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Abstract

Marginalized zero-inflated count regression models have recently been introduced for the 

statistical analysis of dental caries indices and other zero-inflated count data as alternatives to 

traditional zero-inflated and hurdle models. Unlike the standard approaches, the marginalized 

models directly estimate overall exposure or treatment effects by relating covariates to the 

marginal mean count. This article discusses model interpretation and model class choice according 

to the research question being addressed in caries research. Two datasets, one consisting of 

fictional dmft counts in two groups and the other on DMFS among schoolchildren from a 

randomized clinical trial (RCT) comparing three toothpaste formulations to prevent incident dental 

caries, are analysed with negative binomial hurdle (NBH), zero-inflated negative binomial (ZINB), 

and marginalized zero-inflated negative binomial (MZINB) models. In the first example, estimates 

of treatment effects vary according to the type of incidence rate ratio (IRR) estimated by the 

model. Estimates of IRRs in the analysis of the RCT were similar despite their distinctive 

interpretations. Choice of statistical model class should match the study’s purpose, while 

accounting for the broad decline in children’s caries experience, such that dmft and DMFS indices 

more frequently generate zero counts. Marginalized (marginal mean) models for zero-inflated 

count data should be considered for direct assessment of exposure effects on the marginal mean 

dental caries count in the presence of high frequencies of zero counts.
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Childhood dental caries, which can be associated with adverse health, social and economic 

consequences, is a major research focus of oral health scientists. Count regression models 

for dental caries indices (e.g., DMFS, dmft) are useful for understanding risk factors and 

describing variations in caries prevalence and severity in cross-sectional dental surveys or in 

caries increment in prospective epidemiological investigations and in randomized clinical 
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trials. In all these cases, count regression models are used to model a single count outcome 

for individuals whose responses are assumed to be independent of one another. Extensions 

of count regression models to clustered or repeated measures outcomes will be briefly 

covered in the discussion section. The purpose of this article is to describe and illustrate 

several common choices of count regression models for independently distributed counts.

The oral health research analyst or investigator has several regression models for counts 

from which to choose. Negative binomial regression [Hilbe, 2011] is sometimes used for 

modeling dental caries indices because caries counts tend to exhibit overdispersion, i.e., 

excess variation relative to the Poisson distribution [Grainger and Reid, 1954]. However, as 

caries rates have declined in populations over time [Campus et al., 2009], distributions of 

caries counts are increasingly characterized by a large number of zero counts, for which 

Poisson and negative binomial distributions frequently provide inadequate fits. Zero-inflated 

Poisson regression (ZIP) models [Mullahy, 1986; Lambert, 1992] were initially applied to 

dental caries to account for excess zeros [Böhning et al., 1999]. To address excess zeros and 

overdispersion simultaneously, zero-inflated negative binomial (ZINB) regression [Lewsey 

and Thompson, 2004] and negative binomial hurdle (NBH) models [Levin et al., 2009] have 

more recently been applied in the analysis of dental caries count data.

A review of the application of ZIP and ZINB models to dental caries counts published in 

2012 found that interpretations provided in published caries research are often imprecise or 

inadvertently misleading, particularly with respect to failing to discriminate between 

inference for the class of susceptible persons defined by such models and inference for the 

sampled population in terms of overall exposure effects [Preisser et al., 2012]. 

Recommendations were provided to enhance the use as well as the interpretation and 

reporting of results of count regression models when applied to dental caries. The present 

article updates the earlier recommendations following the recent introduction of 

marginalized zero-inflated Poisson (MZIP, Long et al., 2014] and marginalized negative 

binomial regression models (MZINB, Preisser et al., 2016] that directly specify the effect of 

exposures and covariates on the marginal (overall) mean instead of the latent class mean of 

susceptible persons.

Whereas ZIP and ZINB models are often useful in dental research for understanding the 

mechanisms of disease [Gilthorpe et al., 2009], insufficient emphasis has been given to the 

effects of caries risk factors on the overall population from which the study sample was 

drawn [Albert et al., 2014]. Recently, MZIP and MZINB regression models were introduced 

for the direct estimation of overall exposure effects on a count outcome. With several model 

classes for the potential analysis of zero-inflated count outcomes, this article aims to provide 

guidance to researchers in the choice among ZINB, NBH and MZINB models. For this task, 

an understanding of the different model classes for count outcomes with many zero counts, 

and the research questions addressed by them, is essential.

