The succession of the state of

HHS PUDIIC ACCESS

Author manuscript

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2018 February 01.

Published in final edited form as:

Cancer Epidemiol Biomarkers Prev. 2017 February ; 26(2): 278–280. doi: 10.1158/1055-9965.EPI-16-0658.

Environmental Tobacco Smoke Exposure and Survival Following Breast Cancer

Humberto Parada Jr.^{a,*}, Patrick T. Bradshaw^b, Lawrence S. Engel^a, Kathleen Conway^a, Susan E. Steck^c, Susan L. Teitelbaum^d, Alfred I. Neugut^{e,f}, Regina M. Santella^g, and Marilie D. Gammon^a

^aDepartment of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

^bDivision of Epidemiology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA

^cDepartment of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, USA

^dDepartment of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA

^eDepartment of Epidemiology, Columbia University, New York, NY, USA

^fDepartment of Medicine, Columbia University, New York, NY, USA

^gDepartment of Environmental Health Sciences, Columbia University, New York, NY, USA

Abstract

Background—Environmental tobacco smoke (ETS) exposure is hypothesized to influence survival after breast cancer, but few studies have examined this association.

Methods—A population-based cohort of women (N=1,508) diagnosed with first primary invasive or *in situ* breast cancer in 1996–1997 was interviewed shortly after diagnosis and again approximately 5 years later to assess ETS exposure, and women were followed for over 18 years using the National Death Index; 597 deaths (237 associated with breast cancer) were identified. Multivariable Cox regression was used to estimate adjusted hazard ratios (HR) and 95% confidence intervals (CI) for mortality among women with breast cancer as related to at-diagnosis and at-/post-diagnosis changes in ETS exposure.

Results—There was little or no association between at-diagnosis ETS exposure and all-cause (HR=1.04, 95% CI=0.78–1.40) or breast cancer-specific (HR=0.98, 95% CI=0.63–1.52) mortality. Mortality was elevated among women who reported cessation in post-diagnosis ETS exposure up to one year before the follow-up assessment, for all-cause (HR=1.81, 95% CI=0.87–3.74) and breast cancer mortality (HR=1.89, 95% CI=0.68–5.24); however, estimates were imprecise.

Conclusions—We found little evidence of an association between at-diagnosis ETS exposure and mortality after breast cancer. Post-diagnosis cessation of ETS exposure was positively

^{*}**Corresponding author**: Humberto Parada; University of North Carolina at Chapel Hill, Department of Epidemiology, 2101 McGavran-Greenberg Hall, CB #7435, Chapel Hill, NC 27599-7435. Telephone: 919-636-9236. hparada@live.unc.edu. **Conflicts of interest**: None declared

associated with mortality, although we could not rule out chance and reverse causation as possible explanations.

Impact—Exposure to ETS does not appear to influence mortality after breast cancer.

Keywords

environmental tobacco smoke; second-hand smoke; passive smoke; breast cancer; mortality; survival analysis

Introduction

Few studies (1–4) have examined whether environmental tobacco smoke (ETS) exposure increases the risk of mortality among women with breast cancer and no studies to date have prospectively examined the impact of post-diagnosis changes in ETS exposure on mortality. This study examined whether ETS exposure was associated with long-term all-cause and breast cancer-specific mortality among a population-based sample of women.

Materials and Methods

Participants of the Long Island Breast Cancer Study Project (LIBCSP), a population-based cohort of women newly diagnosed with breast cancer, were interviewed shortly after diagnosis and again about 5 years later, and now continue to be followed for vital status. Details of the LIBCSP have been published previously (2,5). Institutional Review Board approval was obtained from of all participating institutions.

Environmental Tobacco Smoke Exposure Assessment

ETS exposure was determined via structured interviews (2). Women were asked to report whether any members of the household smoked in their presence, the relationship of the smoker, the participant's ages at first/last exposure, and any time periods the household member did not smoke. Duration of exposure was categorized as <15 years, 15–<30 years, and 30 years of exposure. Recency of exposure was categorized as <5 years, 5–<10 years, and 10 years.

