
Hepatitis B Virus X protein promotes degradation of SMC5/6 to 
enhance HBV replication

Christopher M. Murphy1,2,5, Yanping Xu1,3,5, Feng Li1,2,5, Kouki Nio1,2, Natalia Reszka-
Blanco1,2, Xiaodong Li1,2, Yaxu Wu1,2, Yanbao Yu4, Yue Xiong1,3,*, and Lishan Su1,2,*

1Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC 
27599, USA

2Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, NC 
27599, USA

3Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, NC 
27599, USA

4The J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD, 20850, USA

SUMMARY

The Hepatitis B Virus (HBV) regulatory protein X (HBx) activates gene expression from the HBV 

covalently closed circular (cccDNA) genome. Interaction of HBx with the DDB1-CUL4-ROC1 

(CRL4) E3 ligase is critical for this function. Using substrate-trapping proteomics, we identified 

the structural maintenance of chromosomes (SMC) complex proteins SMC5/6 as CRL4HBx 

substrates. HBx expression and HBV infection degraded the SMC5/6 complex in human 

hepatocytes in vitro and in humanized mice in vivo. HBx targets SMC5/6 for ubiquitylation by the 

CRL4HBx E3 ligase and subsequent degradation by the proteasome. Using a minicircle HBV 

(mcHBV) reporter system with HBx-dependent activity, we demonstrate that SMC5/6 knockdown, 

or inhibition with a dominant-negative SMC6, enhance HBx-null mcHBV-Gluc gene expression. 

Furthermore, SMC5/6 knockdown rescued HBx-deficient HBV replication in human hepatocytes. 

These results indicate that a primary function of HBx is to degrade SMC5/6, which restricts HBV 

replication by inhibiting HBV gene expression.
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INTRODUCTION

Hepatitis B virus (HBV) infection causes chronic hepatitis B in an estimated 350 million 

people worldwide, putting these people at high risk for developing liver cirrhosis and 

eventually hepatocellular carcinoma (HCC)(Dienstag, 2008; Revill et al., 2016; Scaglione 

and Lok, 2012). HBV is a partially double-stranded DNA virus that belongs to the 

Hepadnaviridae family (Seeger et al., 2007). After entry into host cells, the viral genome is 

transported into the nucleus and converted to a covalently closed circular DNA (cccDNA), 

which is the transcription template for all HBV viral RNAs. Currently available HBV 

therapeutics, including interferon-α and antiviral drugs, fail to eradicate the cccDNA 

reservoir from infected hepatocytes, despite suppressing new viral DNA replication. Failure 

to repress or eliminate this cccDNA results in viral rebound after therapy(Nassal, 2015; 

Revill et al., 2016; Zeisel et al., 2015).

The HBV-encoded regulatory protein hepatitis B virus X protein (HBx) stimulates HBV 

gene expression from the cccDNA template, but the mechanism by which HBx facilitates 

HBV replication remains unclear (Keasler et al., 2007; Leupin et al., 2005; Slagle and 

Bouchard, 2016; Tang et al., 2005). HBx interacts with several cellular proteins and may 

mediate its role in virus replication through these interactions. The best-characterized HBx 

binding partner is the damage-specific DNA binding protein 1 (DDB1) (Lee et al., 1995; 

Sitterlin et al., 1997). The interaction between HBx and DDB1 is conserved among the HBx 

proteins from all mammalian hepadnaviruses and woodchuck hepatitis virus (WHV) X 
protein (Sitterlin et al., 1997). This binding is essential for HBV replication (Hodgson et al., 

2012; Leupin et al., 2005). HBx has been shown to enhance HBV gene expression from 

episomal cccDNA. However, the mechanism and functional significance of HBx-DDB1 

interaction during infection remains elusive.
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Initially discovered as a DNA repair factor, DDB1 is now recognized to mainly function as a 

linker protein for the assembly of a large number of Cullin 4-ROC1/RING E3 ubiquitin 

ligase (CRL4) complexes (Angers et al., 2006; He et al., 2006; Higa et al., 2006; Jin et al., 

2006). DDB1 bridges CUL4 to individual DDB1-binding WD40 proteins (DWD, or DDB 

Cullin Associated Factors, DCAFs), which in turn recruit substrates to the CUL4-ROC1 

catalytic core for subsequent ubiquitination [reviewed in (Jackson and Xiong, 2009; Lee and 

Zhou, 2007)]. A structural study has revealed that HBx, although lacking a typical WD40 

domain as found in other DWD/DCAF proteins, contains an α-helical motif termed the H-

box which is shared by several DWD proteins and some viral proteins and directly binds to 

DDB1 (Li et al., 2010). These findings suggest that HBx may assemble an HBx-DDB1-

CUL4-ROC1 E3 ligase complex (referred to as CRL4HBx hereafter) to target host proteins 

that antagonize HBV replication for ubiquitylation and degradation. This study aims to 

identify substrates of the CRL4HBx E3 ligase that function as host restriction factors to 

inhibit HBV replication.

