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Abstract

Background—Angiotensin II (Ang II) plays an important role in cardiovascular disease. It also 

leads to the activation of coagulation. The coagulation protease thrombin induces cellular 

responses by activating protease activated receptor 1 (PAR-1). We investigated if PAR-1 

contributes to Ang II-induced cardiovascular remodeling and inflammation.

Methods and Results—PAR-1+/+ (WT) and PAR-1−/− mice were infused with Ang II (600 

ng/kg/min) for up to 4 weeks. In WT mice, this dose of Ang II did not cause a significant increase 

in the blood pressure but caused pathological changes in both the aorta and heart. Ang II infusion 

resulted in vascular remodeling of the aorta demonstrated by a significant increase in medial wall 

thickening and perivascular fibrosis. Importantly, both parameters were significantly attenuated by 

PAR-1 deficiency. Furthermore, perivascular fibrosis around coronary vessels was reduced in Ang 

II-treated PAR-1−/− mice compared to WT mice. In addition, PAR-1 deficiency significantly 

attenuated the Ang II-induction of inflammatory cytokines and profibrotic genes in the aortas 

compared to WT mice. Finally, PAR-1 deficiency had no effect on Ang II-induced heart 

hypertrophy. However the heart function measured by fractional shortening, was less impaired in 

PAR-1−/− than in WT mice.

Conclusion—Our data indicated that PAR-1 plays a significant role in cardiovascular 

remodeling mediated by a blood pressure-independent action of Ang II.
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1. Introduction

The renin-angiotensin system (RAS) is a major contributor in the development and 

pathophysiology of hypertension (HTN) [1, 2]. The major consequences of HTN are end-
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organ damage and cardiovascular complications [1, 2]. Angiotensin II (Ang II) is the main 

mediator of the RAS. Ang II is generated by enzymatic cleavage of angiotensinogen to Ang 

I by the protease renin, with subsequent conversion of Ang I to Ang II by angiotensin 

converting enzyme (ACE) [1, 2]. In addition, chymase is the primary enzyme leading to this 

conversion in the heart [3]. Most of the effects of Ang II are mediated by angiotensin type 1 

(AT1) receptors [1, 2]. While the human genome only contains one AT1 receptor, there are 

two subtypes (AT1A and AT1B) in mice [4, 5]. AT1A appears to be the main receptor isoform 

regulating blood pressure (BP) whereas the specific function for AT1B is unclear [5]. AT1 

receptors are widely distributed and Ang II-dependent activation of this receptor affects the 

function of virtually all organs, including the vasculature and heart [1, 2]. Long-term 

exposure to Ang II leads to cardiovascular remodeling, fibrosis and heart hypertrophy [6, 7]. 

The mechanism of Ang II-induced heart remodeling may involve the direct action of Ang II 

on target tissues or be mediated by an Ang II-induced increase in BP [1, 2].

Ang II activation of the AT1 receptor also leads to upregulation of tissue factor (TF) 

expression. TF is the primary initiator of the coagulation cascade [8]. It is constitutively 

expressed in the blood vessel wall, as well as by cardiomyocytes and cardiac fibroblasts in 

the heart [9, 10]. Several in vitro studies demonstrated that Ang II induces TF expression in 

smooth muscle cells, endothelial cells and monocytes [7]. TF expression was also 

upregulated in the endothelium and media of blood vessels in hypertensive rats [11]. 

Moreover, blocking the AT1 receptor with valsartan inhibited the upregulation of TF 

expression [11]. Importantly, elevated levels of circulating TF were observed in patients with 

HTN, and AT1 receptor blockage significantly reduced TF activity [12, 13]. Recently, it was 

shown that Ang II infusion accelerated microvascular thrombosis in mice [14]. These data 

indicate that upregulation of TF expression during HTN is mediated via the AT1 receptor 

and may lead to systemic activation of the coagulation cascade.

