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Abstract

Background—Seasonality in human papillomavirus (HPV) vaccination could have a large 

impact on national cancer prevention efforts. We hypothesized that uptake of HPV vaccine and 

other adolescent vaccines in the United States would be highest in the summer.

Methods—Data came from healthcare provider-verified vaccination records for 70,144 

adolescents (ages 13–17) from the 2008–2012 versions of the National Immunization Survey-

Teen. Using the Edwards method for testing annual trends, we examined seasonal patterns in 

uptake of HPV and other recommended adolescent vaccines (tetanus, diphtheria, and pertussis 

(Tdap) booster and meningococcal vaccine). HPV vaccine initiation (receipt of the first of the 

three-dose series) data were for female adolescents.

Results—Uptake for HPV and other adolescent vaccines peaked in the summer across years and 

states (all p<.001). Uptake was 5 times as frequent at the peak as at the trough for HPV vaccine, 

and HPV vaccine initiation was highest in June, July, and August (percent of doses delivered in 

these months: 38.7%). The same pattern existed for Tdap booster and meningococcal vaccine. 

Concomitant (same-day) vaccination of HPV vaccine with other adolescent vaccines also 

demonstrated summer peaks each year nationally (all p<.001).

Conclusion—Uptake of adolescent vaccines increased dramatically in summer months. These 

summer peaks are an important opportunity for interventions focused on concomitant vaccination.

Impact—The potential cancer prevention impact of HPV vaccination programs could be 

increased, for example, by delivering messages about concomitant vaccination during the summer, 

when adolescents and their parents might be most open to them.
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Introduction

Human papillomavirus (HPV) vaccination is a potent tool for preventing several cancers, 

including cervical, anal, vulvar, vaginal and likely oropharyngeal cancers (1), but 

vaccination coverage is sub-optimal (2). In the United States, the Healthy People 2020 goal 

is for 80% of 13- to 15-year-old adolescents to have received the three-dose HPV vaccine, 

as well as two other adolescent vaccines: tetanus, diphtheria, and pertussis (Tdap) booster 

and meningococcal vaccine (3). Coverage for Tdap booster has surpassed that goal, and 

meningococcal vaccine is quickly approaching it (2,4). However, only 28% of females and 

7% of males in this age group had received the entire three-dose HPV vaccine series as of 

2012 (4). Improving these low rates of HPV vaccination could have a tremendous impact on 

population health. Achieving 80% coverage with HPV vaccination could prevent an 

additional 53,000 cases of cervical cancer over the lifetime of females who are now age 12 

or younger (5). For this reason, national organizations including the Centers for Disease 

Control and Prevention (CDC), the National Cancer Institute, and the President’s Cancer 

Panel have prioritized increasing HPV vaccination (e.g., 3,5,6).

A highly promising way to increase HPV vaccination coverage is through concomitant 

administration of HPV vaccines with Tdap boosters or meningococcal vaccines, also called 

“same day” or “bundled” vaccination (1,7). Concomitant vaccination is an effective and safe 

practice (7–10) that CDC endorses (1). A recent study by Stokley and colleagues (11) 

demonstrated that, if all adolescent girls born in 2000 who received another vaccine had 

concomitantly received HPV vaccines, coverage for the latter vaccines among this group 

would have increased from 47% to 91%. However, very few studies have investigated 

concomitant vaccination.

Cancer prevention efforts focused on improving coverage with HPV vaccine and national 

efforts focused on improving coverage with the entire adolescent vaccine platform (Tdap 

booster, meningococcal, and HPV vaccines) have not considered seasonal peaks in 

administration. These peaks may be especially pertinent in the United States, which has an 

opportunistic vaccination program and school entry requirements in some states (12). 