RESULTS

Identification of HBx substrates by substrate-trapping proteomics

To identify the substrate of CRL4HBx, we performed tandem affinity purification of HBx 

from a stable HepG2 cell line that inducibly expresses a biologically active HBx with N-

terminal FLAG and SBP tags (Figure 1A and Figure S1A–C). Because HBx functions as 

part of an active E3 ligase, we reasoned that HBx binding to its substrate is transient and 

results in latter’s degradation, preventing direct identification of the substrate through 

binding. We therefore treated cells with MLN4924, an inhibitor of Cullin-RING ligases that 

prevents enzymatic activity by preventing neddylation of the cullin subunit. Inhibition of 

CRL4 activity in this manner has been successfully used to identify CRL4 ubiquitylation 

substrates [e.g. (Emanuele et al., 2011; Tan et al., 2013)]. HBx expression was induced at 

low levels for 24 hours by the addition of doxycycline and then cells treated either with 

MLN4924 to stabilize HBx-substrate interactions, or DMSO as a control. HBx-interacting 

proteins were then purified by sequential anti-FLAG and streptavidin binding and tryptic 

peptides were analyzed by LC-MS/MS. This analysis, as expected, identified many 

components of the HBx-CRL4 complex, including DDB1, CUL4A, and CUL4B, and six 

subunits of COP9/Signalosome, indicating that HBx assembles into active CRL4 complexes. 

Since CUL4A and CUL4B are localized preferentially in the cytoplasm and the nucleus, 

respectively (Nakagawa and Xiong, 2011), this result also suggest that HBx can form 

CRL4A and CRL4B complexes in both subcellular compartments.

To identify potential substrates of HBx, we compared the list of proteins and looked for 

those that were identified exclusively, or with increased abundance, in the MLN4924-treated 

samples relative to the DMSO controls. While similar amounts of DDB1, CUL4A, and 

CUL4B proteins were present irrespective of MLN4924 treatment, a relatively small number 

of proteins that exhibited this behavior were identified (Figure 1B). Notably, among these 

candidates were four separate subunits of a single protein complex, structural maintenance 

of chromosomes 5/6 (SMC5/6) - SMC5, SMC6, NSMCE4A and NDNL2 - as well as other 

proteins implicated in antiviral defense, including NLRC4, DDX5, and DHX9.
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To determine which, if any, of these candidates were substrates of CRL4HBx ligase, we 

compared the stability of each candidate in the absence and presence of HBx. HepG2 cells 

inducibly expressing HBx (Figure S1D–E) were treated with doxycycline for five days to 

activate HBx expression, and cells were then analyzed by western blot with antibodies 

recognizing the endogenous proteins. Most proteins were unchanged in the presence of 

HBx, but three of the tested proteins, SMC6, SMC5 and NSMCE4A, showed a clear 

decrease in abundance, suggesting that SMC5/6 may be a substrate of HBx (Figure 1C). To 

confirm the interaction of HBx with SMC5/6 proteins, we examined whether HBx binds to 

SMC5/6 by IP-western analysis after inducing the expression of 3xFLAG-HBx for 24 hours 

in transiently transfected HEK293T cells. In addition to DDB1, both ectopically expressed 

SMC5 and SMC6 were detected in the HBx immunoprecipitate (Figure 1D). Using 

antibodies that recognize SMC5/6, we observed that endogenous SMC5/6 was also bound 

and degraded by HBx in HepG2 cells after induction of HBx expression (Figure 1E). This 

degradation was dose-dependent (Figure 2A), and occurred within 2 days of HBx induction 

(Figure 2B).

