
Integrins form an expanding diffusional barrier that coordinates 
phagocytosis

Spencer A. Freeman1, Jesse Goyette2, Wendy Furuya1, Elliot C. Woods3, Carolyn R. 
Bertozzi3, Wolfgang Bergmeier4, Boris Hinz5, P. Anton van der Merwe2, Raibatak Das6, and 
Sergio Grinstein1,7,8

1Program in Cell Biology, Hospital for Sick Children, Toronto, M5G 1X8, Canada

2Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK

3Departments of Chemistry Stanford University Department of Chemistry, 380 Roth Way, 
Stanford, CA 94305-5080, USA

4Department of Biochemistry and Biophysics, University of North Carolina, 120 Mason Farm 
Road, Chapel Hill, NC 27599-7260, USA

5Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, M5S 3E2, Canada

6Department of Integrative Biology, University of Colorado, Denver, CO 80217-3364, USA

7Keenan Research Centre, St. Michael's Hospital, Toronto, M5S 1T8, Canada

Summary

Phagocytosis is initiated by lateral clustering of receptors, which in turn activates Src-family 

kinases (SFKs). Activation of SFKs requires depletion of tyrosine phosphatases from the area of 

particle engagement. We investigated how the major phosphatase CD45 is excluded from contact 

sites, using single-molecule tracking. The mobility of CD45 increased markedly upon engagement 

of Fcγ receptors. While individual CD45 molecules moved randomly, they were displaced from 

the advancing phagocytic cup by an expanding diffusional barrier. By micropatterning IgG, the 

ligand of Fcγ receptors, we found that the barrier extended well beyond the perimeter of the 

receptor-ligand engagement zone. Second messengers generated by Fcγ receptors activated 

integrins, which formed an actin-tethered diffusion barrier that excluded CD45. The expanding 

integrin wave facilitates the “zippering” of Fcγ receptors onto the target and integrates the 

information from sparse receptor-ligand complexes, coordinating the progression and ultimate 

closure of the phagocytic cup.

Phagocytosis is initiated by the lateral clustering of receptors upon association with ligands 

on the surface of a cognate target. Fcγ receptors, which recognize the Fc portion of IgG, are 

prototypical of the phagocytic response. The multiplicity of IgG molecules on the target 
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surface promotes the close apposition of receptor immunotyrosine activation motifs, and the 

associated stimulation of Src-family kinases (SFKs) (Flannagan et al., 2012).

Phagocytes are richly endowed with membrane-associated tyrosine phosphatases, notably 

CD45 and CD148 (Zhu et al., 2008b). The activation of SFKs and effective tyrosine 

phosphorylation of receptors requires the physical removal of such phosphatases from sites 

of particle engagement. Accordingly, Goodridge et al. (2011) documented a striking 

exclusion of CD45/CD148 from phagocytic cups. A similar exclusion has been observed at 

the immune synapses formed by lymphoid cells (Davis and van der Merwe, 2006). Upon 

binding ligand, B and T cell receptors initially form microclusters that subsequently coalesce 

to form a central supermolecular activation centre (cSMAC) (Batista et al., 2001; Grakoui et 

al., 1999; Monks et al., 1998); in the process, phosphatases are displaced to the periphery of 

the contact site(s). Exclusion of the phosphatases has been attributed to a “squeezing” type 

of action, brought about by the close apposition of the membranes of the lymphoid and 

antigen-presenting cells that engage in synapse formation (Cordoba et al., 2013; James and 

Vale, 2012; van der Merwe and Dushek, 2011). The phosphatases are squeezed out of the 

tight confines of the contact zones by virtue of their extraordinarily large, glycosylated 

ectodomains that are rigid and considerably longer than the space between the adjoining 

membranes (Hermiston et al., 2009).

A similar size exclusion mechanism could underlie the removal of CD45 and CD148 from 

the phagocytic cup, since the exofacial domain of Fcγ receptors is notably shorter (≈6 nm) 

than that of the phosphatases (that ranges from ≈30–60 nm). However, while at immune 

synapses B and T cell receptors move laterally along with their cognate targets on antigen-

presenting cells, facilitating large-scale clustering, phagocytic receptors are often 

immobilized by their ligands. The rigid nature of bacterial and fungal cell walls precludes 

the lateral motion of receptor-ligand complexes and hence impedes the formation of 

supermolecular structures akin to the cSMAC. It is therefore unclear whether the 

phosphatase size exclusion model deduced for the immune synapse is applicable to the 

phagocytic cup. In fact, it is not known whether the exclusion of CD45 and CD148 is in fact 

required for successful completion of phagocytosis.

We investigated the role and mechanism of exclusion of the phosphatases during Fcγ 

receptor-mediated phagocytosis by tracking single CD45 molecules during engagement of 

IgG-opsonized targets by macrophages. Our results revealed an unexpected role of integrins 

as progressive diffusional barriers that serve to integrate the signals emanating from 

immobile Fcγ receptor microclusters.

Results

Activation of Fcγ receptors increases the mobility of CD45

As described for dectin-mediated phagocytosis (Goodridge et al., 2011), we found that 

engagement of Fcγ receptors caused the depletion of CD45 from the phagocytic cup (Fig. 

1A). The region of depletion of the phosphatase demarcated the zone where phosphotyrosine 

accumulated, consistent with a causal relationship.

Freeman et al. Page 2

Cell. Author manuscript; available in PMC 2017 January 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The mechanism underlying the lateral displacement of the phosphatases from the phagocytic 

cup is not known. To understand the mechanism of depletion, we generated Fab fragments 

to track single CD45 molecules on the membrane of live macrophages. At the density used 

(100 ng/mL) the Fab fragments labeled resolvable single CD45 molecules: the modal 

fluorescence intensity of Cy3-conjugated anti-CD45 Fab fragments on the cell surface 

matched that of mono-dispersed Fabs attached to glass (Fig. S1).

