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Abstract

The muscle-specific ubiquitin ligase muscle ring finger-1 (MuRF1) is critical in regulating both 

pathological and physiological cardiac hypertrophy in vivo. Previous work from our group has 

identified MuRF1's ability to inhibit serum response factor and insulin-like growth factor-1 

signaling pathways (via targeted inhibition of cJun as underlying mechanisms). More recently, we 

have identified that MuRF1 inhibits fatty acid metabolism by targeting peroxisome proliferator-

activated receptor alpha (PPARα) for nuclear export via mono-ubiquitination. Since MuRF1−/− 

mice have an estimated fivefold increase in PPARα activity, we sought to determine how 

challenge with the PPARα agonist fenofibrate, a PPARα ligand, would affect the heart 

physiologically. In as little as 3 weeks, feeding with fenofibrate/chow (0.05% wt/wt) induced 

unexpected pathological cardiac hypertrophy not present in age-matched sibling wild-type 

(MuRF1 +/+) mice, identified by echocardiography, cardiomyocyte cross-sectional area, and 

increased beta-myosin heavy chain, brain natriuretic peptide, and skeletal muscle α-actin mRNA. 

In addition to pathological hypertrophy, MuRF1−/− mice had an unexpected differential 

expression in genes associated with the pleiotropic effects of fenofibrate involved in the 

extracellular matrix, protease inhibition, hemostasis, and the sarcomere. At both 3 and 8 weeks of 

fenofibrate treatment, the differentially expressed MuRF1−/− genes most commonly had 
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SREBP-1 and E2F1/E2F promoter regions by TRANSFAC analysis (54 and 50 genes, 

respectively, of the 111 of the genes >4 and <−4 log fold change; P≤.0004). These studies identify 

MuRF1's unexpected regulation of fenofibrate's pleiotropic effects and bridges, for the first time, 

MuRF1's regulation of PPARα, cardiac hypertrophy, and hemostasis.
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1. Introduction

The muscle-specific ubiquitin ligase muscle ring finger-1 (MuRF1) plays a critical role in 

the regulation of both pathological and physiological cardiac hypertrophy in vivo. Mice 

globally lacking the striated muscle-specific MuRF1 (MuRF1−/−) exhibit an exaggerated 

physiological hypertrophy in response to exercise and an exaggerated pathological 

hypertrophy in response to pressure overload. This is attributed to MuRF1's ability to inhibit 

serum response factor (SRF) and insulin-like growth factor-1 (IGF-1) signaling pathways, in 

part, through its targeted inhibition of cJun) [1–3]. MuRF1 also has a more direct role in 

regulating cardiac muscle mass by targeting proteasome dependent degradation of 

sarcomere proteins [4–6]. MuRF1 interacts directly with cardiac troponin I, cardiac myosin 

binding protein-c (cMyBP-c), and myosin heavy chain, to direct their subsequent poly-

ubiquitination and proteasome-dependent degradation [4,6,7]. This regulation of sarcomere 

degradation explains why MuRF1−/− mice have resistance to cardiac atrophy and a limited 

ability to regress upon unloading after the induction of pressure overload-induced cardiac 

hypertrophy [8]. By regulating both the indirect signaling processes that activate cardiac 

hypertrophy and directly targeting sarcomere proteins for degradation, MuRF1 regulates the 

heart's response to external stress that lead to disease.

Increasing cardiomyocyte MuRF1 inhibits fatty acid (FA) oxidation, which has been found 

to be mediated, in part, by MuRF1's inhibition of the FA metabolism [9]. Increasing MuRF1 

inhibits peroxisome proliferator-activated receptor alpha (PPARα) though mono-

ubiquitination, which targets the nuclear export of PPARα resulting in activity inhibition 

[9]. Conversely, MuRF1−/− hearts have a 500% increase in PPARα activity, while 

demonstrating no significant differences in cardiac PPARδ/β and PPARγ activities in vivo 

[9]. Enhanced PPARα activity has been attributed to the pathogenesis of diabetic heart 

disease, where excess dietary fat acts as a ligand to drive FA oxidation, lipid accumulation, 

reduced glucose utilization, and a characteristic cardiomyopathy, clinically [10]. In mice 

with cardiomyocyte overexpression of PPARα, this diabetic cardiomyopathy is 

recapitulated, demonstrating its potential role in disease [10].

Since MuRF1−/− mice exhibit a fivefold increase in PPARα activity, we sought to 

determine how challenge with fenofibrate, a PPARα ligand, would affect the heart 

physiologically. In as little as 3 weeks, fenofibrate treatment induced an unexpected cardiac 

phenotype in MuRF1−/−, but not age-matched sibling wild-type (MuRF1 +/+) mice. 

Moreover, MuRF1's regulation of fenofibrate's pleiotropic effects was identified for the first 
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time, connecting MuRF1's regulation of PPARα, cardiac hypertrophy, and hemostasis for 

the first time.

2. Materials and methods

2.1. Animals

Twelve- to 16-week-old MuRF1−/− mice [2] and age-matched MuRF1 +/+ controls (n=21; 

50% male/50% female) underwent conscious echocardiography using a Vevo 770 

ultrasound biomicroscopy system (VisualSonics, Inc., Toronto, Canada) as previously 

described [8,11,12]. Animal use was approved by the Institutional Animal Care and Use 

Committee at the University of North Carolina at Chapel Hill.

2.2. Fenofibrate feeding protocols

Mice were randomized to receive either standard mouse chow (n=10; Prolab RMH 3000; 

Purina LabDiet, Oxford, NC, USA) or standard mouse chow containing fenofibrate (n=11; 

0.05% wt/wt, F6020; Sigma, St. Louis, MO, USA). Standard mouse chow and fenofibrate 

were sent to TestDiet (St. Louis, MO, USA) and Granville Milling (Creedmoor, NC, USA) 

milled the experimental fenofibrate chow. Mouse chow (fenofibrate and standard sham 

chow) were administered ad libitum starting on day 1 of the protocol and commencing at the 

end of the 3- or 8-week protocol.