HBV infection degrades SMC5/6 proteins in human hepatocyte cell lines and in HBV-
infected human liver tissue in humanized mice in vivo

We next used HepG2 cells expressing the HBV receptor sodium taurocholate cotransporting 

polypeptide (NTCP) to determine the activity of HBx in promoting SMC5/6 degradation in 

cells infected with HBV (Yan et al., 2012). We detected reduced levels of SMC6 in HBV+ 

cells by co-staining HBV core and SMC6 (Figure 2E). Importantly, we also observed greatly 

reduced levels of SMC5/6 in the human liver tissue of HBV-infected NRG Fah humanized 

mice (Figure 2F; (Li et al., 2014)). Together, these results indicate that HBx induces 

SMC5/6 degradation in HBV-infected cells.

HBx degrades SMC5/6 in a CRL4HBx- and proteasome-dependent manner

To determine whether HBx regulates SMC5/6 degradation via the CRL4HBx E3 ligase, we 

examined the effect of knocking down DDB1, CUL4A or CUL4B on HBx-induced SMC5/6 

degradation (Figure 2C). Knockdown of either DDB1 or a combination of CUL4A and 

CUL4B completely blocked HBx-induced SMC5/6 degradation, and individual knockdown 

of either CUL4A or CUL4B, which are functionally redundant, partially blocked SMC5/6 

degradation. Further, this degradation was sensitive to the proteasome inhibitor MG132 

(Figure 2D). These results suggest that CRL4 is the principle E3 ligase for HBx-promoted 

SMC5/6 degradation, which occurs by a proteasome-dependent pathway. Interestingly, while 

cells form three structurally and functionally similar heterodimeric SMC 

complexes(Jeppsson et al., 2014; Menolfi et al., 2015), only SMC5/6, but not 

cohesin(SMC1/3) or condensin(SMC2/4), was degraded by HBx, suggesting a unique 

function of SMC5/6 in antagonizing HBV.

HBx targets SMC5/6 for ubiquitylation by CRL4HBx E3 ligase

To determine whether HBx promotes SMC5/6 degradation by catalyzing their 

polyubiquitylation, we first examined the effect of HBx on SMC5/6 in an in vivo 
ubiquitylation assay. HA-Ubiquitin, 3xFLAG-HBx and either myc-SMC5 or myc-SMC6 

were co-transfected into HEK293T cells, and SMC5/6 proteins were isolated by myc 
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antibody pull-down. Both SMC5 and SMC6 showed a strong polyubiquitin ladder that was 

dependent upon expression of HBx, and this effect was reduced when HBx(R96E), a CRL4-

binding deficient mutant, was used instead. (Figure 3A, S2A). SMC5/6 polyubiquitylation in 

vivo was clearly reduced by the knockdown of either CUL4A or CUL4B and nearly 

abolished by the knockdown of DDB1 (Figure 3B). Endogenously expressed SMC6 protein 

exhibited little ubiquitylation, but it was actively ubiquitylated by a K48-linked 

polyubiquitin chain upon expression of HBx (Figure 3C). Together, these results 

demonstrate that SMC5/6 is aberrantly ubiquitylated in vivo by the CRL4HBx E3 ligase, 

which catalyzes K48-linked polyubiquitylation of SMC5/6, thereby promoting their 

degradation by the proteasome pathway.

To investigate whether CRL4HBx E3 complex catalyzes direct polyubiquitylation of 

SMC5/6, we performed in vitro ubiquitylation assays using purified components. A robust 

ubiquitylation of SMC5 (Figure 3D and Figure S2B) and SMC6 (Figure 3E and Figure S2B) 

was observed when either protein was incubated with a mixture of immunopurified CUL4A 

and CUL4B E3 complex, immunopurified HBx protein, recombinant E1, E2 and ubiquitin, 

and ATP. A drop-out assay demonstrated that SMC5/6 polyubiquitylation is dependent on 

E1, E2, E3 and HBx. Again, substitution of wildtype HBx with DDB1-binding deficient 

R96E mutant HBx substantially reduced the polyubiquitylation of both SMC5 and SMC6, 

providing additional evidence that HBx bridges SMC5/6 to the DDB1-CUL4A/B-ROC1 E3 

ligases for ubiquitylation.