Yamauchi et al (2012) proposed that myosin II facilitates the redistribution of CD45 during 

phagocytosis. This mechanism would predict directed motion of CD45 away from sites of 

receptor engagement. We tested this prediction by single-molecule tracking (SMT) of CD45 

during phagocytosis. This required image acquisition over extended periods of time, 

tracking particles on a defined focal plane. To avoid photobleaching, we used biotinylated 

anti-CD45 Fab fragments tagged with quantum (Q)dots (Fig. 1B). Constancy of the focal 

plane was ensured by implementing a two-dimensional model of frustrated phagocytosis, 

where suspended labeled cells were allowed to sediment onto an IgG-coated coverslip. To 

measure the behavior of CD45 under “resting” conditions –i.e. in cells not performing 

phagocytosis– macrophages were instead sedimented onto BSA-coated coverslips. At the 

indicated times after contact with the coated surface the behavior of individual CD45 

molecules was monitored, followed by feature detection and reconstruction of trajectories 

(Jaqaman et al., 2011). We next applied a moment scaling spectrum (MSS) analysis and 

assessed whether single trajectories were directed or isotropic. Contrary to the predictions 

made by the model of Yamauchi et al. (2012), fewer than 3% of the CD45 molecules moved 

linearly either at rest or during phagocytosis (Fig. 1B–C). Instead, CD45 followed isotropic 

trajectories generated by either confined diffusion or free diffusion.

Initiation of frustrated phagocytosis on the IgG-coated planar surface coincided with the 

emergence of a zone of CD45 depletion analogous to that observed during phagocytosis of 

3-dimensional targets. Moreover, we found that engaging Fcγ receptors increased the 

fraction of CD45 undergoing free diffusion from 47%±14% to 70%±11% (means ± SD), at 

the expense of confined molecules, which decreased proportionately (Fig. 1C). Not only did 

the fraction of confined molecules decrease, but those that remained confined were able to 

roam within a larger area; the mean diameter of the remaining confinement zones increased 

from 171 nm to 269 nm (Fig. 1D). As a result of these combined effects, the overall 

diffusion coefficient increased from 0.026±0.011 µm2/s to 0.053±0.019 µm2/s (Fig. 1E). 

These changes were recapitulated in BSA-adherent cells by a brief treatment with 

latrunculin (Fig. 1C–D), suggesting that engagement of Fcγ receptors induces the 

breakdown of actin-based cytoskeletal barriers to CD45 diffusion. Virtually identical results 

were obtained in cultured murine macrophages (Fig. S1E–G) and, importantly, also in 

murine bone marrow-derived macrophages (BMDMs) using anti-CD45 Fab fragments 

directly labeled with Cy3B (Fig. S1B–D). This implies that the mobility of CD45 was not 

adversely affected by the Qdots, and suggest that the mobilization and depletion of CD45 

from the cup occurs by a similar mechanism in multiple phagocytic cell types.
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CD45 is progressively displaced by a diffusion barrier

While the MSS analysis identified the majority of the CD45 molecules as diffusing freely, 

perusal of individual trajectories over extended periods revealed a unique feature: the 

phosphatase molecules appeared to collide and bounce off the edge of the zone of depletion 

(Video 1; Fig. 1F). This suggested the existence of a diffusional barrier that expands as the 

phagocytic cup grows, progressively displacing (excluding) CD45 from the area of receptor 

engagement. These observations were recapitulated when CD45 was labeled with Cy3B-

conjugated Fab fragments, which are considerably smaller than CD45 itself (Fig. S1B). 

Therefore, is it likely that the observed exclusion is an intrinsic property of the phosphatase.

We asked if single molecule trajectories could reveal the existence of a diffusional barrier. 

To create well-defined barriers, we printed IgG onto glass coverslips, generating ≈ 2 µm-

sized circles separated by 6 µm, as done previously (Torres et al., 2008), and tracked single 

CD45 molecules in their vicinity. We compared observed trajectories with simulated 

trajectories undergoing Brownian diffusion in the presence of a diffusional barrier (Fig. 2A). 

The simulated barrier enclosed a central circular region that matched the geometry of an IgG 

spot. The strength of the barrier was parameterized by pexclusion –the probability that a 

particle colliding with the barrier is unable to breach it and enter the enclosed region. A 

diffusion coefficient of 0.053 µm2/s was used for the simulation, to match the value 

measured experimentally (Fig. 1E). As expected, increasing the exclusion probability 

reduced access to the enclosed region (Fig. 2A). When compared at 20 s, the time period of 

our SMT experiments, the observed ratio of particle densities inside the barrier to outside 

was most consistent with simulation results for pexclusion > 0.5 (Fig. 2B).

Since observed trajectories deviate from Brownian diffusion and have variable track lengths 

(Fig. 2C), we additionally used a statistical bootstrap approach to match simulated tracks 

more closely with observed tracks. This more robust analysis confirmed that observed 

trajectories are most consistent with a non-zero exclusion probability (pexclusion ≈ 0.75, Fig. 

2D). We also estimated the fraction of its lifetime that a randomly chosen trajectory would 

spend inside the barrier (Fig. 2E). The observed distribution clearly deviated from bootstrap 

distributions for no/low exclusion probabilities. Together, these results support the existence 

of a diffusional barrier that restricts the entry of CD45 into regions of ligand engagement.

While the depletion of CD45 from sites of frustrated phagocytosis is consistent with the 

establishment of a diffusion barrier, it was conceivable that the phosphatase was cleared 

from these areas by increased focal exocytosis of endomembranes devoid of CD45 or by 

selective endocytosis. However, neither Dectin-1 (a glucan receptor) nor CD36 (a type B 

scavenger receptor) were excluded from the sites of engagement (Figs. S2G–H), implying 

that a generalized displacement of membrane proteins was not occurring. Also, CD45 was 

very often observed to accumulate around the areas of depletion (e.g. Fig. 4A,H), consistent 

with lateral displacement and arguing against selective endocytosis. These observations 

favor a diffusional barrier as the simplest mechanism responsible for CD45 exclusion.
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The area of depletion of CD45 extends beyond regions of microclustered Fcγ receptors

The kinetic segregation model developed in lymphoid cells postulates that exclusion of 

phosphatases relies on the congregation of receptors first into microclusters, then in a larger 

consolidated structure, the cSMAC (Varma et al., 2006). To assess whether similar 

structures are generated during phagocytosis, we analyzed the distribution of FcγRIIA-GFP 

during frustrated phagocytosis. As shown in Fig. 3A, the receptors aggregated into discrete 

microclusters, despite the fact that the ligand was distributed homogeneously on the surface 

of the coverslip. Of note, the microclusters failed to congregate into supermolecular 

structures like the cSMAC even after prolonged exposure (≥20 min) to the target surface. 