2.3. Morphological analysis of the heart by histology and transmission electron 
microscopy (TEM)

Cardiac tissue was fixed via perfusion for use in histological analysis, as described 

previously [2,3]. Fixed heart tissues were paraffin embedded, sectioned, and stained with 

H&E or Masson's trichrome staining. Imaging of stained sections was obtained using Aperio 

Scanscope and Aperio Imagescope software (version 10.0.36.1805, Aperio Technologies, 

Inc., Vista, CA). Heart apices were fixed in preparation for transmission electron 

microscopy (TEM), as described previously [3], or stained with Triticum vulgaris lectin 

TRITC conjugate as previously described [2]. Myocyte area was determined using NIH 

ImageJ (version 1.38X) based on photomicrographs of a standard graticule ruler. Fibrosis 

was determined using the Aperio Imagescope's Positive Pixel Count Algorithm to analyze 

Masson's trichrome-stained four-chamber sections (n=3/mouse), hue value=0.66 (blue), and 

hue width=0.1 (detection threshold above background white). The pen tool was used to 

isolated tissue sections to analyze, and the % fibrosis was expressed as the weighted average 

% of the n positive (collagen blue)/n total (tissue, defined by the nonwhite area).

2.4. RNA isolation from cardiac tissue

Cardiac tissues were homogenized using a TissueLyser LT (Cat. #69980; Qiagen N.V., 

Venlo, the Netherlands) according to the manufacturer's protocols. Approximately 20–40 

mg of apical ventricle was homogenized in 1 ml of Trizol (Cat. #15596-026; Life 

Technologies, Inc., Carlsbad, CA, USA) using a 5-mm stainless steel bead (Cat. #69989; 

Qiagen, N.V.). Chloroform (200 μl) was added and centrifuged at 12,000g (15 min at 4°C), 

isopropanol (0.5 ml) was added to the aqueous phase and centrifuged at 12,000g (10 min at 

4°C), and the resulting RNA pellet was washed with 1 ml of 75% ethanol, dried, and 
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resuspended in RNAse-free water. RNA concentration was then determined by UV 

spectroscopy (absorbance of 260–280 nm).

2.5. Real-time polymerase chain reaction and statistical analysis

RNA (500 ng) was reverse-transcribed using iScript reverse transcription supermix (Cat. 

#170-8841; Bio-Rad, Laboratories, Inc., Hercules, CA, USA). Gene expression assays were 

performed using Taqman Gene Expression Assays (Life Technologies) and Universal 

Taqman Master mix (Life Technologies, Cat. #4304437). Cardiac hypertrophy fetal gene 

expression was monitored using probes for beta-myosin heavy chain (β-MHC; 

Mm00600555_m1), skeletal muscle α-actin (Mm00808218_g1), and brain natriuretic 

peptide (BNP; Mm00435304_g1) mRNA. MuRF1's regulation of PPAR-associated genes 

was monitored using probes for CD36 (Mm00432403_m1), CPT-1 (Mm00487200_m1), 

PGC-1 (Mm00447183_m1), PDK4 (Mm00443325_m1), FATP1 (Mm0449811_m1), 

PRKAA2 (Mm01264791_g1), PPARα (Mm00440939_m1), PPARβ (Mm01305434_m1), 

Acox1 (Mm00443579_m1), FABP3 (Mm00445880_1), FABP4 (mm0232494_m1), LPL 

(Mm00434770_m1), and reference 18S (Hs99999901_s1). Mitochondrial number was 

quantified by quantitative polymerase chain reaction (qPCR), and DNA was isolated from 

50 μl whole-heart homogenates using the DNAeasy Blood and Tissue Kit (Qiagen; Cat. 

#69506). Isolated DNA and oligomer primers for mitochondrial cytochrome c oxidase 

subunit 1 (CO1; aka mt-CO1), cytochrome b (Cyt-b; aka mt-Cyb), and NADH 

dehydrogenase 1 (ND1; aka mt-nd1) DNA normalized to nuclear H19 (imprinted maternally 

expressed transcript, nonprotein coding) DNA were run in SYBR green mastermix by qPCR 

including melting curves as previously detailed [13]. Select genes differentially expressed 

by microarray (cMyBP-C, MuRF1, TNNI3, FABP3, COL1A, PLN, NKX2.5, and β-actin were 

analyzed by RT-qPCR as previously detailed [14]. PCR primers and fluorogenic probes 

[reporter dye, FAM (F); quencher dye, TAMRA (Q)] were created using Primer Express 

(Table 1) and quantified using the ABI Prism 7700 sequence detector (PE Biosystems, 

Foster City, CA, USA). GraphPad Prism 6 (GraphPad Prism Software Inc., La Jolla, CA, 

USA) was used to determine significant statistical difference by one-way analysis of 

variance followed by post hoc analysis using the Holm–Sidak method. A P value<.05 was 

considered significant.

2.6. Microarray RNA isolation, cDNA amplification/labeling, hybridization, data analysis, 
and statistics

Total RNA from heart was isolated using the All Prep DNA/RNA/Protein isolation kit 

(Qiagen, Inc., Valencia, CA, USA) and verified for integrity using the BioAnalyzer 2100 

(Agilent Technologies, Inc., Santa Clara, CA, USA). RNA samples labeled with cyanine-5 

CTP in a T-7 transcription reaction using the Agilent Low Input Linear RNA Amplification/

Labeling System were hybridized to Agilent 4x44K microarray slides (GPL4134 platform, 

Catalog #G4122F; Agilent Technologies, Inc.) in the presence of equimolar concentrations 

of cyanine-3 CTP-labeled mouse reference RNA [15]. Slides were hybridized, washed, and 

scanned on an Axon 4000b microarray scanner, and data were processed using Feature 

Extraction (version 9.1.3.1; Agilent). Postprocessing included loess-centered [16,17] and 

median-centered normalization using GeneSpring GX (version 10.0.1 Build 81217; 

Agilent). The Database for Annotation, Visualization and Integrated Discovery (DAVID) 
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[16,17] identified significantly enriched functional clusters (high classification stringency, 

group enrichment score of >1.3, P<.05) using multiple annotation libraries from lists of 

differentially expressed genes and using the genes represented on the microarray as 

background (see Supplementary Table 1 for DAVID annotation libraries used). Complete, 

MIAME-compliant data sets were deposited with the Gene Expression Omnibus of the 

National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/geo/) [18] and 

are accessible through GEO Series accession number GSE68480.