HBx counteracts SMC5/6 activity to enhance HBV gene expression

The principal role of HBx in HBV infection and pathogenesis is to activate transcription 

from the HBV cccDNA template. Since HBx requires DDB1-CRL4 binding for this 

function, and SMC5/6 is an HBx-CRL4 substrate, we next tested whether SMC5/6 

degradation played an inhibitory role in HBV cccDNA activity. For this purpose, we have 

developed a minicircle HBV (mcHBV) cccDNA reporter system to measure this activity 

(Figure S1F–G and (Guo et al., 2016)). In this system, minicircle HBV cccDNA with no 

residual bacterial plasmid DNA is generated by a site-specific recombination reaction in 

bacteria (Kay et al., 2010). When transfected into HepG2 cells, this mcHBV cccDNA is 

packaged into a minichromosome, produces all HBV proteins, and can generate HBV 

virions (Li et. al., submitted; and (Guo et al., 2016)). To facilitate monitoring of HBV gene 

expression, we have further cloned Gaussia luciferase into the mcHBV DNA under the 

control of the HBV core promoter. As is true for cccDNA during infection, transcription 

from the reporter mcHBV-GLuc DNA is strongly dependent upon HBx (Figure S1I). 

Transfection of mcHBV-GLuc reporter cccDNA produced highly stable luciferase activity 

(Figure S1H), whereas transfection of an HBx-deficient form of the mcHBV-GLuc cccDNA 

showed over a 4-fold decrease in activity, which could be rescued back to wild type levels by 

expression of HBx in trans (Figure S1I).

If HBx-mediated destruction of SMC5/6 promotes transactivation of mcHBV-Gluc cccDNA, 

then experimental depletion of SM5/6 should rescue HBx-deficiency. To test this, mcHBV 

reporter cccDNA with a mutant HBx gene (ΔX) was transfected into inducible HepG2-HBx 

cells. In the absence of HBx induction, gene expression activity from the ΔX mcHBV 
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cccDNA was very low, but could be rescued by HBx induction (Figure 4A). When SMC6 or 

SMC5 was knocked down by shRNA transduction, gene expression from the HBx mutant 

mcHBV-Gluc was completely rescued, indicating that targeting SMC5/6 is likely a primary 

cause of HBx-mediated transactivation of mcHBV cccDNA. This effect was observed with 

two separate shRNAs targeting SMC6 or SMC5 (Figure 4A, Fig S3A–B), and it could be 

partially prevented by exogenous expression of shRNA-resistant SMC6 bearing silent 

mutations in the shRNA target sequence (Figure S3C, S3D), suggesting that this effect is 

specific to SMC5/6 function. In addition, we created a dominant negative form of SMC6 

with a K to E point mutation in the ATPase active site (K82E) that prevents DNA binding 

and SMC5/6 function (Kanno et al., 2015). Expression of the SMC6(K82E) dominant 

negative mutant also resulted in an increase in mcHBV-Gluc gene expression (Figure 4B). 

These results show that SMC5/6 inhibits HBV gene expression from the HBV cccDNA 

template and that this function of SMC5/6 is antagonized by HBx.

Given that SMC6 knockdown could effectively rescue HBx-deficient mcHBV cccDNA, we 

next asked to what extent HBx could further stimulate mcHBV-Gluc gene expression in cells 

depleted of SMC6. Doxycycline was added to the cells to induce HBx expression, and 

luciferase activity was measured. Compared with un-induced cells, HBx-induced 

transactivation was 5.5-fold in control cells, but only about 1.7-fold in SMC6 knockdown 

cells (Figure S3E–G), indicating that SMC6 knockdown and HBx expression were 

performing overlapping functions. The residual transactivation of HBx in the presence of 

shRNA targeting SMC6 may be the result of incomplete SMC6 depletion, though we cannot 

exclude the possibility that HBx may have additional, SMC5/6-independent activities in 

activating transcription from the mcHBV cccDNA template. Nevertheless, these results 

indicate that HBx-mediated transactivation of mcHBV-Gluc gene expression is due in a large 

part to its activity in degrading SMC5/6.

SMC5/6 knockdown rescues infectivity of HBVΔX mutant virus in human hepatocytes

HBx is essential for productive HBV infection and HBVΔX mutant has impaired replicative 

activity in target cells. To further test whether HBx-targeting of SMC5/6 represents the 

primary function of HBx in enhancing HBV infection and replication, we next asked 

whether SMC5/6 knockdown in NTCP+ HepG2 cells could rescue infection of HBx 

defective viruses. HepG2-NTCP cells can support HBV infection, as incubation with HBV 

results in subsequent production of HBsAg and HBeAg that was sensitive to the HBV entry 

inhibitor cyclosporin A (Figure S4A–C). We prepared a set of HepG2-NTCP cell lines 

transduced with shSMC6, shSMC5, or a non-targeting control shRNA (Figure S4G). We 

then infected these cells with either wild type HBV or HBVΔX mutant. HBeAg, HBsAg and 