Strikingly, while the microclustered receptors occupied less than 25% of the frustrated 

phagosomal surface, CD45 was excluded from the entire contact area (Fig. 3A). It was 

nevertheless possible that receptors present at a lower density –insufficient to form visible 

microclusters– associate with the immobilized IgG and occupy the remainder of the contact 

zone, contributing to exclude CD45.

To better define the relationship between the area occupied by engaged receptors and that 

where CD45 is excluded, we used micropatterning. In cells deposited on micropatterned 

coverslips, Fcγ receptors clustered only in areas where IgG was printed (Figs. 3B and S3) 

resulting in focal activation, detectable as phosphotyrosine accumulation (Fig. 3C). F-actin 

was found to accumulate in the vicinity of the micropatterned ligand (Figs. 3B and 4G). 

Remarkably, while receptor clustering was strictly confined to the area where the ligand was 

deposited (Figs. 3B and S3; quantified in 3H), phosphotyrosine and especially actin were 

found also in the surrounding area.

As illustrated in Fig. 3D, the area of depletion of CD45 clearly exceeded the spot where the 

ligand was micropatterned, i.e. the zone of receptor engagement. The diameter of the CD45 

depletion zone, which was nearly twice that of the zone of receptor-ligand complex 

formation, coincided with the region of F-actin accumulation (Fig. 3H), suggesting that the 

cytoskeleton contributes to the establishment of the diffusion barrier. It was therefore 

important to define how actin is anchored to the plasmalemma in the area that demarcates 

the zone of depletion. Integrins, which are activated upon Fcγ receptor engagement (Jones et 

al., 1998), seemed an attractive candidate. Indeed, both active integrins (Fig. 3G) and the 

associated actin-binding protein vinculin (Fig. 3F) were enriched beyond the micropatterned 

IgG, intimately associated with the actin cytoskeleton in a comparable area (Fig. 3H). 

Similar results were obtained whether the area surrounding the micropattern was coated with 

fibrinogen (Fig. S2A,B) or fibronectin (Fig. S2D,E), or left uncoated (Fig. 3). The zone of 

integrin activation and vinculin recruitment delimited the CD45 depletion zone not only in 

the frustrated phagocytosis model (Fig. 3D–G; Video 1), but also in bona fide 3-dimensional 

phagocytosis (Fig. 3I–J).

How are integrins activated at a distance from the site of receptor activation? A diffusible 

second messenger may mediate the expansion of the signal beyond the micropatterned zone. 

We tested this notion using the PH domain of Akt. As reported (Marshall et al., 2001), 3’-

polyphosphoinositides are generated by the activated Fcγ receptors and, importantly, diffuse 
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away from the sites of receptor stimulation, generating a halo (Fig. 3E) with a diameter that 

closely matches the region of actin polymerization and CD45 depletion (Fig. 3H).

Integrin activation and actin polymerization are required for CD45 removal

The preceding observations suggest that integrins are involved in generating the diffusional 

barrier that excludes CD45. This was tested by deactivating the integrins after depletion of 

the phosphatases had occurred. When integrins were acutely inactivated by removal of 

divalent cations with EDTA, CD45 rapidly re-entered the area where actin had polymerized 

around active receptors, and was only partially excluded from the receptor-ligand interaction 

zone (Fig. 4A). Note that, following integrin deactivation, the cells retracted and remained 

adherent to the coverslip only at sites of Fcγ receptor engagement. Partial disassembly of 

actin using latrunculin also enabled CD45 to re-enter the contact zones (Fig. 4A–B). These 

observations were validated by SMT: while under control conditions CD45 molecules were 

unable to enter the perimeter of the receptor engagement zone, they readily did so following 

actin disassembly or integrin deactivation (Fig. 4D). It is noteworthy that re-entry of the 

phosphatases into the micropatterned zone was accompanied by a marked reduction in 

phosphotyrosine accumulation in that area (Fig. 4C). Neither latrunculin nor EDTA 

treatment altered the stability of the Fcγ receptor-IgG complexes, as measured by FRAP 

(Fig. S3B).

Because divalent cation chelation can have other effects, we impaired inside-out activation 

of integrins and their linkage to F-actin by alternative, more selective means. The 

engagement of Fc receptors leads to stimulation of CalDAG-GEF1, a GEF for Rap (Stolla et 

al., 2011). Activation of Rap is essential for inside-out activation of integrins (Gloerich and 

Bos, 2011). We isolated macrophages from CalDAG-GEF1−/− mice and assessed their 

barrier function during phagocytosis (Fig. 4E). Unlike wild-type bone marrow-derived cells, 

CalDAG-GEF1-deficient macrophages failed to generate an expansive CD45 depletion zone 

(Fig. 4F). Failure to activate the integrins from the inside was in all likelihood responsible 

for this observation. Accordingly, when plated onto micropatterned IgG, CalDAG-GEF1-

deficient macrophages did not form the organized concentric rings of vinculin, indicative of 

integrin activation, which were observed in their wildtype counterparts (Fig. 4G). The 

inability of CalDAG-GEF1−/− macrophages to form an integrin-based barrier and exclude 

CD45 was also associated with decreased phosphotyrosine accumulation at sites of 

attachment (Fig S3D).

The involvement of integrins in CD45 exclusion was also demonstrated by expressing a 

truncated form of talin that prevents their association to vinculin and actin (Zhang et al., 

2008). When macrophages expressing this construct were plated on coverslips fully coated 

with IgG, CD45 freely traversed the contact zone, which failed to assemble the actin belt 

normally formed around the periphery of frustrated phagosomes (Fig. S3E).