The processing of all sample files — including the generation of images and the conducting 

of statistical comparisons — was performed using R Programming Language (R). In brief, 

raw/normalized data were inputted using the “read.maimages” function of the “limma” R 

package. For statistical comparisons, the study design model was first created (represented 

as a matrix) by identifying sample groupings based on the following variables: (1) MuRF1−/

− or MuRF1+/+, (2) time point, and (3) fenofibrate-integrated or sham chow diet. Individual 

comparisons within the study design model were then conducted by first fitting a linear 

statistical model through each probe across the samples going into each comparison using 

“lmfit” (limma). The linear fit for each comparison was subsequently modified using the 

empirical Bayes (“eBayes”) approach, which aims to bring the probe-wise variances across 

samples to common values, resulting in modified t statistics, F statistic, and log odds 

differential expression ratios. Finally, for each comparison, log fold change (logFC), P 

value, and corrected P value (false discovery rate, or FDR) was output. MA plots for each 

comparison were generated using “plotMA” (limma), plotting average log2 expression vs. 

logFC. Gene enrichment using GenBank accessions as keys was performed using the 

Database for Annotation, Visualization, Integration and Discovery (http://

david.abcc.ncifcrf.gov/). Where available, each gene was annotated with Gene Ontology 

(GO; cellular component, biological process, and molecular function databases) and also 

KEGG and BioCarta pathways. GO enrichment analysis was visualized using R 3.1.0. 

Hierarchical clustering with the Euclidean metric and complete linkage was performed to 

group genes based on their log2 fold change in expression. The heatmap.2() function in the 

gplots (http://cran.r-project.org/web/packages/gplots/index.html) package in R was used to 

create the heatmaps of the GO fold enrichment scores resulting from the DAVID analysis.

3. Results

The fibric acid derivative fenofibrate is used clinically for the treatment of 

hypertriglyceridemia and mixed dyslipidemia in patients not responding to 

nonpharmacological therapies. The lipid-modifying effects of fenofibrate are mediated by its 

activation of PPARα in the liver [inhibiting the synthesis and release of very low density 

lipoproteins and increasing apolipoprotein A-I (apoA-I) and apolipoprotein A-II (apoA-II)] 

and small intestine (stimulating apoA-I), and an increase in lipoprotein lipase in skeletal 

muscle [19]. Fenofibrate also has more pleiotropic effects, not related to lipid metabolism 

including the reduction of fibrinogen, C-reactive protein, and other inflammatory markers 

that may contribute to its clinical efficacy, particularly microvascular disease [20]. MuRF1−/

− mice were fed a standard mouse chow with 0.05% fenofibrate continuously for 8 weeks 

and followed by conscious echocardiography for function (Fig. 1A). Heart, liver, and 
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skeletal muscle samples were harvested at both 3 and 8 weeks for histological analysis, gene 

expression, and serum chemistry analysis (Fig. 1B).

Like the effects seen clinically in patients with hypercholesterolemia, MuRF1−/− and 

MuRF1+/+ mice achieved improvements in serum triglyceride concentrations by 8 weeks of 

treatment with fenofibrate (Fig. 1C). Only minor differences between MuRF1−/− and 

sibling age-matched MuRF1 +/+ mice were seen over the course of fenofibrate treatment, 

notably significantly decreased low-density lipoprotein at 8 weeks of treatment (Fig. 1D). 

Glucose levels were in the reference range throughout the study (<100 mg/dl) and did not 

differ between MuRF1−/− and MuRF1+/+ mice (Fig. 1D).

Histologically, MuRF1−/− hearts did not differ in size in sibling age-matched cardiac 

sections (Fig. 1E). By gross and histological analysis, no evidence of inflammation was 

identified (Fig. 1E). No differences in fibrosis were identified by digital image 

quantification of Masson's trichrome staining for collagen (Fig. 1F). As with previous 

studies of MuRF1−/− hearts [2,8], no histological evidence of pathology or other differences 

was identified compared to MuRF1 +/+ hearts.

We next investigated genes regulated by PPARα in MuRF1−/− and MuRF1 +/+ control 

hearts, skeletal muscle, and the liver (Fig. 2). The PPARα transcription factor broadly 

regulates FA and glucose metabolism in mice and humans. In mice, PPARα activation 

induces genes coding for the FA transporter CD36 and the FA binding protein 1 (FABP1), 

which are responsible for transporting FAs from the plasma membrane to the nucleus 

[21,22]. Carnitine palmitoyl transferase 1 (CPT1) encodes for a FA transporter that converts 

acyl-carnitine to acyl-CoA and is up-regulated transcriptionally by PPARα agonists [23]. 

PPARα also increases PGC-1 expression [24], a protein co-activator of PPARα [25]. 

Counteracting these proteins to increase the FA utilization of cells, PPARα activity also 

enhances pyruvate dehydrogenase kinase 4 (PDK4) expression. In the present study, we 

identified that fenofibrate treatment induced expression of cardiac pdk4 mRNA (Fig. 2A), 

cpt-1, and pgc-1 mRNA in the gastrocnemius (Fig. 2B) and liver (Fig. 2C). A number of 

other reported PPARα genes were also assayed in the heart (Supplementary Fig. 1A), 

gastrocnemius (Supplementary Fig. 1B), and liver (Supplementary Fig. 1C) in MuRF1−/− 

and MuRF1 +/+ mice, including fatp1, Prkaa2 (AMP-activated alpha 2 catalytic subunit), 

acox1, fabp3, fabp4, and lpl. The expression of these genes was not increased in response to 

fenofibrate treatment, with the exception of fatp-1 and lpl mRNA in the liver 

(Supplementary Fig. 1C). MuRF1−/− hearts did not exhibit significantly differ from MuRF1 

+/+ with respect to PPARα-associated genes in sham or 3/8-weeks fenofibrate treatment.