Thrombin is the central protease of the coagulation cascade [15]. Human HTN patients and 

animal models of HTN showed enhanced thrombin generation in plasma as measured by 

elevated thrombin-antithrombin (TAT) complexes [16, 17]. In addition to its important role 

in both hemostasis and thrombosis, thrombin can induce multiple cellular responses via 

activation of protease activated receptors, such as PAR-1 [7, 15]. PAR-1 belongs to the 

family of seven transmembrane domain G protein–coupled receptors activated by proteolytic 

cleavage. PAR-1 is widely expressed within the vasculature and heart [7, 18, 19]. Studies by 

us and others showed that PAR-1 plays a significant role in the physiology and 

pathophysiology of the cardiovascular system [7, 20–23]. Several ex vivo studies 

documented that activation of PAR-1 induces endothelium-dependent relaxation in the aorta 

and coronary arteries [20, 22]. However, it has also been shown that activation of PAR-1 can 

elicit endothelium- or vascular smooth muscle-dependent vasoconstriction [20, 22]. These 

studies suggest that PAR-1-dependent vasoregulation may be cell/tissue specific. In mice, 

activation of PAR-1 with agonist peptide results in a biphasic BP response in which there is 

a rapid and transient hypotension followed by sustained HTN, presumably via activation of 

PAR-1 on smooth muscle cells [24]. Unstressed PAR-1−/− mice exhibit no obvious 

abnormalities in baseline BP compared to PAR-1+/+ mice [24, 25].
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In mouse and primate models of vascular injury, PAR-1 expression is upregulated in 

proliferating neointima [26, 27]. PAR-1 deficiency resulted in protection against vascular 

remodeling and stenosis in an endothelial denudation model of vascular injury [26]. 

Inhibition of PAR-1 with an anti-PAR-1 antibody or selective PAR-1 antagonist RWJ-59259 

in a balloon catheter-injury model also reduced smooth muscle cell proliferation, intimal 

area and thickness as well as percentage of stenosis [28, 29]. In vitro studies demonstrated 

that activation of PAR-1 with either thrombin or agonist peptide leads to a series of 

molecular and morphological changes that lead to hypertrophic growth of cardiomyocytes 

and proliferation of fibroblasts [30–32]. Recently, we showed that cardiomyocyte-specific 

overexpression of PAR-1 induced heart hypertrophy and decreased heart function via a TF-

dependent mechanism [23]. In addition, we and others have demonstrated that PAR-1 

contributes to cardiac remodeling in different heart injury models [7, 23, 33].

There are compelling data showing that Ang II leads to activation of coagulation which 

might contribute to disease progression.[7] We therefore analyzed the contribution of PAR-1 

signaling to Ang II-induced cardiac and vascular remodeling.

2. Material and Methods

2.1. Mice and Ang II infusion

PAR-1+/− mice were backcrossed at least 11 generations onto a C57Bl/6J background and 

bred to generate a PAR-1−/− and PAR-1+/+ littermate cousin line [23, 25, 34]. Male mice 

with an age between 8–12 weeks were used for all experiments. Mice were implanted with 

Alzet mini-osmotic pumps (Model 2004, DURECT Corporation) subcutaneously on the 

back of the neck. Infusion of Ang II (600 ng/kg/min, Sigma-Aldrich, St. Louis, MO) was 

performed for up to 28 days. The study was approved by the Office of Animal Care and Use 

at the University of North Carolina - Chapel Hill and complied with National Institute of 

Health guidelines.

2.2. Echocardiography and blood pressure measurements

Heart function was analyzed by echocardiography on conscious mice using a VisualSonics 

Vevo2100 system (VisualSonics, Toronto, ON) as previously described [34, 35]. End 

systolic and diastolic LV volume and LV wall dimension were measured digitally on M-

mode tracings and averaged from at least 4 cardiac cycles. FS was calculated from measured 

LV dimensions [23]. BPs were measured by the pressure-volume loop method with a 1.2 Fr 

admittance PV catheter (Sciscence, Ithaca, NY) on anesthetized and ventilated mice as 

described elsewhere [36]. All measurements were done in the UNC Rodent Advanced 

Surgical Models Core according to the American Society of Echocardiography guidelines.