Formation of Fcγ receptor-induced active integrin structures was dependent on Arp2/3 but 

independent of formins, myosin II and microtubules, and depletion of CD45 followed the 

same pattern (Fig. 4H–I). Our data are therefore consistent with a model where Fcγ 

receptors remotely activate integrins that link to Arp2/3-generated actin filaments via talin 

and vinculin, thereby cementing a diffusional barrier that precludes entry of CD45 (Fig. 4J).
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Macrophage podosomes exclude CD45

The peri-receptor actin complexes bear resemblance to podosomes; this prompted us to test 

whether the latter structures similarly exclude CD45. We used structured illumination 

microscopy (SIM) to visualize podosomes on the ventral membrane of cells grown on 

coverslips in the presence of serum, but otherwise unstimulated. Podosomes were identified 

as having phosphotyrosine and F-actin-rich cores surrounded by vinculin rings (Fig. S4A). 

When visualized by immunostaining, CD45 was indeed excluded from podosomes, removed 

from their signaling cores (Fig. S4B). Tracking of single CD45 molecules on the ventral 

membrane revealed that as they approached podosomes the phosphatases were redirected 

around them, never entering their core (Fig. S4C). These data demonstrate that regions 

where integrins bind to the substratum are seemingly sufficient to exclude CD45.

Size-dependent exclusion of the ectodomain of CD45

Our observation that integrins and F-actin are critical for exclusion of CD45 raises the 

possibility that the cytosolic tail and/or the transmembrane domain of CD45 may be required 

for segregation. To assess the mode of exclusion we used synthetic glycopolymers of 

defined sizes. These glycopolymers consist of repeating units of alpha N-acetyl 

galactosamine that mimic the physical bulk of a glycoprotein’s ectodomain. A 

dipalmitoylated terminus allows insertion into the outer leaflet of the plasma membrane 

(Fig. 5A), but unlike CD45 the glycopolymers lack transmembrane and cytoplasmic 

domains. As such, they should be unimpeded by intracellular diffusional barriers. One such 

glycopolymer mimetic (glycomimetic) that extends ≈80 nm perpendicular to the plane of 

the membrane was excluded from the area around micropatterned IgG, as observed for 

CD45 (Fig. 5B). SMT confirmed that, like CD45, this long glycomimetic diffuses freely 

along the outer leaflet of the membrane, yet is deflected away from areas surrounding the 

micropatterned opsonin (Fig. 5C). The exclusion requires active integrins and an intact actin 

skeleton, because the glycomimetic was able to enter the receptor engagement area when 

EDTA or latrunculin were present (Fig. 5C). By contrast, a short (3 nm) glycomimetic – 

shorter than the ectodomains of integrins– was not excluded from the contact areas. These 

data support the idea that CD45 is physically excluded by the apposition of the phagocyte 

membrane to its target by an integrin- and actin-dependent mechanism.

CD45 depletion is required for phagocytosis

While CD45 and CD148 are unquestionably excluded from the phagocytic cup (Goodridge 

et al., 2011; see also Figs. 1–3), it remains to be established whether this event is in fact 

essential for successful phagocytosis. We performed ectodomain swapping experiments to 

assess this requirement. Constructs consisting of the transmembrane and cytosolic domains 

of CD45 were fused to either the ectodomain of CD43 –a long (≈45 nm) molecule of 

dimensions similar to CD45– or that of CD2 –a much shorter molecule (≤7 nm; Fig. 5A). As 

shown in Figs. 5D and S4D, when expressed in either HeLa or RAW264.7 cells the longer 

chimeric construct (CD43–CD45) was excluded from areas where cells attached to the 

substratum via integrins, while the shorter (CD2–CD45) chimera was not. More importantly, 

while expression of the CD43–CD45 chimera was without effect on phagocytosis, the short 

CD2–CD45 chimera markedly inhibited phagocytic efficiency (Fig. 5E–F). This was 
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dependent on the phosphatase activity of the construct (Fig. 5E–F). Our data suggest that 

depletion of CD45/CD148, which requires their long extracellular domain, is key to the 

completion of phagocytosis.

Integrins facilitate engagement of distant points of opsonization

Phagocytosis is conceived to proceed by a zipper-like mechanism whereby receptors drive 

particle engulfment by serially binding to ligands on the target surface. This concept, which 

requires a high density of ligands, was derived from experimental models where 

phagocytosis was optimized by coating particles heavily with opsonins (Griffin et al., 1975). 

In nature, however, opsonization is less likely to result in homogeneous coverage of the 

target particle. We propose that, by activating surrounding integrins, opsonic receptors like 

Fcγ facilitate bridging between sparse specific ligands. The high ligand promiscuity of 

integrins would confer efficiency to the phagocytic process. To test this hypothesis, we 

micropatterned glass with IgG and compared the ability of macrophages to engage Fcγ 

receptors under conditions where integrins were able to associate with the remaining (IgG-

devoid) surface, or were prevented from doing so by coating the glass with polyethylene 

glycol (PEG). Visualization of Fcγ receptors in the plane of contact by either SIM (Fig. 6A) 

or TIRF revealed that extensions of the membrane containing unoccupied Fcγ receptors 

were routinely observed beyond the regions of micropatterned IgG, but only when integrins 

were allowed to engage the surrounding substrate. Such extensions were facilitated by the 

activation of integrins and associated polymerization of actin generated by receptor 

activation: only small amounts of F-actin were detected in association with the receptor-

ligand complexes when integrin engagement was precluded by PEG, and the actin was 

confined to the IgG spots (Fig. 6B).

The bridging effect of integrins, defined as their ability to multiply the number of receptor 

engagement sites, is quantified in Fig. 6C. Of note, the contribution of the integrins is more 

significant when the distance between opsonin spots is greater.

Integrins coordinate the phagocytic response

Even when confronted with a surface homogeneously coated with ligands, Fcγ receptors 

form microclusters that cover only a fraction of the phagocytic cup (Figs. 3A,7A). Because 

the ligands are immobile, larger entities such as the cSMAC cannot form. How, then, is the 

phagocytic response coordinated? It is noteworthy that, despite the sparseness of 

microclusters, CD45 is excluded from the entire phagocytic cup, reflecting a unique mode of 

signal expansion and coordination. We postulate that activated integrins furnish the 

coordination required to exclude CD45 from the entire phagocytic cup. Indeed, when 

macrophages already having undergone frustrated phagocytosis were treated with EDTA to 

reverse integrin activation, single CD45 molecules reentered the depletion zone (Fig. 7A). 