MuRF1 has recently been reported to interact with multiple proteins found in mitochondria 

[26], with increased cardiac MuRF1 expression affecting mitochondrial ROS production in 

vivo [27]. Because fenofibrate can affect cardiac mitochondrial respiration [28–30], we next 

investigated mitochondria number and ultrastructure in MuRF1−/− hearts after fenofibrate 

treatment (Fig. 3). DNA was isolated MuRF1−/− hearts and quantitatively analyzed for 

mitochondrial CO1 (aka mt-CO1), Cyt-b (aka mt-Cyb), and ND1 (aka mt-nd1) DNA 

normalized to nuclear H19 (Imprinted maternally expressed transcript, nonprotein coding) 

DNA by qPCR (Fig. 3A). The composite of the three genes demonstrates the MuRF1−/− 
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hearts do not have different DNA number in Chow controls or after 3/8 weeks of fenofibrate 

treatment (Fig. 3A). Of the three individual mitochondrial C01, Cytb, and ND1 expression 

assayed, MuRF1 exhibited significant decreases in cardiac C01 at 3 weeks (with trends at 8 

weeks of decreased expression) (Supplementary Fig. 2A). Ultrastructurally, chow-treated 

MuRF1−/− control hearts do not differ from MuRF1 +/+ sibling controls by transmission 

electron microscopy, as previously described (data not shown) [2]. After 3 weeks of 

fenofibrate treatment, no changes in sarcomere ultrastructure were observed (Fig. 3B vs. 3C, 

for example). Subtle changes were seen in the sub-sarcomemmal mitochondria, including 

qualitatively more vesicles (Fig. 3C, D). Periodic, disrupted mitochondria were also seen 

more frequently in MuRF1−/− hearts by TEM (Fig. 3E), suggesting a role of MuRF1 in 

maintaining mitochondrial integrity upon treatment with fenofibrate. These findings were 

cardiac specific, as analysis of MuRF1−/− gastrocnemius from the same animals did not 

reveal any histological differences compared to MuRF1 +/+ and chow-fed animals 

(Supplementary Fig. 3). Given MuRF1's role in regulating (inhibiting) ROS production and 

fenofibrate-regulation of mitochondrial respiration, these findings may indicate MuRF1’ 

integral role in PPARα-mediated changes in respiration in vivo.

With our recent discovery that MuRF1 inhibits PPARα activity in vivo, with MuRF1−/− 

hearts having 500% found in MuRF1 +/+ controls [9], identifying the effects of fenofibrate 

on MuRF1−/− cardiac function and structure was a key focus of these studies. Conscious 

echocardiography was performed on mice at baseline, and 3 weeks and 8 weeks after 

fenofibrate treatment was given (Fig. 4). As expected, fenofibrate treatment did not affect 

the hearts of MuRF1 +/+ mice over the course of the study, including anterior and posterior 

wall thickness (Fig. 4A). However, MuRF1−/− hearts significantly increased in wall 

thickness at both 3 and 8 weeks (Fig. 4A). Fenofibrate did not significantly alter MuRF1−/− 

or MuRF1 +/+ systolic function, body weight, or heart rate at 3 and 8 weeks (Fig. 4B). 

MuRF1−/− hearts did have alterations in baseline interventricular distance (left ventricular 

end-distance in diastole and systole), which are used to calculate left ventricular mass and 

left ventricular volumes, which was also greater (Fig. 4C). Representative M-mode images 

demonstrate this increased interventricular diameter (Fig. 4D).

Since MuRF1 has been implicated in the regulation of cardiac hypertrophy [1,2], we next 

investigated the possibility that the increased wall thickness represented increased 

cardiomyocyte size. Cross-sectional analysis of MuRF1−/− cardiomyocyte cross-sectional 

area was performed at multiple heart levels on biological replicates (Fig. 5A). As in previous 

studies, chow-fed control MuRF1−/− hearts and sibling MuRF1 +/+ controls did differ in 

cross-sectional area (Fig. 5A). However, significant increases in cardiomyocyte cross-

sectional area were seen at both 3 weeks (Fig. 5B) and 8 weeks (Fig. 5C), consistent with 

the development of cardiac hypertrophy in response to fenofibrate stimulation. Similarly, 

actual heart weight to tibia length at the end of 8 weeks of fenofibrate treatment 

demonstrated significantly increased weights in MuRF1−/− hearts compared to sibling-

matched controls (Fig. 5D). Similarly, gastrocnemius mass/TL was significantly increased at 

8 weeks of fenofibrate treatment (Supplementary Fig. 4A), while liver weight was 

unaffected (Supplementary Fig. 4B). To delineate the underlying mechanisms of 

fenofibrate-induced cardiac hypertrophy, genes up-regulated with pathological, but not 

physiological, hypertrophy were assayed in MuRF1−/− and MuRF1 +/+ hearts by RT-
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qPCR. βMHC, BNP, and skeletal muscle α-actin mRNA were significantly higher in 

MuRF1−/− hearts (Fig. 5E-G). Since MuRF1 has been implicated in inhibiting physiological 

cardiac hypertrophy in vivo, with spontaneous physiological cardiac hypertrophy occurring 

in much older MuRF1−/− mice due to enhanced IGF-1 signaling [1], and decreased 

proteasome function [31], these findings were surprising.

We next sought to identify the underlying mechanisms of the pathological cardiac 

hypertrophy induced in MuRF1−/− mice in response to fenofibrate. Comparisons of 

MuRF1+/+ and MuRF1−/− hearts from mice fed control (chow) or chow with fenofibrate 

for 3 weeks or 8 weeks were made using a 44,000-probe microarray. The differential 

expression of genes normalized to reference cDNA was then identified by comparing 

MuRF1−/− cardiac mRNA expression to MuRF1+/+ mice fed chow or fenofibrate chow for 

3 or 8 weeks. Comparison of chow-fed MuRF1−/− cardiac mRNA expression to MuRF1 +/+ 

hearts demonstrated few differences, with only 1 gene >2 log fold change higher and 2 

genes <−2 log fold change lower, with MuRF1 lowest expression of all the genes, as 

expected (Supplementary Table 2).

At 8 weeks of fenofibrate/chow diet, MuRF1−/− hearts differentially expressed 144 genes 

>4 log fold change or <−4 log fold change compared to MuRF1+/+ hearts (Fig. 6A; 

Supplementary Table 3). Of the 144 genes, 108 were decreased and 36 were significantly 

greater than fourfold MuRF1+/+ (Fig. 6A).