2.3. Coagulation parameters

Blood was collected from the inferior vena cava into sodium citrate (final concentration, 

0.38%) and plasma separated by centrifugation (4,500 × g, 15 min, 4°C). Levels of TATc in 

plasma were quantified by ELISA (TAT Enzygnost Micro Kit; Dade Behring/Siemens) [34].
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2.4. Real-time PCR

Total mRNA from mouse hearts and aortas was isolated by the TriZol method [35, 37]. One 

µg total mRNA was reverse transcribed into cDNA and analyzed by real-time PCR using 

RealMasterMix and realplex2 Mastercycler (Eppendorf AG, Hamburg, Germany) [38]. To 

analyze the expression of interleukin (IL)-1β, CXCL1, CXCL2, transforming growth factor 

beta (TGFβ) 1, TGFβ3, connective tissue growth factor (CTGF), collagen (Coll) IaI, Coll 

Ia2 and Coll 3 mRNA we used predesigned probe sets (Integrated DNA Technologies, 

Coralville, IA). Variations in loading were adjusted using hypoxanthine-guanine 

phosphoribosyltransferase (HPRT) mRNA expression.

2.5. Histology

Fibrosis and cellular infiltration was visualized on formalin-fixed, paraffin-embedded heart 

and aorta sections stained with Masson's Trichrome or H&E staining, respectively [10, 35, 

38]. Stained tissue sections were subsequently viewed using an Olympus BX51 microscope 

(Tokyo, Japan) and photographed using an Olympus DP70 digital camera with a DP 

controller and DP manager computer software [34, 35, 38].

2.6. Statistical analysis

All statistical analyses were performed using GraphPad Prism (version 5.04; GraphPad 

Software Inc., La Jolla, CA). Data are represented as mean ± SEM. For 2-group comparison 

of continuous data, 2-tailed Student’s t test was used. For multiple-group comparison, 

normally distributed data were analyzed by 1- or 2-way ANOVA and were Bonferroni 

corrected for repeated measures over time. A p-value ≤ 0.05 was regarded as significant.

3. Results

3.1. Infusion of Ang II leads to the systemic activation of coagulation and heart 
hypertrophy associated with cardiac fibrosis and inflammation

To determine if chronic AT1 receptor stimulation leads to cardiovascular remodeling and 

inflammation as well as activation of coagulation, WT mice were infused for up to 14 days 

with Ang II (600ng/kg/min). As expected, AT1 receptor stimulation in WT mice led to 

significant increase in heart weight: body weight (HW:BW) ratios 14 days of Ang II 

infusion (Figure 1A). Importantly, we also observe a systemic activation of coagulation 

measured by plasma TATc levels at day 14 after pump installation (Figure 1A). The 

increased heart hypertrophy and procoagulant state were associated with interstitial and 

perivascular fibrosis within the heart muscle (Figure 1B) and increased cellular infiltrations 

(Figure 1C) after 7 days of Ang II infusion. Our observation suggests that chronic activation 

of the AT1 receptor leads to activation of coagulation which was associated with pathologic 

cardiac fibrosis, inflammation and remodeling.

3.2. PAR-1 deficiency has no effect on blood pressure before and after Ang II infusion

To determine if PAR-1 activation contribute to the basal and Ang II dependent BP, BP in WT 

and PAR-1 deficient mice were measured before, 7 and 28 days after constant Ang II 

infusion. Consistently with previously published data, PAR-1 deficiency had no significant 
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effect on the baseline diastolic and systolic BP (Supplement 1) [24, 25]. Interestingly, 

infusion of Ang II at the concentration of 600ng/kg/min caused only modest but not 

statistically significant increase of BP in both WT and PAR-1−/− mice measured at day 7 and 

28 after initiation of infusion (Supplement 1). In addition, we did not find any differences 

between the genotypes with regards to the BP at day 7 and 28. This suggests that PAR-1 

does not play a major role in baseline BP regulation and that the all observations in our 

study were due to BP-independent AT1- and PAR-1-mediated signaling events in the setting 

resembling pre-HTN conditions [39].