In this article, ZINB, NB Hurdle, and MZINB models are applied to two data sets to 

illustrate how the different models are used to address distinct research questions. The first is 

a fictional data set of 1,000 observations generated from a ZINB distribution for each of two 

groups. The second data set is from a three-year double-blind caries incidence trial in 
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Lanarkshire, Scotland conducted from 1988 to 1992 that randomized 4,294 children aged 

11–12 years to three active toothpaste formulations to compare their respective anticaries 

efficacy [Stephen et al., 1994]. The different interpretations provided by the models are 

emphasized to support the assertion that drawing valid conclusions in caries research relies 

on matching the statistical analysis to a well-articulated research question [Long et al., 

2012].

Methods

The ZINB, NB Hurdle, and MZINB distributions

In the absence of covariates, there exists equivalent ZINB, NBH and MZINB distributions 

for count data in the sense that they give identical values for the probabilities P(Y=y) for 

counts y = 0, 1, 2, etc. The distributions are distinguished only by their parameterization, or, 

in other words, the feature or features of the overall distribution of the counts that are the 

focus for a chosen model. Each of the ZINB, NBH and MZINB distributions have two parts 

so as to account for a greater fraction of zeros than can be accommodated by the negative 

binomial distribution NB(μ,ϕ) where μ is the mean count and ϕ (where ϕ>0) is the 

dispersion parameter with larger values of ϕ corresponding to greater variation in the counts 

(equation A.1 in suppl. file). Definitions of the various distributions for zero-inflated counts 

are given in the suppl. file.

As an illustrative example, the top half of Figure 1 shows three different representations of a 

distribution of caries counts with a large number of zeros, as is often encountered in caries 

research. For example, the counts could be dmft from a population of children on a normal 

diet to be compared to dmft from children on a high sugar diet shown in the bottom half of 

the figure. Figure 1(a) depicts a ZINB(ψ, μ, ϕ) distribution (equation A.2 in suppl. file), 

which presupposes that the population of children under study is a mixture of two latent 

classes, i.e., hypothetical, unobserved groupings of children. The gray area is the fraction 

ψ=0.40 of the total area of the bars that represents the subpopulation of “non-susceptible” 

children with only zero counts who are considered to be not-at-risk for caries due perhaps to 

some unknown environmental or genetic factors. The black bars show the relative 

frequencies of caries counts based on a negative binomial distribution with mean μ = 1.00 

and overdispersion parameter ϕ=0.50 for the “susceptible” subpopulation of children at risk 

for dental caries; these probabilities are scaled so that the total area of the black bars is 0.60, 

the probability of being in the at-risk class. The ZINB distribution assumes that children 

without caries consist of those children who are susceptible but happened not to have any 

caries observed (i.e., 0.27 random zeros) and children who are believed to be practically not-

at-risk for caries (0.40). The challenges that dental researchers face in understanding ZI 

models are related to the fact that the composition of the two respective latent classes is a 

theoretical and mathematical construct such that the specific group membership of any given 

subject in a study with a zero count is unknown. Moreover, the ZINB parameters ψ and μ 

provide only indirect information on the population caries prevalence π and mean caries 

extent ν that are often of interest.

An alternative representation to the ZINB distribution is provided by the negative binomial 

hurdle distribution NBH(π, μ, ϕ) (equation A.3 in suppl. file) shown in Figure 1(b) for 
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children on a normal diet. The height of the gray bar is 0.67, which is the probability of not 

having caries. The black area of Figure 1(b) is the prevalence π=0.33 and corresponds to the 

group of children with any caries, whose count distribution is characterized with a zero-

truncated negative binomial distribution scaled so that the sum of probabilities for non-zero 

counts when scaled equals π. The prevalence π cannot be greater than the probability of not 

being an excess zero, 1 − ψ (proportion of total area of bars that is black in Figure 1(a)). 