Covariate assessment

Covariates assessed via questionnaire included: age, menopausal status, annual household income, education, marital status, body mass index, physical activity, intake of alcoholic beverages, cigarette smoking, and treatment. Estrogen receptor status and nodal involvement were determined by medical record. Tumor size was obtained from the NY State Cancer Registry.

Outcome Assessment

Vital status of the 1,508 women diagnosed with breast cancer was determined using the National Death Index. Follow-up for mortality occurred from the date of diagnosis in 1996–1997 until December 31, 2014 (median=17.61 years). We identified 597 deaths; 234 were associated with breast cancer.

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2018 February 01.

Statistical Analysis

Using multivariable Cox proportional regression models, we estimated hazard ratios (HR) and 95% confidence intervals (CI) for the associations between at-diagnosis as well as at-/ post-diagnosis changes in ETS exposure and mortality following breast cancer. Models restricted to women with invasive cancer only yielded similar results from those of all women; only the latter are shown. All analyses were conducted using IBM SPSS Statistics Version 22.0 (IBM Corp., Armonk, NY).

In analyses of at-diagnosis ETS exposure, survival time began at the date of breast cancer diagnosis and ended on the date of death or, if alive, December 31, 2014. In analyses examining post-diagnosis ETS exposure, survival time began at the date of completion of the follow-up questionnaire and ended on the date of death or, if alive, December 31, 2014. Missing covariates were imputed in SPSS using 25 imputations with 1,000 iterations. The imputation models included age at diagnosis, menopausal status, income, education, marital status, BMI, physical activity, and alcohol intake, smoking status, post-diagnosis ETS exposure, disease characteristics (stage, tumor size, nodal involvement estrogen receptor status), treatment (radiation, chemotherapy, and hormone therapies), and the outcome (the event indicator and the Nelson-Aalen cumulative hazard estimator).

Results

Approximately 15% of women reported ETS exposure in the year before diagnosis and 14% reported current exposure at the follow-up questionnaire.

At-Diagnosis Environmental Tobacco Smoke Exposure

There was little or no association between current ETS exposure and all-cause (HR=1.04, 95% CI=0.78–1.40) or breast cancer-specific (HR=0.98, 95% CI=0.63–1.52) mortality after adjustment for covariates (Table 1). Risk of mortality was slightly elevated for all-cause (HR=1.17, 95% CI=0.74–1.86) and breast cancer-specific (HR=1.13, 95% CI=0.57–2.27) mortality when we restricted the analyses to never smokers, though the corresponding estimates imprecise.

At-/Post-Diagnosis Environmental Tobacco Smoke Exposure

Though no associations were observed among women with ongoing ETS exposure, HRs were elevated 81% (HR=1.81, 95% CI=0.87–3.74) for all-cause mortality and 89% (HR=1.89, 95% CI=0.68–5.24) for breast cancer-specific mortality among women who reported cessation in post-diagnosis ETS exposure up to the year before the follow-up assessment (Table 2).

Discussion

Exposure to the constituents of tobacco smoke, either through active smoking or exposure to ETS, is hypothesized to influence breast cancer progression through several mechanisms, including directly by influencing cell proliferation and metastasis (6), and indirectly by disrupting the endocrine system (7). Additionally, because up to 70% of tar in ETS is in the

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2018 February 01.

vapor phase, whereas all of the tar in direct smoking is in the particulate phase, ETS may be an important source of exposure to carcinogens since particulate smoke is cleared into the mouth and swallowed, but vapor phase constituents are inhaled and absorbed into the bloodstream and lymph system (8). Despite these hypothesized mechanisms, the few studies conducted to date (1–4), including the sufficiently powered study reported here, provide limited or no evidence of an association between ETS exposure and survival after breast cancer. While we observed an elevated risk of mortality among women with post-diagnosis cessation of ETS exposure, we could not rule out chance and reverse causation as possible explanations.

Acknowledgments

Grant Support

The Long Island Breast Cancer Study Project was funded by the National Cancer Institute and the National Institutes of Environmental Health Sciences grants UO1CA/ES66572 and UO1CA66572 awarded to M.D. Gammon. H. Parada was supported by T32 ES007018 and R25 CA057726.