3.3. PAR-1 deficiency attenuates Ang II-induced remodeling of the aorta

Ang II infusion into mice is known to lead to vascular remodeling in the aorta associated 

with an increased media thickness and enhanced fibrosis [6]. To determine if PAR-1 affects 

these parameters, media to lumen and fibrosis to lumen ratios of aortas were analyzed before 

and 28 days after Ang II infusion in WT and PAR-1 deficient mice. There were no 

significant differences with regard to aorta media thickness and the amount of fibrotic tissue 

around the aorta in mice of both genotypes before Ang II infusion (Figure 2). As expected, 

chronic AT1 stimulation for 28 days led to increase in aorta media thickness and increased 

collagen deposition visualized by Masson’s trichrome staining around the aorta in WT mice. 

Importantly both parameters were significantly attenuated in Ang II treated PAR-1−/− mice 

(Figure 2). These data suggest that PAR-1 dependent signaling pathways contribute to the 

vascular remodeling induced by chronic Ang II infusion.

3.4. Reduced expression of inflammatory and pro-fibrotic markers in the aortas of PAR-1 
deficient mice

To determine if changes in vascular remodeling induced by Ang II are associated with 

changes in the expression profile of inflammatory and pro-fibrotic genes in the aorta, real-

time PCR was performed on aorta samples of WT and PAR-1 deficient mice before, 7 and 

28 days after Ang II infusion. Importantly, there were no significant differences between the 

genotypes in the baseline mRNA expression levels in the aorta of the inflammatory 

mediators IL-1β, IL-6, TNF-α, MCP-1, CXCL1, and CXCL2 as well as pro-fibrotic 

mediators TGFβ1, TGFβ3, CTGF, and extracellular matrix components collagen Ia1, 

collagen Ia2 and collagen III (Figure 3 and data not shown). Except for CTGF, Ang II 

infusion led to a significant increase in the mRNA expression of all measured genes in WT 

mice at 7 days. Later at day 28, the aortic expression levels of the analyzed genes in WT 

mice returned to baseline with the exception of CTGF (Figure 3F). Importantly, PAR-1 

deficiency was associated with less pro-inflammatory and pro-fibrotic gene expression 

compared at day 7 as well as CTGF at day 28 (Figure 3). These data indicate that PAR-1 is 

involved in regulating a transient pro-inflammatory and pro-fibrotic phenotype leading to 

vascular inflammation and remodeling in the aorta during chronic Ang II infusion.

3.5. Ang II-induced perivascular fibrosis of coronary arteries is reduced in Ang II treated 
PAR-1 deficient mice

Besides its effect on the aorta, Ang II leads to perivascular fibrosis of coronary vessels and 

heart hypertrophy [6]. To analyze Ang II-dependent changes in perivascular fibrosis and 

cardiac remodeling, hearts of WT and PAR-1 deficient mice were analyzed before, 7 and 28 
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days after Ang II infusion. We did not observe any differences in the level of perivascular 

fibrosis around the cardiac arteries before Ang II infusion measured by fibrosis area to 

lumen area (Figure 4A). Chronic AT1 stimulation led to an increase of perivascular fibrosis 

around coronary arteries in both WT and PAR-1 deficient mice visualized by Masson’s 

trichrome staining of heart sections (Figure 4A). However, this parameter was significantly 

increased only in WT but not PAR-1−/− mice group at day 28 (Figure 4B). Next, we 

analyzed expression of CTGF in the heart which was shown to be associated with pathologic 

cardiac fibrosis and remodeling [38]. CTGF expression was significantly increased in the 

heart of WT mice 7 days after Ang II infusion and returned to the baseline (Figure 4 C) at 

day 28. Importantly, 7 days after Ang II infusion, CTGF mRNA expression was significantly 

lower in the heart of PAR-1 deficient mice compared to WT controls (Figure 4C).