TRANSFAC analysis of these 144 differentially genes for common promoter binding sites 

identified that 54 had promoter binding sites for the sterol regulatory element-binding 

transcription factor (SREBP1) (P=.0001, Bayes Factor 5); 36/14/20 genes had promoter 

binding sites for E2F-1/E2F1/E2F (P=.0002, .004, .005; Bayes Factor 5/4/4); and 11 genes 

had promoter binding sites for the COUP transcription factor (P=.0004, Bayes Factor 4) 

(Fig. 6B). More than ~3/4 of these 144 genes had decreased expression in MuRF1−/− hearts 

compared to MuRF1 +/+ hearts (Fig. 6C, royal blue in heat map). The remaining genes had 

increased expression (Fig. 6C, teal in heat map). To delineate the biological significance of 

the MuRF1−/− heart differentially expressed genes at 8 weeks post-fenofibrate treatment, 

DAVID analysis was performed on the 144 genes and the DAVID enrichment score plotted 

in shades of red, right (Fig. 6C). The most represented genes were found in extracellular 

region categories (Fig. 6C, left). The highest DAVID enrichment scores were seen in (i) 

sarcomere/contractile fibers; (ii) protease inhibitors; and (iii) hemostasis/sarcomere, as 

detailed in Fig. 7A, B/Supplementary Fig. 6A, and Fig. 7C/Supplementary Fig. 6B, 

respectively.

Since MuRF1 is a ubiquitin ligase and has primarily been described to regulate the turnover 

of proteins, including many sarcomere proteins (e.g., troponin I, myosin heavy chain, and 

cMyBP-C) by posttranslational modification targeting these proteins for proteasome-

dependent degradation experimentally, the transcriptional regulation of these targets was 

unexpected. For example, the MuRF1−/− hearts had significantly increased cardiac myosin 

binding protein c (cMyBP-C), troponin I (TnnI3), myosin light chain-2 (myl-2), and myl-3 

expression >4 log fold increased (Fig. 7A; Supplementary Table 3). MuRF1−/− hearts also 
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have increased expression of phospholamban (PLN), plakophilin 2 (PKP2), and ANP 

(NPPA) mRNA, involved in the performance/contractility of the heart (Fig. 7A).

Discovered initially in 2001, MuRF1 has not been linked to hemostasis or protease 

inhibitors to our knowledge. However, a series of studies over the past few years have 

elucidated fenofibrate's pleiotropic activities beyond PPARα agonism [20,32], including 

down-regulation of complement and inflammatory responses [32–34] and alterations in 

proteases [35,36]. These studies may offer some insight in the finding that MuRF1−/− hearts 

had significant decreases in genes categorized as protease inhibitors (Fig. 7B) or involved in 

hemostasis (Fig. 7C). Of the genes represented in the most GO subcategories and with the 

highest enrichment scores (bright red), MuRF1−/− heart expressed <−4 log fold change less 

cystatin A (CSTA; aka STFA1/STFA3), jininogen 1 (KNG1), apolipoprotein H (APOH), and 

serpin peptidase inhibitor (SerpinA1B) (Fig. 7B/C). MuRF1−/− hearts additionally had 

significantly decreased expression (<−4 log fold change) of apolipoproteins ApoB, ApoA4, 

and the Serpin A3M, detailed in Supplementary Fig. 6 (Supplementary Table 3).

To begin to validate these findings in the MuRF1−/− hearts after 8 weeks of fenofibrate 

treatment, we analyzed MuRF1−/− hearts after 3 weeks of fenofibrate treatment to identify 

if these changes were seen early in the process of MuRF1−/− cardiac hypertrophy. We 

identified 25 genes with increased expression >4 log fold change and 86<−4 log fold change 

vs. MuRF1 +/+ challenged with fenofibrate for 3 weeks (Supplementary Fig. 7A and 

Supplementary Table 4). Of these 111 differentially expressed genes, 45 had promoter 

binding sites for the SREBP1 (P<.0001, Bayes Factor 6); 27/15 genes had promoter binding 

sites for E2F-1/E2F1/E2F (P=.0004 and .002, Bayes Factor 4/3); and 2 genes had promoter 

binding sites for the PPAR:RXR heterodimer sites on PPARα (P=.001, Bayes Factor 3) 

(Supplementary Fig. 7B). In addition to mirroring the transcription factors related to the 

differentially expressed genes SREBP1 and E2F1/E2F, most genes found in GO categories 

were related to the extracellular region (Fig. 6C; Supplementary Fig. 7C). There were also 

significantly decreased apolipoproteins found in MuRF1−/− hearts after 3 weeks of 

fenofibrate (Supplementary Fig. 7D), including APOH, APOA2, APOB_35, ApoA4_30, and 

FABP, which were found in the MuRF1 −/− hearts at 8 weeks (Fig. 7B, C). Lastly, 

MuRF1−/− hearts after 3-week fenofibrate treatment had significantly decreased genes 

involved with hemostasis (Supplementary Fig. 7E), as seen at 8 weeks (Fig. 6C), confirming 

these changes in independent experiments. Confirmation studies of some of the genes where 

MuRF1 exhibited increased mRNA were performed using RT-qPCR. MuRF1−/− hearts 

(confirmed by PCR; Fig. 8A) exhibited significant increases of Col1A, Pln, and Nkx2.5, 

(Fig. 8B–D). MyBPC3, FABP3, and TnnI3 mRNA were not identified as different (Fig. 8E–

G).

4. Discussion

Rare variants in the ubiquitin ligase MuRF1 have recently been reported to be a cause of 

human hypertrophic cardiomyopathy [37], a malignant modifier of hypertrophic 

cardiomyopathy caused by other mutations [37,38], and a cause of cardiac and skeletal 

protein aggregate myopathy [39]. Given that loss-of-function MuRF1 mutations are found in 

human disease causing human hypertrophic cardiomyopathy [37], understanding the 
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relationship between MuRF1 and hypertrophy is needed. Clinically, fenofibrate is used to 

treat dyslipidemia and is therapeutically valuable in lowering serum triglycerides in patients 

[20]. In the present study, we identified an unexpected link between fenofibrate and cardiac 

hypertrophy in MuRF1−/− hearts at doses that effectively lowered serum triglyceride levels 

after 8 weeks of treatment (Fig. 1C). The standard dose of fenofibrate used in the present 

study of 0.05%, which has been estimated to be about 65 mg/body weight/day, equivalent to 

1.5 times the recommended human dose on the basis of mg/m2 (20 times the human dose 

based on body weight comparisons) [40]. The spontaneous induction of cardiac hypertrophy 

in the absence of MuRF1 may be clinically important in patients with known or suspected 

mutations in MuRF1 and should be considered when treating and monitoring hypertrophic 

cardiomyopathy patients in the future.