Seasonal peaks may arise due to parents seeking to comply with vaccination school entry 

requirements (13) before the school year begins, among other factors. Indeed, adolescent 

vaccination rates in New York City and several states show preliminary evidence of summer 

peaks (14,15), but no studies that we are aware of have examined seasonality on a national 

level or for concomitant vaccination. In the same way that retailers focus promotional efforts 

for some products around holidays to maximize impact, identifying summer peaks in 

adolescent vaccination could highlight times when quality improvement or promotional 

programs may have higher impact on coverage, an especially important consideration for 

HPV vaccination (16,17). We sought to establish whether summer peaks exist in adolescent 
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vaccination in the U.S. to support efforts to address low HPV vaccination coverage. These 

peaks could affect clinical practice, timing of public health programs, and timing of 

promotional efforts in regards to improving HPV vaccination and cancer prevention.

Materials and Methods

Data source

Data came from the 2008–2012 versions of the National Immunization Survey (NIS) – Teen 

conducted by the CDC (18). NIS-Teen is a two-part survey consisting of telephone 

interviews administered to a national probability sample of caregivers of 13- to 17-year-old 

adolescents (hereafter referred to as “parents”) and questionnaires mailed to adolescents’ 

healthcare providers. In 2008–2010, NIS-Teen staff contacted parents through landline 

numbers, and in 2011–2012, staff also contacted parents through cell phone numbers.

Each year, NIS-Teen collected provider-verified vaccination data for about 20,000 

adolescents living in the 50 states and Washington D.C. (hereafter referred to collectively as 

“states”), for a cumulative total of 99,921 adolescents (18). Because we were interested in 

dates of adolescent vaccination, which is conditional on receiving at least one vaccine, we 

excluded participants whose providers reported that they had not received any adolescent 

vaccine (n=21,574). In addition, we excluded participants who had received at least one 

vaccine, but their providers reported that administration fell outside of the study period 

(2007 to 2012) (n=8,203), for a final analytic sample of 70,144 adolescents. NIS-Teen staff 

calculated sampling weights for each participant with provider-verified data to account for 

non-equal probability of selection.

Data collection for NIS-Teen was approved by the National Center for Health Statistics 

(NCHS) Research Ethics Review Board. Analysis of de-identified data from the survey is 

exempt from the federal regulations for the protection of human research participants. 

Analysis of restricted data through the NCHS Research Data Center is also approved by the 

NCHS Ethics Review Board. The University of North Carolina Institutional Review Board 

exempted our study from review.

Measures

Healthcare providers reported whether adolescents received HPV vaccine, Tdap booster, and 

meningococcal vaccine, and, if so, the month, date, and year of administration. Although 

data collection took place beginning in 2008, we included instances of vaccination that 

occurred on or after January 1, 2007 in this analysis, because providers could report 

vaccinations that took place up to the date of the parent telephone interviews. We analyzed 

HPV vaccine initiation (receipt of the first of the three-dose series) only among female 

adolescents, because the CDC did not introduce a recommendation for routine 

administration to male adolescents until 2011 (19). We coded participants as receiving 

vaccines concomitantly if providers reported administration of two or more vaccines on the 

same day (7). Thus, we captured whether adolescents concomitantly received four possible 

combinations of vaccines: (a) HPV vaccine and Tdap booster; (b) HPV and meningococcal 

vaccines; (c) Tdap booster and meningococcal vaccine; and (d) HPV vaccine, Tdap booster, 
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and meningococcal vaccine (“all three”). State of residence and demographic characteristics 

came from parental report in the telephone interview.

Data Analysis

Data preparation—We combined data from the 2008–2012 versions of NIS-Teen using 

NCHS’s recommended procedures that include creating new weighting variables (18). Then, 

we categorized participants according to the month and year in which they received vaccines 

and generated weighted estimates of the total number of vaccines administered in each 

month of the study period. We standardized the length of each month by dividing the 

monthly vaccination totals by the number of days in the month and multiplying by 30. This 

approach may be unnecessary when analyzing large samples (20), but some researchers have 

noted the value of standardization to remove the influence of month length from studies of 

seasonality (21,22). For analyses that aggregated vaccination data from multiple years, we 

weighted each year’s observations so that years contributed equally.

