 

Cells were counted by hemacytometer using trypan blue exclusion.

Flow cytometry analysis

Following preparation of single cell suspensions, cells were plated at 1 x 106 cells/well and 

stained for surface markers for 15 minutes on ice. Cells were subsequently fixed, 

permeabilized (Foxp3 Fixation/Permeabilization Concentrate and Diluent, Ebioscience) and 

stained intracellularly with antibodies for 30 minutes on ice. Flow cytometry was performed 

on a BD LSRII machine using BD FACSDiva software. Analysis was performed using 

FlowJo software. The following directly conjugated antibodies were used: CD3-ECD 

(145-2C11), CD4-BV605 (RM4-5), CD8-BV650 (53-6.7), Foxp3-Alexa700 (FJK-16S), 

CD44-FITC (IM7), CD62L-Alexa700 (MEL-14), IFNg-PerCP eFluor710 (XMG1.2), IL-17-

FITC (TC11-18H10.1), Tbet-PECy7 (4B10), CD73-BV421 (TY/11.8), CTLA-4-APC 

(UC10-4B9), ICOS-PECy5 (7E.17G9), CD29-APC Cy7 (HMb1-1), CXCR3-PerCP 

eFluor710 (CXCR3-173), and Ki67-FITC (SolA15). AmCyan Live/dead stain (Invitrogen) 

was used in all panels for identification of live cells. Gating schemes and trees used for flow 

cytometry analysis are shown in Supplementary Figure 1. To measure the amount of 

phenotypic variation attributable to genetic differences, intraclass correlation (ICC) values 

were calculated for all flow measures (Gelman and Hill, 2007).
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Measurement of human Treg frequency

Cryopreserved PBMCs were obtained from individuals participating in the Partners PrEP 

Study (ClinicalTrials.gov number NCT00557245). Study procedures have been described 

previously (Baeten et al., 2012). For the present analysis, samples were selected from men 

and women who were HIV-negative. The procedures of the Partners PrEP Study, including 

collection of samples for immunologic assays, were approved by the institutional review 

boards of the University of Washington and collaborating site institutions; participants 

provided written informed consent.

PBMCs from 244 individuals were thawed and cultured in R10. Counts and viability were 

acquired using the TC-20 Automated Cell Counter (Bio-Rad Laboratories, Inc.). Tregs were 

stained with Live/Dead Fixable Aqua Dead Cell Stain Kit from Molecular Probes (OR, 

USA), followed by cell surface staining with the appropriate cell panel. Surface markers 

examined for phenotype staining protocol include: CD3 (OKT3 and HIT3a), CD4 (OKT4), 

CD25 (BC96), CD127 (A019D5) from Biolegend, Inc. (CA, USA); CD8 (SK1) from 

eBioscience, Inc. (CA, USA). Intracellular markers examined include FoxP3 (236 A/E7) 

from ebioscience, Inc. (CA, USA). Immediately following staining, samples were analyzed 

using a LSRII flow cytometer (BC Biosciences, CA, USA) with FlowJo software (Treestar, 

Inc, OR). Tregs were considered to be CD3+CD4+CD25hiFoxp3+CD127dim cells, as 

previously published (Pattacini et al., 2016).

Statistical analysis

When comparing groups, two-tailed unpaired Student’s t tests were conducted, with p-

values <0.05 considered significant. Error bars show +/− SEM or +/− SD.

Principal Component Analysis

Principal component analysis (PCA) was performed using all measures listed in 

Supplemental Table 4. For all measures, average values for each CC RIX line were 

calculated. The proportion of missing values was examined for each CC RIX line and each 

flow cytometry measure. CC RIX lines and measures with greater than 15% missing values 

were excluded from the analysis. The remaining missing values were replaced with the 

average value across all lines. Finally, each measure was scaled and centered before 

performing PCA.

Calculation of ICC (estimate of heritability)

A random effects model was fit for each flow variable:

where yij is the i-th observation for j-th group, μ is the overall mean, αj is a random effect, 

and εij is the error. ICC is defined below, where σ2α is the variance explained by the 

grouping factor (RIX line) and σ2ε is the variance not explained by the grouping factor.
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Quantitative Trait Loci Mapping

QTL mapping was done as previously described (Aylor et al., 2011; Ferris et al., 2013). 