In the present study, the development of MuRF1−/− cardiac hypertrophy in response to 

fenofibrate represents the induction of pathological cardiac hypertrophy. Characterized by 

significant increases in anterior and posterior wall thickness (Fig. 4A) and cardiomyocyte 

cross-sectional area (Fig. 5A–C) in as little as 3 weeks, the activation of βMHC, BNP, and 

skeletal muscle α-actin in mice with increased heart weight/tibia length (Fig. 5D–G) is 

diagnostic of pathologic hypertrophy. This should be contrasted with the spontaneous 

development of physiological hypertrophy in MuRF1−/− mice reported to occur at 9+ 

months of age by our group [1] and others [41]. Interestingly, both reports identified the 

enhanced IGF-1/Akt signaling as a mechanism in the absence of pathological hypertrophy 

markers, such as βMHC, ANP, and BNP mRNA [1,41].

The role of PPARα activation in cardiomyopathy and hypertrophy has been eluded to in 

diabetic cardiomyopathy, where excessive PPARα activation, downstream ROS, and 

lipotoxicity have been implicated [42,43]. Activation of PPARα has been linked to the 

cardiomyocyte hypertrophy induced by leptin in cultured neonatal rat cardiomyocytes [44]. 

Evidence of MuRF1−/− hearts exhibiting exaggerated PPARα activity, measured by 

PPARα-associated genes compared to MuRF1 +/+ hearts was limited. Of the PPARα-

regulated genes investigated, MuRF1−/− hearts had a significantly increased PDK4 mRNA 

compared to MuRF1 +/+ hearts after fenofibrate treatment, while gastrocnemius exhibited 

significant increases in CD36 (Fig. 2). Increasing expression of PDK4 in the heart itself has 

not been reported to be pathologic in vivo [45] and has been shown to trigger an adaptive 

metabolic response [46]. Alterations in mitochondrial size and lipid accumulation have been 

associated with increased PPARα activation [47]. However, no changes in mitochondrial 

number and only minimal qualitative alterations were identified in MuRF1−/− hearts post-

fenofibrate feeding up to 8 weeks (Fig. 3). Together, these observations illustrate only minor 

contributions of increased PPARα activity in MuRF1−/− hearts to the induction of 

pathological activity.

The strongest evidence for the phenotype identified in the present study is MuRF1's 

transcriptional regulation of SREBP1 and E2F1. Notably in the microarray signature of the 

MuRF1−/− hearts after 8 weeks of fenofibrate treatment, 54 genes (P=.0001, Bayes Factor 

5) with SREBP1 promoter binding sites were differentially expressed of the 144 identified 

(Fig. 6B). It is important to note that SREBP1 and E2F1 activities were not measured 

directly here, but should be investigated in future studies. In a previous study, we identified 
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that the lack of both MuRF1 and MuRF2 (MuRF1−/−//MuRF2−/−) altered the regulation of 

E2F1 activity measured by chromatin IP studies (occupying the promoter of p21, Brip1, 

PDK4), but did not address how MuRF1 alone regulated E2F1 [48]. Since MuRF1−/− mice 

have an increased PPARα activity (REF), another possibility is that PPARα regulates 

SREBP1 and E2F1. But the evidence for PPARα regulation of SREBP-1 and E2F1 is 

sparse, including the finding that PPARα−/− mice have altered SREBP-sensitive gene 

expression in the liver [49] and in vascular smooth muscle, PPARα agonists target the 

E2F/p16/RB transcriptional cascade to repress cell cycle-dependent telomerase activation 

[50]. Increasing expression of the SREBP-1 transcription factor itself increases 

cardiomyocyte mass [51]. In skeletal muscle, SREBP-1 regulates muscle protein synthesis, 

with increasing SREBP-1 enhancing MYOD1, MYOG, and MEF2C factors [52]. In 

embryonic chick atrial myocytes, SREBP-1 has been described to affect the heart's response 

to parasympathetic stimulation [53,54].

While fenofibrate activity has been classically attributed to the activation of PPARα in 

skeletal muscle and liver [55], this role has not been directly attributed to PPARα activation 

in cardiomyocytes. In fact, the concept that fenofibrate has cardioprotective roles 

independent of its role in lowering cholesterol have been reported by numerous 

investigators. Clues to these “pleiotropic” effects were reported in the 1980s, with 

fenofibrate's platelet aggregation reduction reported in 1987 [56]. Later studies found that 

fenofibrate potentiated warfarin effects [57]. Recent studies of comparative transcriptomic 

and metabolomics analysis of fenofibrate treatment in mice identified down-regulated genes 

in blood coagulation and fibrinolysis, overlapping with fish oil treatment [34]. In our 

studies, the highest differential expressions between any groups were identified between the 

MuRF1−/− and MuRF1 +/+ controls (Fig. 6). While significant fenofibrate-induced gene 

expression changes were observed in MuRF1 +/+ (Supplementary Table 5) and MuRF1−/− 

(Supplementary Table 6) hearts after fenofibrate treatment, the degree of change was 

relatively small. Only 16 genes were >[2] log fold change different in MuRF1 +/+ hearts at 

8-week fenofibrate challenge compared to chow-fed (Supplementary Table 5). MuRF1−/− 

hearts similarly had only 2 genes >[2] log fold change increased at 8-week fenofibrate 

challenge compared to chow-fed (Supplementary Table 6). In contrast, 144 genes >[4] log 

fold change were seen between MuRF1−/− and MuRF1 +/+ hearts upon challenge with 

fenofibrate (Fig. 6, Supplementary Table 3). Interestingly, the categories of these genes with 

the highest expression and enrichment by DAVID analysis were involved in hemostasis and 

the related protease inhibitor categories in the intact heart (Fig. 6). To our knowledge, these 

effects by themselves have not been identified at the level of the heart. Here we demonstrate 

that blocking MuRF1 uniformly inhibits the hemostasis gene expression response in vivo 

(Fig. 6).

The role of fenofibrate in treating cardiac hypertrophy in diseased states has been confusing, 

but worth noting given the regulation of MuRF1 in cardiac diseases. Fenofibrate has been 

reported to ameliorate pressure overload induced cardiac hypertrophy [58–61]. Fenofibrate 

enhances the association of PPARα with NFATc4, decreasing its interaction with GATA-4 

implicating that PPARα can compete with GATA-4 binding to NFATc4 to decrease 

hypertrophy [62]. Suppression of endothelin-1-induced pathological cardiac hypertrophy by 

fenofibrate has been shown to involve diacylglycerol (DAG) kinase [59,63], GSK3β [64], 
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ERK1/2, and cJun kinase [65–67]. Fenofibrate's antihypertrophic response is seen in most 

studies of pathological hypertrophy, including 2-month-old spontaneously hypertensive rats 

[68]. But these effects are age-dependent. In contrast, when 6-month-old rats are treated 

with fenofibrate, paradoxical effects are seen — an aggravation of cardiac hypertrophy [68]. 