3.6. PAR-1 deficient mice are protected against Ang II-induced heart dysfunction

Chronic AT1 stimulation is known to induce heart hypertrophy leading to heart dysfunction 

[40]. To analyze changes in heart hypertrophy, heart weight to body weight ratios were 

calculated in WT and PAR-1 deficient mice before and 28 days after Ang II infusion. PAR-1 

deficiency did not affect this parameter at baseline (Figure 4D). Heart weight to body weight 

ratios were significantly increased 28 days after Ang II infusion. However, PAR-1 deficiency 

did not affect the heart hypertrophy. Despite that, PAR-1 deficient mice had better preserved 

heart function compared to the WT mice 28 days after Ang II infusion (Figure 4E). This 

observation suggests that lack of PAR-1 dependent signaling protects against Ang II-induced 

heart dysfunction independently of heart hypertrophy.

4. Discussion

In this study, we demonstrated that PAR-1 deficiency attenuates pathologic Ang II-induced 

remodeling of the cardiovascular system. PAR-1 deficiency was associated with reduced 

mRNA expression of pro-inflammatory and pro-fibrotic markers which correlated with an 

attenuation of fibrosis and remodeling in the aortas of Ang II treated mice. In addition, we 

also observed reduced perivascular fibrosis of coronary vessels in hearts of PAR-1 deficient 

mice after of Ang II treatment. The reduced cardiac fibrosis in PAR-1 deficient mice led to a 

preserved heart function compared to Ang II treated WT mice. Interestingly, our observation 

was independent of a change in BP as well as heart hypertrophy since PAR-1 deficiency had 

no effect on these parameters. Our data indicate that PAR-1 plays a significant role in 

cardiovascular remodeling mediated by the BP-independent action of Ang II.

In our study, we were not able to detect increased BPs in anesthetized mice after 600 

ng/kg/min Ang II infusion. This was surprising since even a lower Ang II dose (490 ng/kg/

min) was shown to increase BP in telemetric observed animals [41]. However, the BP 

discrepancy might be due to the measurement used. Anesthesia has cardio-depressive effects 

leading to hypotension which might mask the real BP elevation in our experimental mice 

[42]. Thus, our study mimicked a murine pre-HTN model with BP below levels defined as 

HTN. Pre-HTN is described as BP between 120 and 139 mmHg systolic or 80 and 89 mm 

Hg diastolic [39]. It is thought that pre-HTN status adds a moderate-to-high risk to the total 

cardiovascular risk [39]. Importantly, the Framingham Heart study showed that patients with 
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pre-HTN have an increased risk to develop HTN [43]. Furthermore, the ATTICA study 

reported that there was an association between pre-HTN and increased inflammation, which 

was linked to the atherosclerotic process [39]. It was concluded that increased inflammation 

might be a mechanism in the initiation and/or progression of pre-HTN [44, 45].

The ongoing inflammation might be mediated by both the innate and adaptive immune 

processes. The innate immune pathway not only responds to exogenous pathogens but can 

be also activated by damage-associated molecular patterns (DAMPs) released endogenous 

by stressed, damaged or necrotic cells [46]. DAMPs are present in cardiovascular diseases 

during HTN [47]. AT1 activation was shown to induce p53-dependent apoptosis of cultured 

rat cardiomyocytes, which might lead the release of DAMPs [48]. Interestingly, Singh et al. 

reported that Ang II mediated cardiac hypertrophy and pro-inflammatory gene expression 

was mainly caused due to TRIF pathway activation [49]. The authors further showed that the 

expression of the TRIF-dependent cytokine CXCL10 was increased in MyD88−/− mice 

hearts but reduced in mice lacking TRIF signaling [49]. We found that PAR-1 stimulation 

enhanced toll-like receptor (TLR)-3/TRIF-dependent CXCL10 expression in cardiac 

fibroblasts and immune cells [34, 37]. This suggests that PAR-1 possibly enhanced 

pathologic TRIF signaling during Ang II infusion. Beside its effect on TLR signaling, 

PAR-1 activation induces the classical hallmarks of inflammation, including enhanced 

vascular permeability, upregulation of pro-inflammatory mediators and adhesion molecules 

[21]. In our study, we observed a PAR-1-dependent pro-inflammatory state in mice after 

Ang II infusion measured by increased IL-1β, IL-6, TNF-α, MCP-1, CXCL1 and CXCL2 

expression in the aorta. Consistent with this observation, a study showed that increased 

plasma levels of IL-1β, a cytokine involved in monocyte activation, precedes changes in BP 

in HTN [50]. Furthermore, IL-6, MCP-1 and especially TNF-α were shown to be essential 

for the pathologic effects of Ang II on the vasculature by increasing oxidative stress, 

activating fibroblasts and attracting T cells [47, 51].