Interestingly, the CD45 molecules avoid the receptor microclusters –resembling 

observations made during early stages of formation of immunological synapses (James and 

Vale, 2012)– but they appear to diffuse freely between them. This implies that the 

phagosomal membrane is tightly apposed to the target in its entirety only when the integrins 

are active and able to engage their ligands.
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The preceding observations suggest that integrins serve as a coordinator of the effects of 

sparse receptor microclusters which, unlike those of lymphoid cells, are unable to coalesce 

by lateral diffusion into larger structures. To test this we analyzed the distribution of CD45 

on micropatterned coverslips where the distance between opsonin spots was varied. When 

the IgG-coated zones are 6 µm apart, macrophages exclude CD45 from the area surrounding 

each spot. Bringing the spots closer together results in partial overlap and ultimately 

coalescence of the individual depletion areas, resulting in extensive depletion resembling 

that generated by a homogeneously coated surface. Thus, when the distance between contact 

sites reaches a defined threshold, the cells “sense” the unevenly coated surface as a single 

target. Remarkably, the threshold distance (≈2 µm) is identical to the radius of activation of 

integrins around the activated receptors (Fig. 3).

The depletion of CD45 from a large area when the micropatterned spots were sufficiently 

close (2 µm) enabled the cells to coordinate the effectors leading to the phagocytic response. 

An external belt of actin was detected in these cells, with a large area of clearance in the 

middle, resembling the pattern observed during frustrated phagocytosis of homogeneously 

coated surfaces (Fig. 7C) and also during 3-dimensional phagocytosis. By contrast, on 

micropatterns where the areas between IgG spots were blocked by PEG, not only was the 

overall contact area smaller, but the distribution of actin was different, with little clearance 

in the center. Thus, expansion of the phagocytic cup and clearance of actin at its base –

which is required for successful engulfment of large targets (Araki et al., 1996; Cox et al., 

1999)– needs engagement of integrins activated by the receptors.

The preceding data imply that the dependence on integrin activation will vary with the 

spatial distribution and density of phagocytic ligands. To verify whether these predictions 

apply to physiological, 3-dimensional phagocytosis, we studied the integrin dependence of 

phagocytosis of Salmonella typhimurium ΔinvA SL1344. Because it lacks the invA protein, 

this strain is unable to invade host cells and must be taken up by phagocytosis (Fig. 7D). 

Salmonella expresses O antigens on its wall, and H antigens in flagella. We took advantage 

of these spatially segregated antigens by opsonizing the bacteria with H antiserum, O 

antiserum, or both, without changing the total concentration of IgG. The role of integrins 

was assessed in two independent ways: by omission of divalent cations, or by preventing 

engagement using a mixture of blocking antibodies to β1 and β2 integrins. When the bacteria 

were opsonized with both antisera, macrophages did not require integrins to complete 

phagocytosis (Fig. 7E). Bacteria opsonized with combined O and H sera did not require 

CalDAG-GEF1 either (Fig. 7F). In stark contrast, bacteria opsonized with only one of the 

antisera required integrins and CalDAG-GEF1 for optimal phagocytosis (Fig. 7E–G). 

Partially opsonized Salmonella (i.e. exposed to only one of the antisera) were very often 

incompletely ingested by cells with inactivated integrins (Fig. 7G). Indeed, the unopsonized 

regions of bacteria remained outside the macrophages, suggesting that the phagocytes could 

not coordinate distant points of attachment to internalize the entire pathogen.

We also tested phagocytic efficiency while varying the concentration of IgG. As anticipated, 

phagocytosis increased and eventually saturated as the titer of the opsonin increased (Fig. 

7H). It is noteworthy that inactivation of integrins with EDTA was without effect at the 

highest opsonin concentrations, but exerted a progressively greater inhibitory effect as the 
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titer was reduced. Conversely, preactivation of integrins by addition of phorbol myristoyl 

acetate (PMA) enhanced phagocytic efficiency when the ligand titer was low, but was 

similarly without effect at saturating concentrations of opsonin (Fig. 7H). That the effect of 

EDTA was caused by inactivation of integrins was verified using the inhibitory truncated 

form of talin. At subsaturating concentrations of opsonin, the talin head domain markedly 

reduced phagocytic efficiency (Fig. 7I). Together, our findings indicate that integrins 

determine the effectiveness of the phagocytic response, lowering the threshold of 

opsonization required for effective engulfment.

Discussion

We report that removal of phosphatases from the phagocytic cup is essential for completion 

of phagocytosis. It is noteworthy that exclusion of CD45/CD148 need not be complete; 

phosphatase activity in the activation zone must only decrease below the rate of SFK 

phosphorylation to result in net accumulation of phosphorylated proteins and the associated 

activation.

While the intrinsic motion of CD45 is passive and random (Brownian), its directional 

exclusion is mediated by an expanding diffusional barrier that requires active integrins and 

an intact actin cytoskeleton. The rapid centrifugal displacement of the phosphatases is 

facilitated by the marked increase in their mobility noted upon immunoreceptor engagement: 

the fraction of confined CD45 molecules decreased and the size of the remaining 

confinement zones increased. These effects combined to greatly increase the overall 

diffusion coefficient. The behavior elicited by phagocytic receptors differs diametrically 

from that reported in lymphoid cells, where CD45 mobility decreases upon activation (Cairo 

et al., 2010; Drbal et al., 2007).

Whereas in lymphocytes the immunoreceptors themselves are believed to exclude the 

phosphatases, the area of CD45 depletion in phagocytes extends well beyond the 

microclusters formed by the receptors. A surrounding area of depletion is delimited by 

integrins, which are activated downstream of the phagocytic receptors, and displays elevated 

levels of phosphatidylinositol 3,4,5-trisphosphate. Inside-out activation of integrins requires 

conversion of GDP-Rap1 to its GTP-bound form, a process catalyzed by the diacylglycerol-

stimulated exchange factor CalDAG-GEF1 (Kawasaki et al., 1998). Because 

phosphatidylinositol 3,4,5-trisphosphate activates the phospholipases that generate 

diacylglycerol, and because we have shown the latter to accumulate at sites of Fcγ receptor-

mediated phagocytosis (Marshall et al., 2001), we conclude that the zone of CD45 depletion 

expands beyond the region of receptor engagement via formation and lateral diffusion of 