To create figures depicting vaccination peaks, we put the number of people receiving 

vaccines each month on a common metric, following recommendations by Rau and others 

(20,21,23). We calculated the number of people who received particular vaccines each 

month and scaled the data so that the yearly total was 1,200. Any month with a scaled 

vaccination total exceeding 100 contained greater vaccination than would be expected if 

vaccination were randomly distributed over time, and any month with a scaled vaccination 

total of less than 100 contained less vaccination than expected. This approach facilitates 

descriptive comparison of peaks between geographic units with different population sizes. 

As a supplementary analysis, we created figures depicting Tdap booster and meningococcal 

vaccination peaks stratified by adolescent sex in order to examine comparability with the 

HPV vaccination peaks for female adolescents only. Note that the inferential procedures 

used the month- and year-standardized data (described above), not these scaled observations.

Inferential analysis—We examined seasonal peaks in the U.S. overall and within each 

state for all study years combined, and then for the U.S. within each study year. These three 

approaches allowed us to check for consistency of cyclical patterns across geography and 

time. We performed these calculations separately for HPV vaccine, Tdap booster, and 

meningococcal vaccine, and for each of the concomitant vaccination outcomes. Small 

sample sizes precluded generating estimates for each study year separately within states; for 

concomitant vaccination within states; and for 2012, the final study year, separately from the 

preceding years.

To test the statistical significance of seasonal peaks, we used the Edwards method (20,21), 

the most commonly used analytic approach in seasonality research (21). Briefly, the 

Edwards method involves fitting a harmonic sine curve with one peak and one trough to the 

observed monthly data. (Before implementing these methods, we verified with visual 

inspection that the data did not follow a qualitatively different form, e.g., bimodal, which 

would require different analytic tools.) Edwards T statistic, which measures how far the 

fitted curve differs from non-seasonality (a flat line), follows a chi-square distribution with 

two degrees of freedom. The ratio of highest to lowest (RHL) incidence examines the 
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amplitude of the fitted curve to describe the relative increase in the outcome at the cycle’s 

maximum (its peak) compared to its minimum (its trough) (20,21). Previous public health 

studies have used the Edwards method to assess cyclical patterns in outcomes, such as 

cardiovascular disease, suicide, and malaria (24–26). For each vaccination outcome in the 

current study, we fitted a sine curve to the observed data and calculated the resulting T 

statistic. In addition, we calculated the RHL to summarize the magnitude of the peaks.

All analyses were conducted in SAS version 9.2 (Cary, NC). Statistical tests used a two-

tailed p value of .05. Analyses incorporated survey weights to account for non-equal 

probability of selection.

Results

The 70,144 vaccinated adolescents were nearly evenly distributed by sex and age (Table 1). 

Most adolescents were non-Hispanic white (57.2%), had private health insurance (60.7%), 

and had a preventive healthcare visit in the last year (87.5%). The majority of adolescents 

lived in metropolitan areas (85.7%) and in households above the poverty level (74.3%).

About 48% of female adolescents initiated HPV vaccine vaccination between 2008 and 

2012 (Table 2). Among female and male adolescents, coverage was 66% for Tdap booster 

and 59% for meningococcal vaccination. Concomitant HPV vaccination was far less 

frequent: among females, 16% received HPV vaccine concomitantly with Tdap booster, 

22% concomitantly with meningococcal vaccine, and 8% received all three vaccines 

concomitantly. Among female and male adolescents, 30% received Tdap and 

meningococcal vaccines concomitantly.

Uptake of HPV vaccines

HPV vaccination among female adolescents increased in late spring, peaked in August, and 

decreased rapidly thereafter (black line in Figure 1, Panel A). Uptake was highest in June, 

July, and August, when healthcare providers delivered 38.7% of all vaccine doses (Table 2). 

This pattern reflects a substantial summer peak in HPV vaccination (p<.001) (Table 3). The 

RHL for this curve was 4.7, indicating that vaccination was about 5 times as frequent at the 

cycle’s peak as at its trough.