The NBH parameter π relates to the ZINB(ψ, μ, ϕ) parameters,

where g(0| μ, ϕ)is the probability of a zero count under the negative binomial probability 

function NB(μ, ϕ). As in the ZINB distribution, the NBH parameter μ is the mean of the 

untruncated NB distribution, not of the black zero-truncated area in Figure 1(b). So while 

Figure 1(b) provides a graphical representation of the NBH data generating mechanism in 

equation (A.3), its connection to μ is not readily apparent. Rather, the mean caries count 

among children with any caries τ = E(Y|Y>0) is given by

Next, a third equivalent representation of the frequency count distribution is shown in Figure 

1(c), which displays the overall, or marginalized, zero-inflated negative binomial distribution 

for caries counts with a mean of all the counts denoted v= E(Y). The mean of MZINB (ψ, ν, 

ϕ) distribution is defined by a transformation of the two parameters of the ZINB distribution, 

ν = (1 − ψ)μ, which for children on a normal diet is 0.60 × 1.00 = 0.60. Note that ν ≤ μ so 

that mean caries count in the overall population (mean for the black area in Figure 1(c)) 

cannot be greater than the mean count of the susceptible population (mean for the black area 

in Figure 1(a)). Figure 1(c) emphasizes the overall population from which the study sample 

was drawn. For example, in a cross-sectional study, ν is caries severity or extent. The 

characterization shown in Figure 1(c) of a single overall distribution for the caries counts 

views the mixture distribution model in Figure 1(a) as a convenient explanation for a 

distribution of counts with excess zeros [Mwalili et al., 2008]. Finally, Figures 1(d), 1(e) and 

1(f) show analogous representations of a distribution for the number of caries in a fictional 

population of children on a high sugar diet. Our interest is in comparing the distribution of 

dmft of children in the high sugar to normal diet groups.

The ZINB, NB Hurdle, and MZINB regression models

Two-part model extensions of negative binomial regression models are used to characterize 

the effects of exposures, e.g., diet, and possibly covariates, on parameters of interest for 

count responses with many zeros. In choosing a two-part count regression model for the 

assessment of exposure (treatment) effects and covariates, interpretations resulting from 

statistical analysis are greatly facilitated when the model chosen directly expresses the 

parameters of interest as generalized linear models, specifically as a linear functions of 

explanatory variables, the “linear predictors”, through suitable link functions. Thus, choice 

between ZINB, NBH and MZINB models can be made through the identification of the 
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distributional parameters of interest guided by the research question. Two examples are used 

to illustrate the application of the three models and to contrast their respective 

interpretations.

Example 1: Fictional dmft data

The first example considers a fictional cross-sectional observational study evaluating the 

effect of a high sugar diet on dmft in children. Define a dichotomous exposure as x = 0 for a 

child that is not exposed (diet with normal sugar content) versus x = 1 for an exposed child 

(e.g., diet with a high sugar level). To illustrate the different regression models, dmft counts 

for 500 children on a normal sugar diet are randomly generated from a ZINB distribution 

with ψ0 = 0.40, μ0 = 1.00 and ϕ0= 0.50 and dmft counts for 500 children on a high sugar diet 

are generated from a ZINB distribution with ψ1 = 0.10, μ1 = 3.00 and ϕ1 = 0.50; subscripts 

of ‘0’ and ‘1’on the parameters indicate the non-exposed and exposed groups, respectively. 

In other words, children on a high sugar diet tend to have higher dmft than children on a 

normal diet. Three different sets of questions that may be asked from these data lead to 

choice of ZINB, NBH, or MZINB models.

ZINB: Research Questions for Susceptibility to Caries—The first set of questions 

arise from the latent construct of susceptibility to dental caries within the context of a 

theoretical model of disease occurrence whereby observed zeros are believed to come from 

two sources, from children who are believed to be non-susceptible to the development of 

dental caries, and from children believed to be capable but have not yet developed dental 

caries.

Question 1a. Do children with a high sugar diet have a greater susceptibility to dental 

caries than children with a normal sugar diet? Conversely, do children on a normal 

sugar diet have greater odds, i.e., ψ/(1-ψ), of being non-susceptible to dental caries.

Question 1b. Among children that are believed to be at-risk for dental caries, do 

children with a high sugar diet have higher mean dmft than children with a low sugar 

diet?

To address Question 1a, ZINB models the log odds of an ‘excess zero’ (ψ) or of being in the 

class of children that are non-susceptible to caries

(1)

and, to address Question 1b, ZINB models the mean dmft of the at-risk class of children

(2)

The odds of being non-susceptible to dental caries for a child exposed to a high sugar diet 

relative to the odds of being non-susceptible for a child on a normal sugar diet is 

ξez=exp(γ1). Among those children believed to be at risk for caries, the multiplicative 
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increase in the mean dmft for an exposed child relative to a non-exposed child is θZ= 

exp(λ1).