lipid second messengers. Indeed, macrophages from CalDAG-GEF1 null mice failed to form 

integrin barriers for CD45. It is conceivable that phosphatase exclusion in lymphoid cells 

utilizes a similar process. In fact, in the T cell immunological synapse CD45 density was 

noted to be low within regions of LFA-1/ICAM engagement (Johnson et al, 2000), and 

invadosome/podosome-like structures were reported to form between T cells and antigen-

presenting cells (Sage et al, 2012).
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Activation of integrins in the area surrounding active receptors serves 2 purposes. First, by 

latching onto the target particle, the activated integrins bridge the space between Fcγ 

receptor ligands, a critical event in the development of the phagocytic cup, particularly when 

the targets are sparsely opsonized (Fig. 7). In this regard, it is important to bear in mind that 

whereas Fcγ receptors bind only the Fc portion of IgG, active integrins can associate with a 

plethora of ligands (Fig. S5) including native- or modified-self molecules, as well as non-

self (i.e. microbial pathogen) components (Boehm and DeNardin, 2008; Yakubenko et al., 

2002). Thus, we envisage Fcγ receptors as conferring specificity to the phagocytic event, 

while the more promiscuous integrins increase the avidity and efficiency of the process. 

Secondly, by expanding the area of depletion of the phosphatases, the integrins coordinate 

(integrate) the phagocytic response. This was most apparent when the distance between 

micropatterned spots was varied: it was only when the width of the integrin halo around the 

ligand spots matched half the distance between spots that the area of CD45 depletion 

consolidated into a single large zone, as observed in physiological conditions (Fig. 7B).

While differences exist between the phagocytic and lymphoid responses, the depletion of 

CD45 in both cases relies, at least in part, on the physical exclusion of its long extracellular 

domain, which was recently shown to be rigid by the elegant studies of Chang et al. (in 

press). This was validated using synthetic glycomimetics (Fig. 5A–C), as well as chimeric 

phosphatase constructs (Fig. 5D,E). In the case of phagocytic cells, however, the exclusion 

requires and is likely effected by integrins. Though somewhat longer than the Fcγ receptors, 

the integrins are nevertheless considerably shorter than even the shortest splice variant of 

CD45; the latter is estimated to extend ≈30 nm, while the bent and extended forms of 

integrins reach only 11 nm and 19 nm, respectively (Ye et al., 2010). The heterologous 

expression experiments of Fig. 5D, as well as the observations made on adherent 

macrophages (Fig. S4), suggest that integrins suffice to exclude CD45, so that the process is 

not restricted to immunoreceptor-mediated activation. Therefore, displacement of 

transmembrane phosphatases away from areas of integrin engagement may also be 

instrumental in the formation of podosomes and in the generation of sealing zones where 

osteoclasts perform bone resorption.

Size-based exclusion of CD45/CD148 may not be the only mechanism underlying their 

displacement from the phagocytic cup. The phosphatases are major constituents of the 

glycocalyx, raising the possibility that their displacement may be coordinated with that of 

other glycoproteins. In preliminary experiments, however, we found no evidence that CD45 

exclusion depends on glycocalyx interconnectivity; disruption of the galectin lattice did not 

prevent exclusion of the phosphatase (Fig. S3F). Nevertheless, an ensemble, mechanical 

movement of the glycocalyx may be important to exclude other molecules. We similarly 

failed to find any evidence that CD45 is displaced by extracellular DNA, which is extruded 

from some activated phagocytes by a process (NETosis) dependent on activation of NOX2; 

we did not detect extracellular DNA during phagocytosis, nor could we prevent the 

displacement of CD45 by inhibiting NOX2 (Fig. S3F). Lastly, we considered whether CD45 

might be shed by proteases. CD45 depletion persisted despite inhibition of metalloproteases 

using the broad-spectrum antagonist Marimastat (Fig. S3F). Thus, physical extrusion of 

CD45 by tight membrane apposition remains the simplest mechanism to account for its 

depletion, though additional mechanisms cannot be discounted.
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Because displacement of the phosphatases seems to depend on the physical exclusion of 

their extracellular domain from the narrow junction formed by the tight apposition of the 

membrane and the phagocytic target, the requirement for actin –a cytosolic protein– would 

appear surprising. However, there is clear evidence that linkage to the actin skeleton 

stabilizes the active (extended) form of integrins (Zhu et al., 2008a). Nevertheless, it is 

conceivable that actin contributes to the formation of a diffusional barrier in other ways as 

well. There is evidence for the existence of a barrier that limits the mobility of lipids and 

membrane-tethered proteins during the course of phagocytosis (Golebiewska et al., 2011) 

and even during macropinocytosis (Yoshida et al., 2009), where the physical exclusion 

model proposed for CD45 would not apply.

In summary we have described the sequence of events that lead to phosphatase exclusion 

and enable SFK activation and the consequent phagocytic response. We found that opsonic 

receptors trigger a remote wave of integrin activation that serves to bridge distant ligands, 

fixing what would appear to be a broken zipper, and integrating the response of multiple 

immobile microclusters, obviating the need for them to coalesce into larger structures, as 

reported in lymphoid cells.

Materials and methods

Cell isolation and culture

Primary macrophages were derived from monocytes isolated from heparinized blood of 

human donors. Peripheral Blood mononuclear cells were isolated using Lympholyte-H 

(Cedarlane), resuspended in DMEM and seeded onto TC plastic dishes for 30 min to select 

adherent cells. Non-adherent cells were removed by washing with DMEM and adherent 

cells were then incubated in DMEM with L-glutamine containing 10% heat-inactivated 

serum, 100 U/mL penicillin, 100 µg/mL streptomycin and 10 ng/mL hM-CSF (Peprotech 

Inc.) for 5–7 days. To isolate murine macrophages, we harvested the marrow of femoral 

bones from 6–8 week old C57Bl/6 wildtype or CalDAG-GEF1-null mice (Bergmeier et al., 

2007). Cells were washed before culturing in DMEM with L-glutamine and 10% heat-

inactivated serum and 100 U/mL penicillin, 100 µg/mL streptomycin, and 10 ng/mL mM-

CSF (Peprotech Inc.) for 5–7 days. Parental and mCherry-actin-expressing RAW 264.7 cells 

were cultured as described (Bohdanowicz et al., 2010).