As the present study is the first report of cardiac hypertrophy induction in response to 

fenofibrate, it potentially links the regulation of PPARα (by MuRF1) and induction of 

cardiac hypertrophy by the transcriptional up-regulation SREBP-1 and E2F. While 

SREBP-1 and E2F activity was not measured directly, their causal relationship with the 

observed cardiac hypertrophy is one of several possible scenarios that will need to be tested 

in the future. Moreover, MuRF1's regulation of fenofibrate's pleiotropic non-PPARα 

associated genes was unexpected and indicates that inhibition of MuRF1 may be 

cardioprotective in ways that involve hemostasis in addition to protein quality control and 

metabolism.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

ANP atrial natriuretic peptide

apoA-I apolipoprotein A-I

apoA-II apolipoprotein A-I

APOH apolipoprotein H

βMHC beta-myosin heavy chain

MYH7 myosin heavy chain 7

BNP brain natriuretic peptide

cJun Jun proto-oncogene

cMyBP-c cardiac myosin binding protein-c

Col1A collagen, type I, alpha I

cpt1 carnitine palmitoyltransferase 1A

cTnI cardiac troponin I
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CSTA cystatin A

DAVID Database for Annotation, Visualization and Integrated Discovery

E2F-1/E2F1 E2F transcription factor (1)

FA fatty acid

FABP1 fatty acid binding protein 1

FABP3 fatty acid binding protein 3

FABP4 fatty acid binding protein 4

FATP1 fatty acid transporter, aka SLC27A1 (solute carrier family 27 member 1)

H19 imprinted maternally expressed transcript (nonprotein coding)

KNG1 kininogen 1

IGF-1 insulin-like growth factor-1

lpl lipoprotein lipase

mt-C01 mitochondrial cytochrome c oxidase subunit 1

mt-Cytb mitochondrial cytochrome b

mt-ND1 mitochondrial NADH dehydrogenase 1

MuRF1 muscle ring finger-1

Myl-2 myosin light chain-2

Myl-3 myosin light chain-3

NKX2.5 NK2 homeobox 5

PGC-1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha

PPARα peroxisome proliferator-activated receptor alpha

PDK4 pyruvate dehydrogenase kinase 4

PLN phospholamban

PKP2 plakophilin 2

SRF serum response factor

PRKAA2 protein kinase, AMP-activated alpha2 catalytic subunit

SREBP-1 sterol regulatory element binding transcription factor 1

TnnI3 troponin I

Serpin A1B serpin peptidase inhibitor
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Fig. 1. 
MuRF1−/− hearts challenged with the PPARα agonist fenofibrate. (A) Experimental design. 

(B) Individual studies performed. (C) Fasting serum triglyceride levels. (D) Fasting total 

cholesterol, glucose concentration, LDL, and HDL. (E) Histological analysis of H&E-

stained hearts. (F) Fibrosis analysis of Masson's trichrome-stained hearts. n=7, 4, and 6 mice 

for baseline, 3-week, and 8-week time points, respectively. Data are mean±S.E.M. A one-

way analysis of variance was used to determine significance. *P<.05 vs. baseline (BL) 

MuRF1−/−. **P<.05 vs. 3-week fenofibrate fed MuRF1+/+; #P<.05 vs.3 Weeks of 

fenofibrate fed MuRF1−/−.
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Fig. 2. 
Quantitative analysis of PPAR-regulated genes from MuRF1−/− mice. RT-qPCR analysis of 

cd36, cpt-1, pgc-1, and pdk4 from (A) hearts, (B) skeletal muscle, and (C) liver from control 

chow-fed mice (8-week chow), and 3- and 8-week postfenofibrate/chow treatment. n=4 

mice/group. Data are mean±S.E.M. A one-way analysis of variance was used to determine 

significance. *P<.05; #P<.01; @P<.001.
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Fig. 3. 
Quantitative and ultrastructural analysis of MuRF1−/− mitochondria after fenofibrate 

challenge. (A) Quantitative analysis of the mean cytochrome c oxidase subunit 1 (CO1; aka 

mt-CO1)/cytochrome b (Cyt-b; aka mt-Cyb)/NADH dehydrogenase 1 (ND1; aka mt-nd1) 

normalized to nuclear H19 (Imprinted maternally expressed transcript, nonprotein coding) in 

chow-fed control mice (left) and after 3 weeks (middle) and 8-week fenofibrate treatment 

(right) via fenofibrate/chow (0.05% wt/wt). Expression of individual mt-CO1, mt-Cyb, and 

mt-ND1 is detailed in Supplementary Fig. 2. (B–E) Transmission electron microscopy 

analysis of MuRF1−/− hearts reveal ultrastructural changes not seen in MuRF1+/+ after 3-

week fenofibrate feeding. An increase in vesicles found around and in the mitochondria 

were identified in MuRF1−/− hearts (black arrows), as were mitochondrial disruption 

(yellow arrow). The vesicles were not found in wild-type mice (lower right) or in chow-fed 

age-matched MuRF1−/− mice. (B–D) 20,000×; (E) 10,000×, scale in lower left corner of 

each image. n=4 mice/group. Data are mean±S.E.M. A Student's t test was used to 

determine significance; P<.05 was considered statistically significant.
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Fig. 4. 
Echocardiographic analysis of MuRF1−/− hearts with fenofibrate challenge in vivo. Serial 

echocardiographic analysis of conscious mice (~50% male/50% female) at baseline, 3-week, 

and 8-week fenofibrate treatment. (A) Anterior and posterior wall thickness in systole and 

diastole. (B) Systolic function FS%=[(LVEDD−LVESD/LVEDD)*100]; EF%=[(LV Vol;d-

LV Vol;s/LV Vol;d)*100], body weight, and heart rates. (C) Left ventricular (LV) end-

distance in diastole (LVEDD) and systole (LVESD) used to calculate the LV mass= 

[1.055*(ExLVD;d3-LVEDD;d3)] and LV volumes [LV volume in diastole (LV 

Vol;D)=(7/2.4+LVEDD) ×LVEDD3×1000, LV Vol;S=(7/2.4+LVESD) ×LVESD3×000]. 