NBH: Research Questions for Caries Prevalence and the Effect of Exposure 
on the Affected Population—Alternative questions arise from considering that once the 

hurdle of developing clinically manifested disease is crossed, a different mechanism may be 

involved in determining the extent of disease among those with any disease.

Question 2a. Do children on a high sugar diet have greater odds of having any dental 

caries (i.e., dmft>0) than children on a normal sugar diet?

Question 2b. Is a high sugar diet associated with higher mean dmft compared to a 

normal sugar diet in the class of children believed to be at-risk for caries?

Whereas the ZINB model specifies the relationship of the exposure to the susceptibility of 

disease, the NBH model specifies its relationship to the probability of having any caries (π)

(3)

in combination with

(4)

the same model part as in equation (2). In other words, Questions (1b) and (2b) are the same 

question. In the NBH model, ξOR= exp(δ1) is the odds of having any caries for an exposed 

child relative to the odds of having any caries for a non-exposed child. It examines whether 

the prevalence of caries differs between children on high sugar and normal diets. In the 

second model part given by equation (4), the effect of diet on the untruncated mean μ. is 

given by the incidence rate ratio exp(λ1) as interpreted for the ZINB model. In other words, 

the second part of the hurdle model describes variations in μ. (i.e. the mean count from the 

black area in Figure 1a). Conversely, the mean of the truncated distribution shown in the 

black area of Figure 1(b) that is less than μ corresponds to the following question:

Question 2c. Among children that have any dental caries, is a high sugar diet 

associated with higher mean dmft compared to a normal sugar diet?

Research question 2c is not addressed directly by the parameter λ1, but it may be addressed 

indirectly by computing the incidence rate ratio θh=τ1/τ0 using post modeling calculations 

where truncated mean τj = μj/[1 − g(0|μj, ϕj)] for j=0 and 1, μ0=exp(λ0) and μ1=exp(λ0+ 

λ1). Because diet is the only explanatory variable in equations (3) and (4), a single value for 

θh is obtained. In general, θh will depend on the value of covariates in models with multiple 

explanatory variables.

MZINB: Research Questions for the Effect of Exposure on the Overall 
Population Mean—More often than not, investigators are interested in the effects of 

covariates on the marginal mean ν of the overall population as depicted in Figure 1(c). 

Unlike ZINB, MZINB models specify direct covariate effects on the overall mean ν.
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Question 3. Do children with a high sugar diet have higher mean dmft than children 

with a normal sugar diet?

Though not of primary interest, the first part of the model addresses Question 1a. The 

MZINB model gives the same probability of an ‘excess zero’ or of being in the class of 

children that are non-susceptible to caries as the ZINB

(5)

with ξez=exp(γ1) gives the odds ratio corresponding to the effect of x on being an excess 

zero. However, all zeros whether excess zeros or not are included in the mean for the overall 

population depicted in Figure 1(c). The MZINB model replaces equation (2) of the ZINB 

model with

(6)

while simultaneously accounting for excess zeros in equation (5). Whereas equation (6) is of 

primary interest in the MZINB model, the purpose of equation (5) is to account for the many 

zeros in the data so that valid inference for the regression coefficients in equation (6) can be 

obtained. Notably, the β-coefficients have the same interpretations as in negative binomial 

regression and Poisson regression. In particular, θM=exp(β1) is the incidence rate ratio of 

exposure to a high sugar diet versus a normal diet or, in other words, the multiplicative 

increase in the marginal mean caries count for an exposed child relative to the marginal 

mean caries count for a non-exposed child in the overall population.

In summary, the three models together define two odds ratios, ξez and ξOR as the relative 

odds of an excess zero (i.e., subscript “ez”) or any kind of zero (i.e., subscript “OR”), 

respectively. They also directly define two IRRs, θZ and θM for the ratio of mean counts in 

the susceptible class of children (i.e., “Z” for ZINB) or for children overall (‘M’ for 

marginal or MZINB), respectively. Finally, a third IRR, θH, may be indirectly obtained from 

the hurdle (i.e., “H” subscript) model. Importantly, ξOR and θM are the prevalence odds ratio 

and overall incidence rate ratio, respectively, the parameters most often of interest to oral 

health researchers.