Expression of pro-inflammatory cytokines is further linked to an induction of a pro-fibrotic 

phenotype. In addition, a mild-to-moderate increase in BP was reported to stimulate 

fibroblasts and increase collagen formation leading to a fibrotic remodeling of the 

myocardium with normal LV mass [52]. TGFβ1 mRNA and protein expression are increased 

in HTN patients [53]. CTGF has a role as a downstream mediator of the chronic fibrotic 

effects of TGFβ. Activated TGFβ induces CTGF expression in fibroblasts and 

cardiomyocytes [54]. During this process fibroblasts differentiate into myofibroblasts, the 

major cell that synthesizes collagen in cardiac remodeling [55, 56]. Activation of PAR-1 on 

fibroblasts induced cell proliferation and expression of pro-fibrotic genes [32, 57]. Here, we 

found increased CTGF and TGFβ as well as collagen expressions in Ang II infused WT but 

not in PAR-1−/− mice. This PAR-1-dependent pro-fibrotic phenotype resulted in increased 

vascular and perivascular remodeling associated with fibrosis and possible reduced elasticity 

of the aorta and coronary arteries. This is consistent with the finding of Celik and colleagues 

that pre-HTN was associated with an impairment of the aortic elasticity and inflammation 

when compared to healthy controls [44, 58]. These changes may lead to reduced coronary 

flow very early in pre-HTN before hypertrophy is apparent and thus may cause subsequently 

ischemia and fibrosis [59, 60]. Structural abnormalities are already seen in pre-HTN 

patients, although in a milder manner compared to newly diagnosed HTN patients which 
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might lead to cardiac remodeling [33, 61]. In our study, we did not observe any differences 

in the cardiac hypertrophy between the two genotypes. This was surprising since we and 

others have shown that PAR-1 contributes to cardiomyocyte hypertrophy and cardiac 

remodeling [23, 30]. However, the significant differences in fibrosis independent of 

hypertrophy might be due to the AT receptor distribution on cardiac fibroblasts and 

cardiomyocytes. Cardiomyocytes express comparable amounts of AT1 and AT2 receptors 

whereas fibroblasts express predominantly AT1 [62]. In addition, AT2 was shown to 

counteract AT1 activation [62]. Importantly, increased vascular inflammation as well as 

arterial stiffness was shown to be a predictive for cardiovascular events [63, 64].

The remaining question for further studies is the physiologic activator of PAR-1 in the 

setting of chronic Ang II infusion, AT1 stimulation, and HTN. The most likely candidate is 

thrombin. In our study, we observed increased TAT levels after chronic Ang II infusion. 

Consistent with our findings, it was shown that AT1 receptor stimulation and HTN was 

linked to increased activation of coagulation due to increased TF expression and thrombin 

generation [11–13, 16, 17], which led to a pro-thrombotic phenotype [14]. Another possible 

activator is the non-canonical activation of PAR-1 by matrix-metalloproteinases (MMPs) 1 

or 13 [7]. Recently, it was shown that MMP-1 enhanced Ang II induced vasoconstriction in 

endothelium-intact omental arteries in a PAR-1 dependent way ex vivo [65]. Furthermore, 

MMP-13 is expressed and active during Ang II induced HTN [66]. We showed that the 

MMP-13/PAR-1 pathways is active in cardiovascular diseases models [7, 18, 33, 34].