References

- Boone SD, Baumgartner KB, Baumgartner RN, Connor AE, John EM, Giuliano AR, et al. Active and passive cigarette smoking and mortality among Hispanic and non-Hispanic white women diagnosed with invasive breast cancer. Ann Epidemiol. 2015; 25:824–831. [PubMed: 26387598]
- Sagiv SK, Gaudet MM, Eng SM, Abrahamson PE, Shantakumar S, Teitelbaum SL, et al. Active and passive cigarette smoke and breast cancer survival. Ann Epidemiol. 2007; 17:385–393. [PubMed: 17395485]
- Kakugawa Y, Kawai M, Nishino Y, Fukamachi K, Ishida T, Ohuchi N, et al. Smoking and survival after breast cancer diagnosis in Japanese women: A prospective cohort study. Cancer Sci. 2015; 106:1066–1074. [PubMed: 26052951]
- Wartenberg D, Calle EE, Thun MJ, Heath, Clark WJ, Lally C, Woodruff T. Passive smoking exposure and female breast cancer mortality. J Natl Cancer Inst. 2000; 92:1666–1673. [PubMed: 11036112]
- Bradshaw PT, Ibrahim JG, Stevens J, Cleveland R, Abrahamson PE, Satia JA, et al. Postdiagnosis change in bodyweight and survival after breast cancer diagnosis. Epidemiology. 2012; 23:320–327. [PubMed: 22317813]
- Dasgupta P, Rizwani W, Pillai S, Kinkade R, Kovacs M, Rastogi S, et al. Nicotine induces cell proliferation, invasion and epithelial-mesenchymal transition in a variety of human cancer cell lines. Int J Cancer. 2009; 124:36–45. [PubMed: 18844224]
- 7. Bekki K, Toriba A, Tang N, Kameda T, Hayakawa K. Biological effects of polycyclic aromatic hydrocarbon derivatives. J UOEH. 2013; 35:17–24. [PubMed: 23475020]
- Wells AJ. Breast cancer, cigarette smoking, and passive smoking. Am J Epidemiol. 1991; 133:208– 210. [PubMed: 1985448]

Table 1

Cox regression hazard ratios (HRs) and 95% confidence intervals (CIs) for the association between pre-diagnosis and at-diagnosis environmental tobacco smoke (ETS) exposure and mortality in the LIBCSP women diagnosed with breast cancer in 1996–1997 (N=1,508).

		All-Cause	Mortality (n death	(/6C=S	חומ		pecific mortality (n	deatus=237)
ETS Exposure			Age- Adjusted	Multivariable- Adjusted ^b			Age- Adjusted	Multivariable- Adjusted ^b
<u>At-diagnosis</u>	Deaths	Censored	HR (95% CI)	HR (95% CI)	Deaths	Censored	HR (95% CI)	HR (95% CI)
ETS exposure status ^a								
Never	119	176	1 (Ref.)	1 (Ref.)	49	246	1 (Ref.)	1 (Ref.)
Former	376	585	1.00 (0.81–1.23)	0.98 (0.80–1.22)	141	820	0.87 (0.63–1.21)	0.89 (0.64–1.24)
Current	84	138	1.25 (0.94–1.66)	1.04 (0.78–1.40)	38	184	$1.04\ (0.68 - 1.59)$	0.98 (0.63–1.52)
Duration of ETS exposure								
Never	119	176	1 (Ref.)	1 (Ref.)	49	246	1 (Ref.)	1 (Ref.)
Former								
<15 years	50	16	1.05 (0.75–1.46)	1.13(0.80 - 1.59)	24	117	1.02 (0.62–1.66)	1.10 (0.67–1.81)
15-<30 years	131	289	0.89 (0.69–1.14)	0.90 (0.69–1.16)	60	360	0.84 (0.57–1.23)	0.84 (0.57–1.24)
30 years	175	187	1.06 (0.84–1.34)	1.00 (0.79–1.28)	54	308	0.90 (0.61–1.33)	0.89 (0.60–1.33)
Current								
<15 years	L	٢	1.74 (0.81–3.73)	1.52 (0.70–3.27)	\diamond	12	ı	ı
15-<30 years	13	22	1.59 (0.89–2.84)	1.32 (0.74–2.36)	9	29	1.08 (0.46–2.55)	0.97 (0.41–2.29)
30 years	62	106	$1.14\ (0.83{-}1.55)$	0.93 (0.67–1.29)	30	138	1.07 (0.68–1.69)	1.01 (0.63–1.61)
ETS exposure recency								
Never	119	176	1 (Ref.)	1 (Ref.)	49	246	1 (Ref.)	1 (Ref.)
Former								
<5 years	26	41	1.05 (0.69–1.60)	0.95 (0.62–1.47)	12	55	1.07 (0.57–2.01)	0.99 (0.52–1.87)
5-<10 years	47	69	1.07 (0.77–1.51)	1.00 (0.71–1.41)	16	100	0.82 (0.47–1.45)	$0.76\ (0.43{-}1.35)$
10 years	303	475	0.99 (0.80–1.22)	0.99 (0.79–123)	113	665	0.86 (0.62–1.21)	0.90 (0.64–1.27)
Current	84	138	1.25 (0.94–1.66)	1.04 (0.78–1.40)	38	184	1.04 (0.68–1.59)	0.98 (0.63–1.53)