HBV DNA were then monitored to measure HBV infection and replication (Figure 4C–F, 

S4). Wild type HBV was able to infect all of the cell lines with similar efficiency, with only 

a modest increase in the SMC5 and 6 knockdown cells (Figure 4C). HBVΔX mutant, on the 

other hand, failed to produce detectable levels of HBV replication in mock-transduced 

(parental) or shCtrl cells. This defect was efficiently rescued by SMC6 or SMC5 

knockdown, which resulted in levels of HBV replication (HBeAg levels) that nearly matched 

those of wild type virus (Figure 4D). These findings were confirmed by measuring HBV 

HBsAg or HBV genomic DNA in the supernatant (Figure 4E and 4F, and Figure S4D–F). 
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Therefore, SMC5/6 knockdown and HBx expression were almost completely redundant with 

respect to enhancing HBV infection, suggesting that the principal function of HBx is to 

degrade the SMC5/6 complex and counteract its antiviral function.

DISCUSSION

HBx activates HBV viral gene expression from the HBV cccDNA through a poorly 

understood mechanism (Slagle and Bouchard, 2016). HBx binds the DDB1 and is proposed 

to target a host factor for degradation by the DDB1 -CUL4-ROC1 (CRL4) E3 ligase (Leupin 

et al., 2005; Li et al., 2010; Martin-Lluesma et al., 2008). Here, we identified the structural 

maintenance of chromosomes (SMC) complex proteins SMC5/6 as the substrates of 

CRL4HBx. Importantly, SMC5/6 complex was degraded by HBx in human hepatocytes 

expressing HBx or infected by HBV. We demonstrate that SMC5/6 knockdown, or inhibition 

with a dominant-negative SMC6, enhanced HBx-deficient mcHBV-Gluc gene expression, 

indicating that SMC5/6 is a restriction factor of the HBV cccDNA and is counteracted by 

HBx. When tested in NTCP+ human hepatocyte cells that support HBV infection, SMC5/6 

knockdown rescued replication of HBx-deficient HBV virus, but had little effect on wild 

type HBV virus. These results indicate that a primary function of HBx is to ubiquitylate and 

degrade SMC5/6, which inhibits HBV replication by inhibiting HBV cccDNA activity. The 

results thus reveal a mechanism for HBx function in HBV-infected cells and provide a 

potential avenue for targeting HBV cccDNA function by blocking HBX-targeted, CRL4-

catalyzed SMC5/6 ubiquitylation.

We demonstrate the functional significance of HBx-targeted SMC5/6 degradation on HBV 

replication using a physiologically relevant minicircle HBV cccDNA system, which is 

devoid of all bacterial plasmid DNA and in HBV cccDNA form (Kay et al., 2010). The 

minicircle HBV cccDNA-based assay depended on HBx for maximal activity and allowed 

us to study the effect of SMC5/6 and HBx on cccDNA activity in human hepatocyte cell 

lines in the absence of other forms of HBV genomes (Guo et al., 2016). We demonstrate that 

SMC5/6 knockdown, or inhibition with a dominant-negative SMC6, enhanced HBx-

defective mcHBV-Gluc gene expression. When tested in NTCP+ human hepatocyte cells 

that support HBV infection, SMC5/6 knockdown rescued replication of HBx-deficient HBV 

virus, but had little effect on wild type HBV virus. Thus SMC5/6 is a major restriction factor 

of the HBV cccDNA that is counteracted by HBx.

Eukaryotic cells include three functionally related, but non-redundant SMC complexes - 

cohesins, condensins and the SMC5/6 complex - each consisting of SMC heterodimers and 

additional non-SMC subunits (Jeppsson et al., 2014). SMC complexes play a central role in 

controlling multiple chromatin processes, such as sister chromatid cohesion, chromosome 

condensation, DNA replication, DNA repair and transcription (Jeppsson et al., 2014). These 

functions bear a striking overlap with some of the multiple reported HBx activities. For 

example, HBx, via its DDB1-binding activity, impairs DNA repair (Becker et al., 1998), S 

phase progression, chromosome segregation and mitosis (Martin-Lluesma et al., 2008). Our 

finding that HBx degrades SMC5/6 offers a plausible explanation to these cellular defects 