(D) Representative m-mode echos of MuRF1−/− and sibling MuRF1 +/+ hearts at baseline 

and 3/8-week postfenofibrate treatment. n=9, 6, and 13 MuRF1+/+ mice (at baseline, 3-, and 

8-week fenofibrate, respectively) and n=12, 6, and 7 MuRF1−/− mice (at baseline, 3-, and 8-

week fenofibrate, respectively). Data are mean±S.E.M. A one-way analysis of variance was 

used to determine significance and compared to MuRF1+/+ baseline. *P<.05 vs. baseline 

MuRF1+/+.
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Fig. 5. 
Morphometric and molecular analysis of cardiac hypertrophy in MuRF1−/− mice post-

fenofibrate treatment. (A) Chow control, (B) 3-week, and (C) 8-week postfenofibrate 

treatment. (D) Measured heart weight/tibia length. (E) RT-qPCR analysis of β-MHC. (F) 

BNP. (G) Skeletal muscle α-actin mRNA after 3- and 8-week fenofibrate treatment. Data 

are mean±S.E.M. (A–C) n=400 cardiomyocytes from 2 mice/group. (A–C) Student's t test 

was used to determine significance. *P<.05 vs. MuRF1+/+. D: n=6 mice/group. A Student's 

t test was used to determine significance. *P<.05 vs. MuRF1+/+. (E–G) n=4 mice/group. A 

one-way analysis of variance was used to determine significance, **P<.05 vs. 3-week 

fenofibrate-fed MuRF1+/+, §P<.05 vs. 3-week fenofibrate-fed MuRF1−/−.
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Fig. 6. 
Hypercluster analysis of MuRF1−/− mRNA by microarray at 8-week fenofibrate treatment 

compared to sibling MuRF1 +/+ hearts. (A) Differentially expressed genes reaching 

significance and >4 or <−4 log fold change compared to MuRF1 +/+ (=1) were identified for 

further bioinformatics analysis. (B) TRANSFAC analysis of these 144 genes was performed 

for common promoter binding sites and statistically analyzed for significance and given a 

Bayes Factor. (C) Graphical representation of the 144 genes differentially expressed and 

their analysis by DAVID for Gene Ontology categories reaching increased enrichment (as 

indicated by figure legend). Subcategories outlined in red are detailed in Fig. 7 and 

Supplementary Fig. 6, as indicated in the inserts. Raw data used for analysis can be found in 

Supplementary Table 2. n=3/group.
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Fig. 7. 
Gene detail of the MuRF1−/− heart hypercluster subgroups of the most highly enriched 

Gene Ontology categories 8 weeks after fenofibrate treatment using DAVID. The Database 

for Annotation, Visualization and Integrated Discovery (DAVID) [16,17] categories with 

the highest enrichment scores include those broadly falling into the (A) sarcomere, (B) 

protease inhibitors, and (C) hemostasis/sarcomere, enlarged from Fig. 6C, top 3 boxes.
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Fig. 8. 
Quantitative analysis of mRNA from MuRF1−/− hearts used in the microarray analysis. RT-

qPCR analysis of (A) muscle ring finger-1 (MuRF1) mRNA; (B) collagen, type i, α1 

(Col1A) mRNA; (C) phospholamban (Pln) mRNA; (D) NK2 homeobox 5 (Nkx2.5) mRNA; 

(E) myosin binding protein C (MyBPC3) mRNA; (F) fatty acid binding protein 3, muscle 

and heart (FABP3) mRNA; and (G) troponin i type 3 (Cardiac) (TnnI3) mRNA normalized 

to GAPDH. Control and 8 weeks of fenofibrate treatment, n=3/group; 3 weeks of fenofibrate 

treatment, n=4/group. Data are mean±S.E.M. A two-way analysis of variance followed by 

post hoc multiwise comparison was used to determine significance. #P<.05 fenofibrate vs. 

chow control. **P<.05 MuRF1−/− vs. sibling-matched MuRF1+/+; *P<.05.
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Table 1

Primers and probe sets used in FAM-based RT-qPCR analysis of cardiac mRNA

Myosin binding protein (MyBPC3)

Forward: CAG TGC AGG AGA TAC TGC AA

Reverse: CTT TCT TCT GGA TGG TCT GG

Probe: FAC CAC GGC TCC AAC TGC CCA GAC AQ

MuRF1 (Trim63)

Forward: TCC TGC AGA GTG ACC AAG GA

Reverse: ATG GCG TAG AGG GTG TCA AA

Probe: FTG ACT CAG CTC CTC CTT CAC CTG GQ

Troponin I (TnnI3)

Forward: CAG GTG AAG AAG GAG GAC AT

Reverse: GCC ACT CAG TGC ATC GAT AT

Probe: FTG CGC CAG TCT CCC ACC TCC CGQ

Fatty acid binding protein 3 (Fabp3)

Forward: AAC TAG GGA GCT AGT TGA CG

Reverse: CTT CTC ATA AGT CCG AGT GC

Probe: FAC CAC ACT GCC ATG AGT GAG AGT CAG Q

Collagen 1A (Col1A)

Forward: AGA GCA TGA CCG ATG GAT TC

Reverse: ATT AGG CGC AGG AAG GTC AG

Probe: FCT CCG ACC CCG CCG ATG TCG Q

Phospholamban (Pln)

Forward: GCT GCT GAT CTG CAT CAT TGT

Reverse: TGC TCG GCT TTA AGC TGA GT

Probe: FAG CTG CCG CCA CTC CAG ACC TGC AQ

Nkx2.5

Forward: ACC CTG ACC CAG CCA AAG A

Reverse: GGC TTT GTC CAG CTC CAC T

Probe: FAG AGC TGT GCG CGC TGC AGA AGQ

GAPDH

Forward: AGG TCG GTG TGA CCG GAT TT

Reverse: GGC AAC AAT CTC CAC TTT GC

Probe: FTG CAA ATG GCA GCC CTG GTG ACC AQ

Sequences created using Primer Express, as detailed in Materials and Methods. All reactions were run with the F; 5′-Fluorescein (FAM) and the Q 
(indicated below) Quencher (TAMRA) as previously described by Kim et al. [14].
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