Example 2: DMFS increment in the Lanarkshire clinical trial

The second data set is from a three-year double-blind caries incidence trial initiated in 

Lanarkshire, Scotland in 1988 to compare three toothpaste formulations among school age 

children [Stephen et al., 1994]. Dental examinations were conducted at baseline, and after 1, 

2 and 3 years. The current analysis compares the toothpastes with respect to mean increment 

DMFS (number of Decayed, Missing, and Filled surfaces) after two years (n = 3412; 79%), 

while adjusting for baseline caries status and calculus. For illustration purposes, the two-year 

instead of the three-year increment data was chosen because they have more zeros. High 

baseline caries refers to having at least one Decayed, Missing or Filled anterior tooth or 

premolar [Stephen et al., 1994]. Whereas the original authors specify four ordinal categories 

Preisser et al. Page 7

Caries Res. Author manuscript; available in PMC 2018 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for baseline caries status according to location of affected teeth and caries severity, the 

middle two categories are combined into “medium” to give a three-level variable (low, 

medium, high). Thus, five indicator variables are defined in both parts of the ZINB, NBH 

and MZINB two-part models: medium and high baseline caries, respectively (with low 

baseline caries as the reference), the presence of calculus, sodium fluoride (NaF, n=1370) 

and sodium fluoride plus sodium trimetaphosphate (NaF+TMP, n=680) with sodium 

monofluorophosphate (SMFP, n=1362) as the reference treatment.

The ZINB model that generalizes equations (1) and (2) is fitted to estimate the odds of being 

non-susceptible to new caries (after two years) for a child receiving each toothpaste with 

sodium fluoride (NaF and Naf+TMP, respectively) relative to the odds of being non-

susceptible for a child receiving SMFP. The second model part is used to estimate the 

multiplicative increase in the mean caries increment for a child in the at-risk class receiving 

NaF (or Naf+TMP) relative to the mean caries increment for a child in the at-risk class 

receiving SMFP.

Whereas the ZINB model specifies the relationship of covariates on ψ, the NBH model 

specifies their relationship to the probability of having any new caries (after two years) in 

equation (3). It estimates the odds of having any caries for a child receiving NaF (or Naf

+TMP) relative to the odds of having any caries for a child receiving SMFP. The second 

model part of the NBH addresses the same question as the second model part of the ZINB as 

expressed in the paragraph immediately above.

Finally, the MZINB model is used to estimate the multiplicative increase in the marginal 

mean caries increment for a child receiving NaF (or NaF+TMP) relative to the marginal 

mean caries increment for a child receiving SMFP in the overall population while also 

modeling excess zeros. All models were fit with SAS software, version 9.4. SAS Proc 

GENMOD is used to fit NB and ZINB models whereas SAS Proc NLMIXED is used to fit 

NBH and MZINB models. The appendix gives SAS code for the Example 1 ; also, see 

Preisser et al. [2014] for SAS code for NBH models and Preisser et al. [2016] for SAS code 

for MZINB models.

Results

Example 1: Fictional dmft data

Children on a high sugar diet had an observed mean dmft that was 4.07 times larger than the 

mean dmft of children on a normal diet (Table 1). Moreover, 72.8% of children on a high 

sugar diet had one or more dmft compared to only 35.6% on the normal diet, which gives an 

observed odds ratio of (0.728)(1−0.356)/[(1−0.728)(0.356) = 4.84. Among children with one 

or more dmft, children on a diet high in sugar had 1.99 times higher dmft than children on a 

normal diet.

Among the four models fit to the data, NB regression had the poorest fit as indicated by the 

largest AIC (Table 2). On the other hand, the AICs for NBH, ZINB and MZINB were not 

only smaller, but identical to one another, which is always the case for a saturated model. In 

other words, there can be no richer model than each of these three four-parameter models 
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involving a single dichotomous variable in each model part. Indeed, the three models are 

equivalent because the three distributions for each group (row) of Figure 1 are equivalent. 

The regression parameter estimates obtained from the generated fictional data and their 

corresponding true values derived from (ψ0=0.40, μ0 = 1.00, ϕ0=0.50) and (ψ1=0.10, μ1 = 

3.00, ϕ1=0.50) via mathematical formula are shown in Table A.1 (suppl. file). Differences in 

true values and estimates are due to sampling variability.

By comparing Table 2 to Table 1, we see that the MZINB model is the only two-part model 

that produces direct estimates and, in this case, reproduces the observed rate (mean) ratio 

(θM) of 4.07. In addition to the MZINB model, NB regression is the only other modeling 

approach that models the marginal mean. Notably, the NB model has a confidence interval 

for θM with smaller width than MZINB; this is expected because NB tends to underestimate 

the variance when there are excess zeros. Both NBH and ZINB model provide direct 

estimates of ratio of the susceptible class means (θZ) of 3.09; this quantity cannot be 

estimated from the observed data without parametric model assumptions.