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2018 February 01.

 $^{a}_{e}$ ETS exposure status was defined as never, former, and current exposure to tobacco smoke from any household members.

Author Manuscript

^b Adjusted for age at diagnosis, body mass index, marital status, income, alcohol intake, physical activity, and active cigarette smoking status. Author Manuscript Author Manuscript

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2018 February 01.

Author Manuscript

Table 2

Cox regression hazard ratios (HRs) and 95% confidence intervals (CIs) for the association between at-/post-diagnosis environmental tobacco smoke exposure (ETS) and mortality in the LIBCSP women diagnosed with breast cancer in 1996–1997 (n=1,339).

		∩- 11 0						
ETS Exposure			Age- Adjusted	Multivariable-Adjusted ^a			Age- Adjusted	Multivariable-Adjusted ^a
At-diagnosis/Post-diagnosis	Deaths	Censored	HR (95% CI)	HR (95% CI)	Deaths	Censored	HR (95% CI)	HR (95% CI)
ETS exposure status								
Never/Never	<i>4</i>	163	1 (Ref.)	1 (Ref.)	23	219	1 (Ref.)	1 (Ref.)
Never/Former	10	18	1.14 (0.44–2.94)	$0.94\ (0.35-2.58)$	$\stackrel{\scriptstyle <}{_{\sim}}$	24	I	I
Former/Never	251	529	1.03 (0.79–1.35)	1.03 (0.78–1.36)	69	711	0.93 (0.56–1.54)	0.92 (0.55–1.54)
Former/Former	S	14	0.96 (0.21-4.54)	0.72(0.14 - 3.58)	$\stackrel{\scriptstyle <}{_{\sim}}$	18	I	I
Former/Current	21	48	1.32 (0.72–2.43)	1.05 (0.56–1.99)	8	61	1.16 (0.43–3.18)	0.87 (0.31–2.46)
Current/Never	22	43	1.29 (0.76–2.20)	1.19 (0.67–2.09)	9	58	1.00 (0.38–2.63)	0.88 (0.32–2.42)
Current/Former	14	18	1.99 (0.97-4.09)	1.81 (0.87–3.74)	9	26	2.20 (0.81–5.97)	1.89 (0.68–5.24)
Current/Current	26	78	1.18 (0.70–1.99)	1.02 (0.59–1.77)	8	96	0.82 (0.33–2.06)	0.66 (0.24–1.81)

^a Adjusted for age at diagnosis, body mass index, marital status, income, alcohol intake, physical activity, stage, tumor size, nodal involvement, estrogen receptor status, chemotherapy treatment, and postdiagnosis active cigarette smoking status.