HPV vaccination in individual states (gray lines in Figure 1, Panel A) largely demonstrated 

the same summer peaks as in the U.S. overall, with summer peaks evident in each state (all 

p<.001) (Supplementary Table S1). The RHLs of states’ cycles varied from 2.5 in New 

Mexico to 98.2 in Nevada. This pattern of summer peaks in vaccination was evident in all 

study years (all p<.001) (Figure 2; Table 3). The RHLS of the peaks for HPV vaccine varied 

little from year to year, with no clear pattern, ranging from 4.5 in 2008 to 5.7 in 2010.

Uptake of other adolescent vaccines

Tdap booster and meningococcal vaccination (among female and male adolescents in the 

U.S.) largely reflected the same patterns as HPV vaccination, increasing in late spring, 

peaking in August, and decreasing rapidly thereafter (black lines in Figure 1, Panels B and 

C). Healthcare providers administered about 40% of all Tdap booster and meningococcal 
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vaccine doses during June, July, and August (40.2% and 41.1%, respectively) (Table 2). 

Each vaccination outcome demonstrated summer peaks across and within study years 

(Figure 2; Table 3) and within individual states (gray lines in Figure 1, Panels B and C; 

Supplementary Table S1) (all p<.001). The average RHL was 5.1 for Tdap booster and 10.1 

for meningococcal vaccine (Table 3). Tdap booster and meningococcal vaccination cycles 

were similar for female and male adolescents (Supplementary Figure S1).

Concomitant uptake of HPV vaccines with other adolescent vaccines

Concomitant vaccination largely reflected the same patterns as HPV and other adolescent 

vaccination individually, increasing in late spring, peaking in August, and decreasing rapidly 

thereafter (Supplementary Figure S2). Healthcare providers delivered about 40% of all 

concomitant vaccinations during June, July and August (HPV vaccine and Tdap booster: 

41.5%; HPV and meningococcal vaccines: 38.9%; Tdap booster and meningococcal 

vaccines: 40.9%; all three vaccines: 41.6%) (Table 2). Each concomitant vaccination 

outcome demonstrated summer peaks for the U.S., both across and within study years (all 

p<.001) (Supplementary Figure S2; Table 4). The average RHL was 4.6 for HPV vaccines 

and Tdap booster, 4.2 for HPV and meningococcal vaccines, 5.6 for Tdap booster and 

meningococcal vaccines, and 3.3 for all three vaccines.

Discussion

Cancer prevention efforts focused on HPV vaccination generally have not considered the 

possibility of seasonal variation in uptake. We found evidence of large summer peaks in 

uptake of HPV vaccines and its concomitant delivery with other adolescent vaccines. From 

2007 to 2012, healthcare providers administered around 40% of these vaccines during June, 

July, and August. HPV vaccination was about five times as high at the peak of the yearly 

cycle as compared to vaccination at the trough. This pattern of summer peaks for HPV 

vaccination (and uptake of other adolescent vaccines) occurred across years and within each 

state. Concomitant vaccination demonstrated similar summer peaks, although the overall 

prevalence was much lower, reflecting considerable missed opportunities. Leveraging these 

results could improve adolescent primary care and population health, particularly in 

increasing vaccination coverage and reducing the burden of HPV-associated cancers.

We found evidence of substantial missed opportunities for cancer prevention through HPV 

vaccination, especially alongside other adolescent vaccines. Overall, a minority of 

adolescents received HPV vaccine concomitantly with another adolescent vaccine, and 

many adolescents received Tdap booster or meningococcal vaccination without concomitant 

HPV vaccination. Increasing concomitant HPV vaccination could greatly improve national 

cancer prevention efforts. An opportunity for delivering catch-up doses of HPV vaccine that 

we did not study is concomitant delivery with booster doses of meningococcal vaccine in 

adolescents beginning at age 16 years (1). Additionally, given the temporal sequence of the 