previously linked to HBx. We also note that HBx selectively interacts with and targets the 

degradation of SMC5/6, but not the other two SMC complexes, suggesting a unique function 
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of SMC5/6 in inhibiting HBV. This is consistent with the observations that each SMC 

complex also has its distinct functions. While cohesins and condensins are required for 

establishing links between sister chromatids and for chromatin compaction, SMC5/6 plays a 

role in chromosome segregation and repair. Loss of SMC5/6 function impairs genome 

stability and resolution of replication-induced DNA supercoiling (Kegel et al., 2011). HBx 

has been shown to be a cofactor in HCC development. We speculate that dysregulation of 

DNA repair and induction of chromosomal instability by the expression of HBx may 

contribute to the HBV-mediated HCC development.

It will be important to determine how SMC5/6 inhibits cccDNA function. With its known 

functions in modulating chromatin structure and function, it is likely that SMC5/6 

suppresses gene expression from episomal DNA such as HBV cccDNA via epigenetic 

mechanisms, and HBx has evolved to counteract SMC5/6 activity to facilitate HBV 

replication. The major limitation of current HBV therapies is the inability to target cccDNA. 

SMC5/6 possesses intrinsic DNA binding activity and was recently shown to function as an 

intermolecular linker, bridging DNA molecules through topological entrapment (Kanno et 

al., 2015). This could inhibit cccDNA function by promoting direct compaction of the 

cccDNA minichromosome or by tethering it to inactive or heterochromatic regions of the 

nucleus. It will be of great interest to determine exactly how SMC5/6 inhibits HBV cccDNA 

function, which could uncover new therapeutic opportunities for targeting HBV cccDNA 

and other viruses with episomal DNA genomes.

A paper reporting the same finding has very recently been published (Decorsiere et al., 

2016). Although the two studies are consistent in the main finding about HBx targeting 

SMC5/6, our study additionally contains two important aspects. First, we provide evidence 

that SMC5/6 is a direct ubiquitylation target of HBx-DDB1-CRL4 E3 ligase. Second, we 

show that of three functionally related SMC heterodimeric complexes, only SMC5/6, but not 

cohesin or condensin complexes, are targeted by HBx.

EXPERIMENTAL PROCEDURES

Immunoprecipitation-Mass spectrometry

HepG2-HBx-FSH8 cells were induced with 120 ng/ml doxycycline for 24 hours, treated 

with MLN4924 (1µM, Cayman Chemical) or DMSO for 4 hours, and lysed in NP-40 Lysis 

Buffer (0.5% Nonidet P-40, 50 mM Tris pH 7.5, 150 mM NaCl) with Halt protease inhibitor 

(Pierce) and DMSO or MLN4924 on ice after culturing. Flag-SBP-HBx was precipitated 

with anti-Flag M2 resin (Sigma) affinity eluted with 200µg/ml 3x FLAG peptide (Sigma). 

Eluates were then incubated with streptavidin agarose (GE Life Sciences). Beads were 

washed 4 times with lysis buffer, and peptides were generated by on-beads trypsin digestion 

and isolated by filter-aided sample preparation (FASP). LCMS was performed as described 

(Yu and Pieper, 2015). Database search was conducted using SEQUEST and Proteome 

Discoverer (Yu et al., 2014). Spectral counts were compared between samples, and those 

proteins with ≥4 fold increase over negative control runs and increased after MLN4924 

treatment were selected as potential HBx substrates. Anti-FLAG immunoprecipitations for 

IP western analysis were performed as above, but eluted at 70°C for 20 minutes in SDS-

PAGE loading buffer.
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HBV infection

HepAD38 cells (kindly provided by Dr. J. Hu and Dr. C. Seeger) grown without doxycyclin, 

or HepG2 cells transiently transfected with a plasmid encoding HBVΔX (Dr. J. Hu), were 

grown for 5–7 days (Ladner et al., 1997). Media was clarified by centrifugation at 10,000 × 

g. Supernatants were supplemented with 10% PEG-8000, incubated at 21°C for 30 min and 

4°C for 60 min, and centrifuged again. The pellet containing viral particles was resuspended 

in 1/100 the original volume with serum-free media and flash frozen.

For HBV infection, HepG2-NTCP cells (Yan et al., 2012) were plated at 70–80% 

confluency. After 24 hours, media was supplemented with 4% PEG-8000. HBV was added 

at 4×103 or 4×104 genome equivalents per cell. After 16 hrs, cells were rinsed 4 × in PBS 

and cultured in media with 2% DMSO. Media was collected and changed every 48 hours.