Briefly, the haplotypic makeup of each CC-RIX was determined based on the consensus 

most recent common ancestor (MRCA) for each CC-RI line. As each RIX is an F1, the 

haplotype probabilities were averaged between the two strains for each of the autosomes, 

whereas the X chromosome for each RIX was determined solely with the mother strain’s 

haplotpyic makeup (as these CC-RIX were males, they all have one copy of the X 

chromosome inherited from their dam). The DOQTL package conducts an eight-variable 

(the probability of each of the eight founder haplotypes at a locus) regression on 

probabilities framework at each marker of interest, looking to find significant associations 

between the founder haplotype probabilities at a marker with the associated phenotypes 

present within the RIX. Genome-wide significance is determined by permutation testing 

(randomly shuffling the phenotypic values across the CC-RIX and asking for the most 

significant response value). Allele effects at each locus are determined by taking the effect 

estimate for each of the eight founder haplotypes (the β within a linear regression 

framework).

In order to determine likely causative variants at a locus, we used the allele effects to 

identify the largest split between effects at a QTL. When there were two splits of roughly 

equal magnitude, then we assumed that there were 3 allele groups with a more complex SNP 

pattern. We took all of the called genetic variants within the QTL based on the sanger whole 

genome sequences of the eight founder strains, and looked at the variant distribution pattern. 

As described in the results, we filtered these variants based on potential impact on protein 

sequence to derive lists of higher priority candidate genes.

An additive haplotype regression model implemented in the DOQTL R (Team, 2016) 

package was used for QTL mapping analyses (Gatti et al., 2014). Briefly, QTL genome 

scans are performed by regressing the phenotype on genotype probabilities for each of the 

eight founder strains. A random-effect term is included in the model to account for kinship 

among animals. The DOQTL software also requires sex to be included as a covariate in the 

regression model, although all our samples are male. A LOD score for each marker is 

calculated from the likelihood ratio comparing the regression model described above to a 

regression model without the founder genotype probabilities. The statistical significance of 

LOD scores is determined via a permutation test. A threshold of p <= 0.05 was used to select 

significant associations.

Data availability

The data that support the findings of this study are included in Supplementary files and are 

available via ImmPort (accession SDY1176).
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• The Collaborative Cross models the phenotypic diversity observed in human 

immunity

• QTL mapping in the CC reveals candidate genes linked to T-cell phenotypes
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Figure 1. Variation in frequency of T cell populations at steady state
Frequencies of CD3+ cells (A), CD8+ cells (B), CD4+ cells (C), and Treg+ cells (D) are 

plotted for the 110 cohorts of CC mice screened during the discovery phase of the 

experiment. The average value for the indicated phenotype of each CC RIX line (n=3) is 

plotted in black in ascending order on the x axis. B6(red) and BALB/c (blue) baseline values 

are plotted for comparison. All values represent uninfected controls. (E) Frequency of Tregs 

in human blood from 244 individuals.
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Figure 2. Variation in conventional T cell phenotypes across CC-RIX lines
Further analysis of cells subtypes, activation status, and functional profiles across CC-RIX at 

steady state. Frequencies of CD8+ cells that are Ki67+ (A), CD44+ (B), CD62L− (C) IFNγ
+ (D) or IL-17+ (E) are shown in the top panel; frequencies of CD4+ cells that are Ki67+ 

(F), Tbet+ (G), IFNγ+ (H), IL-17+ (I), CD44+ (J), and CD62L− (K) are shown in the 

bottom panel. The average value for the indicated phenotype of each CC RIX line (n=3) is 

plotted in black in ascending order on the x axis. B6(red) and BALB/c (blue) baseline values 

are plotted for comparison. All values represent uninfected controls.
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Figure 3. Differential Treg activation across CC-RIX lines
Frequencies of Tregs that are CD73+ (A), CTLA-4+ (B), CD44+ (C) and CD29+ (D) across 

CC-RIX at steady state. The average value for the indicated phenotype of each CC RIX line 

(n=3) is plotted in black in ascending order on the x axis. B6 (red) and BALB/c (blue) 

baseline values are plotted for comparison. All values represent uninfected controls. 