HPV vaccine series, more research is needed on seasonal patterns in administration of all 

three HPV vaccine doses. Specifically, if adolescents who initiated HPV vaccination 

adhered to the recommended administration schedule for doses 2 and 3 (1–2 months and 6 

months after the first dose, respectively (1)), HPV vaccine completion may, for example, 
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have a secondary peak in February (6 months after the peak in initiation). A related point is 

that adolescents may have received doses 2 or 3 of HPV vaccine concomitantly with Tdap 

booster or meningococcal vaccine, and our current analysis of concomitant HPV vaccination 

would not have detected those incidences. Interventions that exploit trends in HPV 

vaccination (especially when delivered concomitantly) could improve coverage levels and 

offer greater cancer prevention to young people throughout their lifetimes.

Additional research is needed to understand how these vaccination cycles emerge. 

Vaccination requirements for school entry may encourage parents and adolescents to seek 

vaccination in the summer, especially in August, which coincides with the beginning of the 

school year in most areas of the U.S. (14). These policies could also explain some of the 

difference in magnitude of summer peaks for Tdap booster versus meningococcal vaccine: 

generally, states with requirements for the latter vaccine adopted them more recently. Their 

more recent implementation may exaggerate the observed summer peaks as parents newly 

rush to comply. Although national guidelines began recommending routine administration of 

Tdap booster and meningococcal vaccine in 2005, and HPV vaccines in female adolescents 

in 2006 (1), subsequent adoption of school entry requirements has been quite varied across 

states: As of 2012, 42 states had Tdap booster requirements, 14 had meningococcal 

vaccination requirements, and only 2 had HPV vaccination requirements (13). Despite the 

low prevalence of HPV vaccination requirements, we still observed summer peaks for that 

behavior across the U.S. This cyclical pattern could come about through carry-over effects 

of policies for Tdap or meningococcal vaccination (which are much more common), 

specifically through concomitant administration of a vaccine targeted by a school entry 

requirement along with HPV vaccine. Alternative explanations for the summer peaks 

include adolescents receiving vaccinations during physical exams required for summer 

camps and the relative ease of seeking adolescent vaccination when students are out of 

school.

Our national results extend the findings of two smaller descriptive studies. Sull and 

colleagues (14) used the New York City immunization information system (IIS) to measure 

monthly administration of adolescent vaccines among 11-year-old adolescents from 2005 to 

2013. Starting in 2007, they found small increases in uptake of HPV vaccine, and large 

increases in uptake of Tdap booster and meningococcal vaccine, in the summer compared to 

the rest of the year. Cullen and colleagues (15) used IIS data at 8 sentinel sites in the U.S. to 

analyze the weekly number of HPV vaccine doses administered among male and female 

adolescents aged 11–18 years. The authors reported relative increases in HPV vaccination 

during the summers of 2010–2012. Using nationally-representative data, we more precisely 

quantified the magnitude of summer peaks across time and for each state, tested their 

statistical significance, which has not been done previously, and examined cycles in 

concomitant vaccination.

Summer peaks in adolescent vaccination influence clinical practice for pediatric and family 

medicine physicians in at least three important ways. First, immunization quality 

improvement efforts are best suited to the spring months, because the relative decrease in 

vaccination during those times affords more organizational capacity to make structural 

changes in preparation for summer increases in vaccination (27,28). Second, summer peaks 
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in uptake of Tdap booster and meningococcal vaccine translate into increased opportunities 

for providers to recommend and administer HPV vaccine concomitantly. Given that a 

provider’s recommendation is the strongest and most consistent correlate of adolescent 

vaccination (29,30), recommending concomitant vaccination during immunization visits in 

the summer could bring about large increases in HPV vaccination coverage. Third, clinics 

require greater supplies of adolescent vaccines during the summer. Some clinicians have 

reported that HPV vaccine is expensive or burdensome to stock (31,32), but the results of 

the current study emphasize the importance of maintaining adequate supplies of adolescent 

vaccines during the summer in order to meet the demand for adolescent vaccination.