Detection of HBV replication by ELISA

HBsAg and HBeAg were detected using kits from Alpha diagnostics and Abnova, 

respectively.

Detection of HBc and SMC6 by immunofluorescence co-staining

HBV infected cells were seeded onto cover glasses 9–12 days after infection. After 24 hours, 

cells were fixed in 4% paraformaldehyde in PBS, rinsed in PBS, permeabilized in 0.15% 

TritonX-100, and then washed 3 times in PBS. Blocking buffer (0.2% BSA, 5% Donkey 

Serum, 0.1% Triton-X100, 1xPBS, pH 7.4) was added for 30 minutes to block nonspecific 

binding. Primary antibodies targeting HBc (Zeta) or SMC6 (Abgent) were diluted in 

blocking buffer at 1:200 and 1:400, respectively, and incubated with cells for 60 minutes. 

Cells were washed 3× in blocking buffer and then incubated for 60 minutes with donkey 

anti-rabbit Alexa 488 and donkey anti-mouse Alexa 594 secondary antibodies (1:1000, Life 

Technologies). The cover glasses were washed in blocking buffer, in PBS, rinsed quickly in 

ddH20, and mounted with fluorescence mounting media with DAPI (Abcam).

Luciferase assays

Cells were transfected with mcHBV-Gluc DNA and carrier DNA (pUC19). The next day, 

cells were transduced with lentiviruses expressing shRNA or proteins. Alternatively, cells 

were cotransfected with mcHBV-Gluc DNA and the relevant constructs. Media was then 

collected every 2 days and assessed for luciferase activity on a GLOMAX microplate 

luminometer (Promega).

Statistical Analysis

Comparisons were performed using t-test or ANOVA with Tukey’s post-hoc test using 

Graphpad Prism software.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Identification of CRL4-HBx substrates by TAP/MS and CRL inhibition
(A) Experimental design to identify the substrate of CRL4HBx. HepG2 cells inducibly 

expressing FLAG-SBP-HBx were induced with doxycycline and treated with MLN4924 to 

stabilize HBx-substrate interactions, which were then purified and analyzed by LC-MS/MS.

(B) Spectral counts of proteins identified under each condition were compared to identify 

potential CRL4HBx substrates. Upper table: HBx interactions with the CRL4 E3 ligase. 

Lower table: Proteins identified either exclusively or in greater amounts with MLN4924 

treatment relative to DMSO were shown as potential substrates. The table shows the 
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combined results from two separate experiments. For proteins identified in both 

experiments, the mean number of spectral counts is listed.

(C) Substrate candidates were screened for HBx-induced instability 5 days after induction of 

HBx expression with 500ng/ml doxycycline.

(D) HEK293T cells were cotransfected with constructs expressing 3xFLAG-HBx, V5-

tagged SMC5/6, or empty vector controls. After 41 hours, cells were treated or not with 1 

µM MLN4924 and harvested 10 hours later. Total cell lysates (top) or FLAG 

immunoprecipitates (bottom) were then analyzed for the indicated proteins.

(E) HepG2 cells inducibly expressing FLAG-SBP-HBx (FSH8) were induced with 120 

ng/ml doxycycline for 48 hours, and endogenous SMC5/6 was co-immunoprecipitated with 

HBx using anti-FLAG resin. Unmodified HepG2 cells (G2) were used as a negative control.
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Figure 2. HBx expression and HBV infection degrades SMC5/6
(A, B) Inducible HepG2-HBx-H5 cells were treated with a range of doxycycline 

concentrations (A) or for different lengths of time (B), and SMC5 and SMC6 levels were 

analyzed by immunoblot.

(C) HEK293T cells were first transfected with control siRNA or siRNA targeting indicated 

genes for 24 hours and transfected with Flag-HBx for another 24 hours, followed by 

immunoblot analysis.