Single-particle labeling and tracking of CD45

To label single CD45 molecules, cells were washed with HBSS, then incubated with 100 

ng/mL of Cy3-, Cy3B- or biotin-conjugated anti-CD45 Fab fragments for 5 min. Cells 

labeled with biotinylated Fabs were washed in cold PBS, then incubated with 

streptavidin-655 Qdots (1:10,000 dilution) for 5 min at 4°C, to minimize lateral mobility and 

clustering, then washed with complete DMEM containing excess biotin to block unoccupied 

avidin sites and prevent cross-linking. Cells labeled with Cy3B-conjugated Fab fragments 

were washed in PBS at 25°C. Cells were mechanically lifted in complete DMEM at 37°C 

before being laid over coverslips that were micropatterned or homogeneously coated with 

IgG. Single cells were imaged on a Zeiss Axiovert 200M microscope, equipped with a 100× 

NA 1.45 oil objective, a custom 2.4× magnification lens, and a back-thinned EM-CCD 

Freeman et al. Page 12

Cell. Author manuscript; available in PMC 2017 January 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



camera (Hamamatsu). For Qdot-labeled particles, acquisitions were performed at 33 Hz. For 

Cy3B-labeled particles, acquisitions were at 10 Hz. Single particles were detected and 

tracked as described (Jaqaman et al., 2008). Motion types and diffusion coefficients were 

determined using a moment scaling spectrum (MSS) analysis, as described (Jaqaman et al., 

2011). The dimensions of the confinement zones were derived by eigenvalue decomposition 

of the variance-covariance matrix of particle positions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

- Tyrosine phosphatases are excluded from sites of phagocytosis.

- An expanding diffusion barrier prevents phosphatase access to sites of 

phagocytosis

- Integrins activated by phagocytic receptors generate the diffusion barrier

- Activated integrins bridge sparse phagocytic receptors and coordinate 

phagocytosis

Freeman et al. Page 16

Cell. Author manuscript; available in PMC 2017 January 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. CD45 is depleted from regions of contact between macrophages and IgG-opsonized 
targets by a diffusional barrier
A) Human macrophages incubated with polystyrene beads opsonized with 0.5 mg IgG/107 

particles. Cells were fixed after 45 s and stained for CD45 (green), pY (red) and IgG (cyan, 

inset). Scale bar=10 µm. B–F) Single CD45 particles were visualized in macrophages using 

anti-CD45 Fab fragments labeled with Qdots (B, inset). B) Macrophages were seeded onto 

either BSA-coated or IgG-coated coverslips and particles tracked for 20 s at 33 Hz. CD45 

trajectories were analyzed by MSS; the motion type for each trajectory is color-coded: 

confined (blue), free (cyan), or linear (red). Scale bar =5 µm. C–E) CD45 motion type (C), 

median confinement diameter (D) and median diffusion coefficient (E) for cells seeded on 

BSA (20 min), IgG (20 min), or BSA + LatA (15+5 min) were determined from 10 s 

recordings. Horizontal lines are means of ≥17 cells from 3 independent experiments; >1000 

trajectories analyzed/condition. F) Three trajectories from (B) shown with color-coded time 

course. Depletion zones drawn in B and F delineate the area depleted of CD45. They were 

drawn to approximate the contour of the F-actin ring.
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Fig. 2. Quantifying CD45 exclusion from sites of receptor engagement
A) Initial and final positions of simulated particles undergoing Brownian diffusion in the 

presence of a barrier. Particles were initially dispersed randomly outside a circular region of 

radius 1.6 µm centered in a square with 6 µm sides (inset). The circular region is enclosed by 

a barrier (shown in red) characterized by pexclusion –the probability that a particle colliding 

with the barrier will be unable to breach it. Particle positions at 20 s are shown for different 

exclusion probabilities. B) Ratio of density of particles inside/outside the barrier as a 

function of time for the 20 s simulation period (left), and the values calculated for the last 1 s 

of simulated and observed tracks (right). C) Single CD45 molecules were tracked for 20 s in 

the vicinity of micropatterned IgG. Image shows the superposition of 10 micropatterns from 
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a single experiment. 300 trajectories are shown, averaging 86 frames each. D) Time course 

and asymptotic values of particle density ratios for bootstrap trajectories generated using 

different exclusion probabilities (color-coded) and for observed CD45 tracks (gray trace + 

black trend line). >300 observed CD45 tracks from the vicinity of 18 antigen spots were 

pooled to generate the experimental time course. E) Observed and bootstrap distributions of 

the fraction of time a random trajectory spends inside the barrier for different exclusion 

probabilities.
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Fig. 3. CD45 depletion extends beyond regions of engaged Fcγ receptors and correlates with 
integrin adhesions
A) CD45 was labeled in RAW 264.7 cells expressing FcγRIIA-GFP using Qdots bound to 

anti-CD45 Fab fragments. CD45 trajectories from 20 s videos were classified as confined 

(blue), free (cyan), or linear (red) and overlaid on a single image of clustered FcγRIIA-GFP 

taken when SMT started. Scale bar =5 µm. B–G) Human macrophages seeded onto IgG (red 

in B–E; blue in F–G) micropatterned coverslips for 10 min. Cells were stained for F-actin 

(green in B,D,F,G), FcγRIIA or CD45 (cyan in B,D), pY (green in C), vinculin (red in F) or 

active β2 integrin (red in G). E) Cells transfected with Akt (PH)-GFP (green). Scale bars =2 

µm. H) Maximum diameter of all signals from B–G determined for 3–5 micropatterned 

regions of IgG per cell for >30 cells from 3 independent experiments. Bars are mean ± SEM. 