Additionally, these summer peaks in adolescent vaccination have implications for public 

health practice, research, and policy. Adolescent vaccination programs may serve as cues to 

action (33), but these effects typically decay (34); therefore, they may be especially fruitful 

if they occur in the summer or late spring in order to capitalize on the existing peaks (similar 

to the phenomenon of increasing advertising for consumer shopping during the winter 

holiday season (35)). National efforts to change the vaccination infrastructure (e.g., by 

introducing improved vaccine formulations (36) or improving functionality of reminder-

recall systems (37)) could focus on winter or spring months when demand is lower and 

disruptions to clinical operations would have the least impact on coverage. In addition, 

public health researchers should account for these cyclical patterns when conducting 

evaluations to avoid misattributing secular increases in coverage in the summer to 

promotion or intervention programs. This issue of potential confounding is of greatest 

concern for uncontrolled research study designs.

Study strengths include healthcare provider-verified vaccination data drawn from several 

years of a large, nationally-representative survey (18). Analyses employed an inferential 

statistical technique that supports inferences beyond descriptive approaches used previously 

(14,15). There are several study limitations: we could not distinguish between adolescents’ 

current states of residence (the unit of analysis in this study) and the states in which they 

received their vaccines. For adolescents who relocated during the time between vaccination 

and participation in NIS-Teen, the states in which they received vaccines may have been 

misattributed. However, given the similarity of the vaccination cycles evident across states 

and across years, the effect of this misattribution was likely minimal. In addition, in survey 

years 2008–2010, NIS-Teen staff contacted participants only through landline phones only, 

and in survey years 2011–2012, they contacted participants through landline and cell 

phones, which could introduce some systematic difference in samples across years (18). 

Because of small cell sizes, we were unable to evaluate summer peaks in 2012, and 

sparseness of data may have introduced noise into the estimates for the more recent years 

(especially for concomitant vaccination). As more data are accumulated, these patterns may 

become more robust and allow analysis of summer peaks for more recent years. Another 

potential limitation is that we examined cycles in HPV vaccination only among female 

adolescents, due to when recommendations for males became part of practice (19). 

However, our analyses of Tdap booster and meningococcal vaccination stratified by sex 

demonstrated very similar results, a finding that suggests that summer peaks in HPV 

vaccination could emerge among male adolescents, as well. Finally, in our analyses, we 

could not explore potential explanations for the relatively low levels of concomitant 

Moss et al. Page 8

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



vaccination (especially for HPV vaccine alongside Tdap boosters or meningococcal 

vaccines). Thus, we could not discern whether, for example, healthcare providers did not 

make recommendations or whether they made recommendations and parents declined 

concomitant vaccination. These two explanations would suggest different interventions to 

promote concomitant vaccination (i.e., provider-focused, parent-focused, or both), an 

important topic for future studies.

In summary, we found marked summer peaks in uptake of adolescent vaccines from 2007 to 

2012. For the U.S. and for individual states, vaccination increased substantially during the 

summer months. Healthcare providers administered about 40% of all adolescent vaccines 

during June, July, and August. These cycles have implications for both clinical practice 

(e.g., recommending concomitant vaccination during the summer) and public health (e.g., 

timing of vaccine promotion programs). Future studies should evaluate how cyclical patterns 

emerge and how promotion programs can harness these patterns to improve population-level 

coverage with adolescent vaccines and offer greater protection from HPV-attributable 

cancers.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Summer peaks in adolescent vaccine uptake in the United States and individual states. 

Uptake standardized at 100 per month for 2007 to 2012. Source: National Immunization 

Survey-Teen, administered 2008 to 2012.

Moss et al. Page 12

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Summer peaks in adolescent vaccine uptake in the United States, by year. Uptake 

standardized at 100 per month for 2007 to 2012. Source: National Immunization Survey-

Teen, administered 2008 to 2012.
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