Continuing with the comparisons in Table 2 to Table 1, we see that the prevalence odds ratio 

is ξor= 4.84 and that the NBH model reproduces the observed odds ratio. Thus, children on a 

high sugar diet have 4.84 times the odds to have any new dental caries than children on a 

normal diet. Among children who have one or more dmft, the mean ratio dmft of high sugar 

to normal diet (θτ) is estimated with post-NBH modeling calculations to be 1.99 (Table A.2 

in suppl. file), which equals the observed mean ratio (last row of Table 1). To summarize, the 

true values of θM, ξor and θτ as derived from inputs for the random generation of the data 

are shown in Table A.2 alongside their corresponding estimate from the generated sample.

Whereas the NBH model directly estimates the prevalence odds ratio, the ZINB and MZINB 

models estimate the excess zero odds ratio ξEZ, an entity that is not observed in the data and 

cannot be estimated without parametric modeling assumptions involving the mixture of the 

two latent classes. Not surprisingly, because the models are equivalent for saturated models, 

ξEZ is estimated to be 0.25 in both models. In other words, the odds of being not susceptible 

to acquiring dental caries is one-quarter among children on a high sugar diet relative to 

children on a normal diet. Equivalently, by inverting the odds ratio, the odds of being in the 

class of children susceptible to dental caries is four times among children on a high sugar 

diet than it is among children on a normal diet.

Example 2: DMFS increment in the Lanarkshire clinical trial

The untruncated (marginal) mean DMFS for the entire study population is higher for SMFP 

(ν = 4.65; s.d. =5.25) compared to NaF (ν = 4.26; s.d. =4.52) and NaF+TMP (ν = 4.42; s.d. 

=4.69). While the increased efficacy of the toothpastes with sodium fluoride holds true for 

low and high baseline caries, the trend is reversed for medium baseline caries (Table 3). 

Similar trends exist with respect to the truncated means of DMFS E(Y|Y>0) for children 

with any caries. Table 3 does not show estimates of means (μ) for the susceptible class of 

children that are the focus of ZINB models because these are constructs which are not 

observed in the data; rather, these means can only be estimated based on a statistical model. 

Finally, the incidence of caries (π) at the two-year follow-up suggests a consistent anti-
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caries effect of NaF and NaF+TMP relative to SMFP only for children with low baseline 

caries.

In this data set, 19% of counts are zero, which suggests a two-part model might be needed. 

Indeed, the AIC for the NB model is larger than the AICs for the three two-part models 

indicating its poorer fit (Table 4). The AICs for the two-part models are very similar, but not 

identical, indicating similar goodness-of-fit. The fits of NBH, ZINB and MZINB models 

were very similar (with essentially overlapping curves), and better than the fit of the NB 

model for the low baseline caries group (Figure 2 in suppl. file) that underestimated the 

observed proportion of zeros.

The top half of Table 4 reveals that estimates for the count data part of the model are similar 

for NBH and ZINB models, which both target the mean caries count in the latent class of 

children believed to be susceptible to caries. Second, estimates for the count data part of the 

model are similar for MZINB and NB models, which both target the marginal mean caries 

count in the overall population of children from which the children participating in the 

clinical trial were drawn. Results from the bottom half of Table 4 show similar estimates on 

all covariates excepting calculus from the logistic part of the model for ZINB and MZINB, 

which both model the probability of an excess zero. The NBH model estimates for the logit 

of any caries are very different than the logit estimates for excess zeros in ZINB and MZINB 

models, which is not surprising given their distinct interpretations.

Table 5 reports incidence rate ratios (IRRs) and odds ratios (ORs) for NaF and NaF+TMP 

relative to SMFP. Unlike the fictional data example, estimates of the different IRRs were 

similar. From the MZINB (or NB) model, the mean caries increment for NaF in the overall 

population of children is approximately 94% the mean increment among those randomized 

to SMFP (p=0.08). From the ZINB model, the mean caries increment for susceptible 

children receiving NaF is approximately 95% of the mean caries increment among 

susceptible children randomized to SMFP (p=0.21). In all models, the effect for NaF was 

stronger than the effect for NaF+TMP but none of the differences between treatment pairs 

reached statistical significance.