I–J) xz sections of human macrophages incubated with IgG-opsonized beads. Cells were 

fixed after 45 s and stained for vinculin or CD45 (green) and F-actin (red). Beads indicated 

by dotted lines. Scale bar =5 µm.
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Fig. 4. Integrin activation and linkage to F-actin, mediated by CalDAG-GEF1 signaling, are 
required for CD45 exclusion
A–C) Human macrophages seeded onto micropatterned IgG (red) for 10 min before adding 

vehicle (top), 1 µM latrunculin A (middle), or 1.5 mM EDTA (bottom) for 3 min. Cells were 

fixed and stained for CD45 (cyan) and F-actin (green). In B, depletion was determined as a 

ratio of average CD45 signal intensity outside/inside micropatterned IgG regions. In C the 

pY signal was measured and normalized. B and C, means ± SEM of >30 cells from 3 

independent experiments, each measuring 3–5 micropatterned IgG regions. D) Single CD45 

molecules were labeled in macrophages using Fab fragments and Qdots. Cells were laid 

onto micropatterned IgG coverslips for 5 min before recording for 10 s at 33 Hz. 

Trajectories (cyan) are overlaid on a single image of the micropattern. E) BMDMs from 

wildtype (WT) or CalDAG-GEF1−/− mice were lysed and probed with indicated antibodies. 

F) Single CD45 molecules were labeled in WT or CalDAG-GEF1−/− BMDMs using Fab 

fragments and Qdots. Cells were laid onto IgG coverslips 5 min before recording for 10 s at 

33 Hz. G) BMDMs were laid onto micropatterned IgG (blue) coverslips 5 min before 

staining for F-actin (green) and vinculin (red). H–I) Cells were incubated with vehicle, 10 

µM Arp2/3 inhibitor (CK-666), 10 µM formin inhibitor (SMIFH2), 10 µM blebbistatin, or 1 

µM nocodazole in suspension at 37°C in HBSS. Cells were then seeded onto coverslips, 
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stained and quantified as in A–B. J) Model for an integrin-dependent diffusional barrier 

initiated by FcγR engagement in macrophages. Scale bars =2 µm.
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Fig. 5. Integrins exclude CD45 via an ectodomain size-based process required for phagocytosis
A) Comparison of the size of the ectodomain of an integrin heterodimer, short (3 nm) and 

long (80 nm) glycomimetic polymers, and CD43 and CD2 chimeric constructs used. B) 
Human macrophages incubated with 500 nM of either short or long Alexa488-conjugated 

glycomimetics for 20 min at 25°C before seeding onto micropatterned IgG (red) coverslips. 

Cells were imaged after 10 min. Scale bar =5 µm. C) Human macrophages were incubated 

with 10 nM of long biotinylated glycomimetic polymer for 20 min at 25°C then labeled with 

Qdots at 4°C. Cells were warmed to 37°C and seeded onto micropatterned IgG (white) and 

CD45 trajectories (cyan) recorded for 10 s at 33 Hz. Scale bar=2 µm. D) HeLa cells 

expressing the indicated GFP-tagged CD45 chimeric construct (green) fixed and stained for 

vinculin (red) and F-actin (blue). Mean ± SEM of exclusion determined as GFP signal 

intensity outside/inside 3–5 adhesions for >30 cells from 2 experiments. Scale bar =3 µm. E) 
RAW 264.7 cells expressing indicated fusion proteins, incubated with IgG-opsonized beads. 

Cells were first stained for accessible IgG (external beads, red), then permeabilized and 

stained for total IgG to determine internalized beads (cyan). Scale bar =10 µm. F) 
Phagocytic index determined as the mean number of internalized particles per cell for >100 

cells from 3 independent experiments. Means ± SEM.
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Fig. 6. Integrins facilitate engagement of distant points of opsonization
A) Human macrophages seeded onto micropatterned IgG spots (2 µm diameter) separated by 

6 µm. The area of glass not covered by IgG was either left uncoated or was blocked with 

PEG. Cells were fixed after 2 min, stained for FcγRIIA and imaged by SIM. B–C) Cells 

were seeded as in A for 10 min on coverslips micropatterned with IgG spots separated by 2 

or 6 µm before fixing and staining for F-actin. Representative experiment with 6 µm spacing 

is shown in B, with inverse coloring of the F-actin channel in black and white at bottom. C) 

Number of engaged opsonized spots. Means ± SD for >50 cells from 3 experiments. Scale 

bars =10 µm.
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Fig. 7. Integrins coordinate points of opsonization for a uniform phagocytic response
A) CD45 was labeled for SMT in RAW 264.7 cells expressing Fcγ IIA-GFP. Cells were laid 

over IgG-coated coverslips for 5 min before treating with 1.5 mM EDTA (right). CD45 

trajectories from 20 s videos were classified as confined (blue), free (cyan), or linear (red) 

and overlaid on a single image of clustered FcγRIIA-GFP. Scale bar =5 µm. B) Human 

macrophages were seeded onto IgG micropatterns separated by 6, 4, or 2 µm and after 10 

min, fixed and stained for CD45 (cyan). Scale bar =10 µm. C) F-actin distribution on 

homogenously coated IgG (left) or on micropatterns separated by 2 µm of uncoated glass 

(middle) or PEG-treated glass (right). Scale bar =10 µm. D) Human macrophages were 

incubated with a non-invasive strain of Salmonella that was unopsonized or opsonized with 

O antiserum. Bars represent mean phagocytic index or number of internalized bacteria per 

cell ± SEM for >50 cells from 3 independent experiments. E) Human macrophages 

pretreated with EDTA for 2 min or integrin blocking antibodies for 10 min were incubated 

with bacteria opsonized with H, O, or H + O antisera. Non-internalized regions of bacteria 

were stained with H + O antisera and secondary antibodies before cells were permeabilized 

and stained for F-actin. Bacteria were detected by expression of dsRed. The number of 
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completely engulfed bacteria, expressed as a percentage of the total bound, was then 

determined. Bars are means ± SEM of data from >100 cells from 3 independent 

experiments. F) BMDMs from WT or CalDAG-GEF1−/− mice were incubated with bacteria 

opsonized with H or H + O antisera. G) Representative images from (E). Scale bar =5 µm. 

H) Human macrophages incubated with beads opsonized with the indicated concentrations 

of IgG in the presence of either vehicle, PMA or EDTA for 10 min. Data represent mean 

phagocytic efficiency (beads internalized/beads bound) from 30 cells. I) RAW 264.7 cells 

expressing full-length talin-GFP or talin head domain-GFP were incubated with opsonized 

microspheres for 10 min and the phagocytic index determined. Bars are means ± SEM of 

data from >50 cells from 3 independent experiments.
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