Correlation between the number of Tregs and the frequency of Tregs expressing CTLA-4 

(E), CXCR3 (F), or ICOS (G). (H) Comparison of CC-RI lines (colored data points) that 

served as dams or sires in matings that resulted in RIX lines at the extreme ends of Treg 

frequency see in figure 2D (black data points).
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Figure 4. Quantitative trait loci mapping using the CC
(A) A QTL driving the frequency of CD73+ Tregs found within the X-chromosome near 

position 160MB-teomere that appears to be driven largely by a PWK/PhJ founder effect (B). 

(C) With the frequency of CD73+ Tregs on the x-axis, we see that CC-RIX lines with 

PWK/PhJ variants at position 166Mb of the X-chromosome have CD73+Treg frequencies at 

the upper end of the range observed across all CC-RIX examined. (D) Implications on host 

immunoregulation at the basal state, as there is an inverse correlation between CD73+ Treg 

frequency and the frequency of activated CD8 or CD4 T cells. In a), the solid red line is the 

LOD score threshold for p=0.05, and the dashed line indicates p=0.01.
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Figure 5. A highly significant QTL within the X-chromosome drives the frequency of CXCR3+ 
Tregs
A QTL was identified within the X-chromosome at position 100–106 Mb (A), driven by 

PWK/PhJ (B) in all cases with a trend towards lower levels of CXCR3 expression on T cell 

subsets of CC-RIX lines with PWK/PhJ variants at position 105.5 Mb on the X-chromosome 

(C, D). Phenotypic-specific allele effects lead to increases in a single phenotype, as there is 

an NZO/HILtJ effect associated with increased frequency of CXCR3+ Tregs (B) and a 

WSB/EiJ effect associated with increased frequency of CXCR3+ CD8+ T cells (E). In (A), 

the solid red line is the LOD score threshold for p=0.05, and the dashed line indicates 

p=0.01.

Graham et al. Page 23

Cell Rep. Author manuscript; available in PMC 2017 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. A QTL driving the frequency of ICOS+ Tregs in the spleen
A third QTL within the X-chromosome at position 140–145 Mb drivies the frequency of 

ICOS+ Tregs in the spleen (A). An examination of founder effects revealed that the 

PWK/PhJ allele at position 141.71 Mb drives a high frequency of ICOS+ Tregs (B–C), 

thereby accounting for the extreme frequency at the higher ranges (D). In (A), the solid red 

line is the LOD score threshold for p=0.05, and the dashed line indicates p=0.01.
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Table 1

Candidate genes driving select phenotypes of interest.

Phenotype QTL Region Founder Effects Candidate Genes in Region

Frequency of CD73+ Tregs ChrX: 160 Mb-telomere PWK high Arhgap6, Asb11, Ctps2, Egfl6, Figf, Frmpd4, Gemin8, Gja6, 
Gp464, Map3k15, Mospd2, Nhs, Ofd1, Phka2, Piga, Reps2, 
Rnf138rt1, Syap1, Tceanc, Tlr7, Tlr8, Zsr2, Zrsr2

Frequency of CXCR3+Tregs ChrX: 100–106 Mb PWK low 1700011 M02Rik, 8030474 K03Rik, Abcb7, Atrx, Awat1, 
C77370, Cxcr3, Dgat2l6, Dmrtc1b, Gm5166, Gm9112, 
Itgb1bp2, Kif4, Magee1, Otud6a, Phka1, Rps4x, Taf1, 
170031F 05Rik, Zrsr2

NZO high Nhsl2, Kif4, Rgag4, Nhsl2, Asmt

Frequency of ICOS+Tregs ChrX: 140–145 Mb PWK high Ammercr1, Col4a5, Col4a6, E230019M04Rik, Gucy2f, Irs4, 
Nxt2, Rgag1, Tmem164, Vsig1, Prps1
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