The NBH model is the only model among those considered that estimates prevalence odds 

ratios corresponding to the effect of toothpastes on any new caries development. In 

particular, a representative child from the overall population who receives NaF has an 

estimated 93% the odds of developing caries after two years than a representative child from 

the overall population who receives SMFP. There was essentially no effect of NaF+TMP 

relative to SMFP for caries incidence. In summary, the four count data regression models 

applied to the Lanarkshire caries clinical trial data all found mild and non-significant effects 

of the fluoride toothpaste formulations relative to SMFP toothpaste.

Discussion

Three types of two-part models for counts with many zeros were described and applied to 

two datasets with emphasis given to choosing the class of model to match the research 

question. The example with fictional data illustrated the possibility of large numerical 
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differences in the different types of rate ratios and odds ratios that may be estimated for 

exposure effects according to the model chosen. In the Lanarkshire caries trial, treatment 

effect estimates were similar across the models, despite distinct interpretations among some 

of the effects.

The similarity of ZINB and MZINB model estimates of incidence rate ratios summarizing 

the toothpaste comparisons in the Lanarkshire caries trial are the result of small predicted 

probabilities of excess zeros (ranging from 1% for children with calculus and high baseline 

caries who received SMFP to 17% for children without calculus and low baseline caries who 

received NaF) and the fact that estimates for toothpaste effects in the excess zero model 

were small. If estimates for toothpaste effects in the excess zero model had been zero, then 

the IRRs from ZINB and MZINB for the toothpaste effect would have been identical; see 

equation (4) of Preisser et al. [2012]. Conversely, when there are moderate to large 

proportions of excess zeros, and when the exposure effects of interest are strong in both 

model parts, the marginalized zero-inflated count regression models can give notably 

different estimates compared to traditional zero-inflated models as demonstrated in the 

fictional data example.

Even though MZINB gave improved fits relative to NB regression, the two models produced 

similar estimates of overall incidence rate ratios (θM) in both data examples. In a simulation 

study based on the Lanarkshire clinical trial, MZINB gave only slightly improved power 

over NB when empirical standard errors were used in the latter to account for variance 

misspecification through failure to model the excess zeros [Preisser et al., 2014b]. However, 

another simulation study found that MZINB gave less biased overall exposure effects, 

improved Type I error and coverage of 95% confidence intervals closer to the nominal level 

than NB regression in models with continuous covariates having skewed (log-normal) 

distributions [Preisser et al., 2016] .

Hurdle models are used for count data when the proportion of individuals with any caries is 

of interest, which could be prevalence in a cross-sectional study or incidence in a 

prospective study or trial. They may also be used to compare the truncated-at-zero means 

between groups through post-modeling calculations, which was illustrated in the fictional 

data example. It would also be possible to estimate a parameter akin to θτ using appropriate 

adjustments for covariates by either fixing covariates at their mean values or by employing 

an average-predicted-value methods [Albert et al., 2014].

The NBH model reported in this article has distinct parameters in its two model parts, and as 

a result, it gives results for prevalence that are identical to those from ordinary logistic 

regression. A shared-parameter NBH model, also referred to as zero-altered negative 

binomial model for logistic regression (ZANB-logist), may be used when interest is in the 

dichotomized outcome of any caries [Preisser et al., 2014a]. In simulations, ZANB-logist 

models were shown to give large gains in statistical power relative to ordinary logistic 

regression for dichotomized counts.

All of the models discussed in this article, which were models for independent data 

estimated using maximum likelihood methods, have extensions to longitudinal or clustered 
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data. Random effects have been included in ZIP [Hall, 2000], ZINB [Yau et al., 2003], 

Poisson hurdle [Min and Agresti, 2005] and MZIP (Long et al., 2015] models. Generalized 

estimating equations (GEE) methodology has been employed for ZIP models [Hall and 

Zhang, 2004] and ZINB models [Kong et al., 2015] to obtain population-averaged 

interpretations. A possible extension of GEE methodology would be to the analysis of 

correlated outcomes with MZIP and MZINB models.

In some situations a reasonable alternative approach to modeling counts with or without 

excess zeros is to use a one-part cumulative logits model applied to an ordinal outcome 

created by clumping adjacent count categories together to form a small number (e.g., three, 

four or five) categories. Such models for cross-sectional and longitudinal data have been 

applied to patient outcomes in a randomized clinical trial of orthognathic surgery patients 

[Preisser et al., 2011].