(D) HEK293T cells were transfected with Flag-tagged HBx for 24 hours and then treated 

with MG132 (2 µM) for 24 hours, followed by cell lysis and SDS-PAGE.
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(E) Confocal microscopy of mock- and HBV-infected human hepatocytes stained with 

SMC6 (red) and HBc (green) antibodies and counterstained with DAPI. A representative 

view is shown, and arrows indicate cells where SMC6 is degraded by HBV infection. Scale 

bars = 20 µm. Intensities of nuclear SMC6 fluorescence were quantified from HBc+ and 

HBc− cells of multiple fields using ImageJ software. The relative SMC6 level in each HBc+ 

cells was normalized to that of HBc− cells in the same view field. The average of relative 

SMC6 intensity was calculated from 18 HBc+ and 18 HBc− cells. ****, p<0.0001 (t-test).

(F) Liver samples from NRG-FAH-hu hepatocyte mice with human liver reconstitution 

(>60% human reconstitution) were analyzed for SMC6 levels by immunoblot in the 

presence or absence of HBV infection. HBV titers for mice #3 and #4 were 7.47 × 1011 and 

2.73 × 108 per ml, respectively.

Murphy et al. Page 16

Cell Rep. Author manuscript; available in PMC 2016 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. SMC5/6 is a direct ubiquitylation substrate of CRL4-HBx
(A) Wild-type, but not DDB1-binding deficient R96E mutant, HBx promotes SMC5 and 

SMC6 polyubiquitylation in vivo. HEK293T cells were transfected with the indicated 

plasmids and treated with MG132 4h before harvest. Whole cell lysates were prepared under 

denaturing conditions and ubiquitylation of SMC5 and SMC6 were examined by coupled 

IP-western.

(B) Knockdown of DDB1, CUL4A or CUL4B inhibits HBx-promoted SMC5 and SMC6 

polyubiquitylation in vivo. HEK293T cells were first transfected with indicated siRNA 
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oligonucleotides for 24h, then transfected with plasmids expressing the indicated proteins 

for another 48h and treated with MG132 4h before harvest. Knockdown was verified by 

immunoblotting with whole cell lysate. In vivo SMC5 or SMC6 ubiquitylation was 

determined by IP-western blot analysis under denaturing conditions.

(C) HEK293T cells were transfected with indicated plasmids and treated with MG132 

before harvest. Whole cell lysates were prepared under denaturing conditions. Endogenous 

SMC6 was precipitated using a SMC6 antibody and the ubiquitylation was examined by 

western-blot using an antibody recognizing K48-linked polyubiquitin chain.

(D, E) Wild-type, but not DDB1-binding deficient R96E mutant, HBx promotes SMC5 and 

SMC6 polyubiquitylation by the CRL4 E3 ligase in vitro. Immunopurified SMC5 (C) or 

SMC6 (D) protein was incubated with a mixture of CUL4A and CUL4B immune-complexes 

and purified HBx in a buffer containing recombinant ubiquitin, E1, E2 and ATP. Reactions 

were terminated by addition SDS loading buffer, followed by SDS-PAGE and immunoblot 

with the indicated antibodies.
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Figure 4. HBx targets SMC5/6 to enhance HBV gene expression and HBV replication
(A) Knockdown of SMC5 or SMC6 enhances HBVΔX minicircle mcHBV-Gluc gene 

expression. HepG2-HBx-H5 cells were transfected with HBVΔX minicircle cccDNA, 

subcultured into 96 well plates, and then transduced with lentivirus encoding the shRNA 

indicated. Gaussia Luciferase activity in the culture supernatant was analyzed after 14 days. 

HBx expression was induced where indicated by the addition of doxycycline (400ng/ul).
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(B) Expression of dominant-negative SMC6(K82E) rescues expression from HBVΔX 

mcHBV-Gluc cccDNA. HepG2-HBx-H5 cells were co-transfected with HBVΔX mcHBV-

Gluc cccDNA and the indicated expression constructs. Luciferase was assayed after 8 days.

(C – F) Knockdown of SMC5 or SMC6 in HepG2-NTCP cells enhanced replication of the 

HBVΔX mutant virus, but had little effect on wild type HBV virus. HepG2-NTCP cells were 

transduced with lentivirus expressing shRNA targeting SMC5, SMC6, or a non-target 

control sequence (shCtrl). After selection, transduced cells were infected with wild type or 

ΔX HBV. Media was collected every other day, and HBeAg in the culture media was 

analyzed by ELISA at the times indicated (C–D). HBV replication was further confirmed by 

measuring HBsAg by ELISA at nine days post infection (E). ***, p<0.001. The extent to 

which HBx promoted HBV replication in each cell line was calculated by dividing the 

HBsAg level from wt HBV infected cells by that from HBVΔX infected cells (F).
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