Importantly, besides its proven pathologic role, TF expressed by extravascular cells in the 

brain, lung and heart such as astrocytes, epithelial cells, smooth muscle cells, fibroblasts and 

cardiomyocytes maintains organ hemostasis [10, 11, 23, 67–71]. Reduced TF-dependent 

initiation of coagulation can result in hemorrhages, increased tissue fibrosis and reduced 

overall survival under healthy as well as pathologic conditions [10, 68, 71]. This dual role 

makes is difficult to use the TF blockage as viable therapy option [70]. Based on our data, 

further studies are warranted to investigate the effect of the PAR-1 inhibitor vorapaxar in 

Ang II-induced cardiovascular remodeling.

5. Conclusion

Taken together our data suggest that PAR-1 signaling pathway contributes to Ang II-induced 

cardiac fibrosis and heart dysfunction.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Infusion of Ang II leads to cardiac hypertrophy, systemic activation of coagulation 
associated with cardiac fibrosis and inflammation
(A) Increase in heart weight to body weight ratios (HW:BW) and plasma levels of thrombin-

antithrombin complexes (TAT) in Ang II treated wild-type mice. (B) Masson’s trichrome 

staining of representative heart sections from control (left panel) and mice treated with Ang 

II for 7 days (middle and right panel). (C) Inflammatory cells are present in H&E stained 

heart sections from Ang II treated (right panel) but not from control mice (left panel). Bar = 

200 µm. Data (mean ± SEM; n = 3 for each time point) were analyzed by Student’s t-test. 

Statistical significances is shown as * P<0.05.
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Figure 2. PAR-1 deficiency attenuates Ang II-induced remodeling of aorta
(A) Representative cross sections of thoracic parts of aortas stained with Masson’s trichome. 

(B) Quantification of the media area and (C) fibrotic area to lumen area from PAR-1+/+ 

(white bars) and PAR-1−/− (black bars) mice aortas before and 28 days after constant Ang II 

infusion. Bar = 1 mm. Data (mean ± SEM; n = 5 for day 0, n =10 for day 28) were analyzed 

by 2-way ANOVA. Statistical significances is shown as # P<0.05 and * P<0.05 versus day 0 

of the respective genotype.
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Figure 3. Reduced expression of inflammatory and pro-fibrotic markers in the aortas of PAR-1 
deficient mice
Real-time PCR analysis of mRNA expression of inflammatory mediators (A) IL-1β, (B) 

CXCL1 (KC) and (C) CXCL2 (inflammatory protein 2-alpha, MIP-2α), of pro-fibrotic 

markers (D) transforming growth factor (TGF) β1, (E) TGFβ3 and (F) connective tissue 

growth factor (CTGF) as well as extracellular matrix proteins (G) collagen (Coll) Ia1, (H) 

Coll Ia2 and (I) Coll III in the aortas of PAR-1+/+ (white bars) and PAR-1−/− (black bars) 

mice before, 7 and 28 days of constant Ang II infusion. Data (mean ± SEM; n = 6–10) were 

analyzed by 2-way ANOVA. Statistical significances is shown as # P<0.05 and * P<0.05 

versus day 0 of the respective genotype.
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Figure 4. PAR-1 deficient mice are protected against Ang II-induced cardiac fibrosis and heart 
dysfunction
(A) Representative sections of heart coronary vessels from PAR-1+/+ and PAR-1−/− mice 

after 28 days of constant Ang II infusion stained with Masson’s trichrome. (B) 

Quantification of the fibrotic area to lumen area of heart coronary vessels from PAR-1+/+ 

(white bars) and PAR-1−/− (black bars) mice before and after 28 days of constant Ang II 

infusion. (C) Real-time PCR analysis of connective tissue growth factor (CTGF) mRNA 

expression in the heart of PAR-1+/+ and PAR-1−/− mice before, 7 and 28 days of continuous 

Ang II infusion. (D) Heart weight to body weight ratios (HW:BW) and (E) fractional 
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shortening measured by echocardiography before and 28 days of Ang II infusion. Bar = 200 

µm. Data (mean ± SEM; n = 6–10) were analyzed by 2-way ANOVA. Statistical 

significances is shown as # P<0.05 and * P<0.05 versus day 0 of the respective genotype.
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