Finally, some general recommendations on the use of MZINB, ZINB, NBH and NB are 

offered to encourage discussion on the uses and relative merits of the classes of count data 

models reviewed in this article. Foremost, the choice between a latent class model (ZINB), a 

model for prevalence (NBH) and a model for the marginal mean (NB, MZINB) should be 

based on the study’s purpose (Figure 2). When there is specific interest in the processes of 

disease, the latent class effects of ZINB models may be of interest. When interest is in 

modeling the probability of any caries, e.g., caries prevalence in a cross-sectional study or 

caries incidence in a prospective study, logistic regression or NBH models may be of 

interest. In most other settings, modeling the marginal mean will likely be of interest. In 

dental surveys, for example, zero-inflated marginalized models often correspond to study 

goals that are basically descriptive in nature. Additionally, MZIP and MZINB models as 

well as other members of a general class of marginal mean models for zero-inflated counts 

[Todem et al., 2016] should find wide use in epidemiological studies, and in some clinical 

trials such as the caries trial presented here. However, MZIP and MZINB models are prone 

to convergence problems to a degree shared by ZIP and ZINB models, which may preclude 

their use in settings where analyses must be prespecified such as for confirmatory 

randomized clinical trials in pharmaceutical regulatory environments [Long et al., 2014]. In 

such settings, Poisson or negative binomial regression with empirical variance estimation 

(for robustness against violation of variance assumptions) may be a better choice than two-

part models for their simplicity and relative stability (i.e. higher convergence rates) of their 

computational algorithms. Moreover, the practical performance in terms of statistical bias 

and efficiency of Poisson and NB (one-part) models as shown in simulation studies may be 

nearly as good as correctly specified two-part models [Preisser et al., 2016].

Conclusions

Investigators are often interested in estimating the effect of exposures and risk factors on the 

mean dental caries indices or increment in the overall sampled population as opposed to the 

index/increment for some unobserved subpopulation of individuals believed to be at risk for 

dental caries. In data with many zero counts (e.g., no dental caries), two-part count models 

are widely recognized as an effective tool for achieving adequate fits of regression models to 

count data. This article emphasized the distinct interpretations of NBH, ZINB and MZINB 
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models and argued that the statistical model class chosen should match the study’s purpose. 

Moreover, illustrative examples showed that regression parameter estimates for exposure 

effects on the different types of mean counts estimated by the respective models may have 

substantial differences.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The top half of the figure presents equivalent representations of counts generated from a 

negative binomial (NB) distribution with added zeros describing dmft among a fictional 

population of children on a normal diet: (a) a zero-inflated NB distribution with (ψ=0.40, 

μ=1.00, ϕ=0.50); (b) a NB hurdle distribution with (π=0.33, μ=1.0, ϕ=0.50); (c) a 

marginalized zero-inflated NB distribution with (ψ=0.40, ν=0.60, ϕ=0.50). The bottom half 

presents equivalent representations of counts for dmft among children on a high sugar diet: 

(d) a zero-inflated NB distribution with (ψ=0.10, μ=3.00, ϕ=0.50); (e) a NB hurdle 

distribution with (π=0.76, μ=3.00, ϕ=0.50); (f) a marginalized zero-inflated NB distribution 

with (ψ=0.10, ν=2.70, ϕ=0.50).
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Figure 2. 
Flowchart for count regression model choice. ZIP and ZINB models are chosen when 

interest in latent classes for the study of disease processes. Otherwise, MZIP and MZINB, 

like Poisson regression and negative binomial regression, have use for random samples in 

population-based oral health surveys and epidemiological studies or convenience samples 

for clinical trials where overall effects of treatment and exposures on marginal means are of 

interest. Hurdle models are of interest in modeling prevalence in populations or, secondarily 

(dashed line), at-risk class means.
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Table 1

Descriptive Statistics for dmft in a fictional population of children

Normal diet High sugar diet Rate ratio Prevalence Odds ratio

N 500 500

Mean (ν), (sd) 0.63 (1.06) 2.58 (2.84) 4.07

Prevalence, π 0.36 0.73 4.84

Mean (τ), (sd) 1.78 (1.07) 3.54 (2.77) 1.99

Note that ν is the mean of the overall group of 500 children; τ= E(Y|Y>0) is the mean among the children in the group with positive dmft counts.
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