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Abstract

Background—Parity and time since last birth influence breast cancer risk and vary by intrinsic 

tumor subtype, but the independent effects of these factors on prognosis has received limited 

attention.

Methods—Study participants were 1,140 invasive breast cancer patients from Phases I and II of 

the population-based Carolina Breast Cancer Study, with tissue blocks available for subtyping 

using immunohistochemical markers. Breast cancer risk factors, including pregnancy history, were 

collected via in-person interviews administered shortly after diagnosis. Vital status was 

determined using the National Death Index. The association of parity and birth recency with breast 

cancer (BC)-specific and overall survival was assessed using Cox proportional hazards models.

Results—During follow-up (median =13.5 years), 450 patients died, 61% due to breast cancer 

(n=276). High parity (3+ births) and recent birth (< 5 years before diagnosis) were positively 

associated with BC-specific mortality, independent of age, race, and selected socioeconomic 

factors (parity, reference=nulliparous, adjusted hazard ratio [HR]=1.76, 95% confidence interval 

[CI]=1.13-2.73; birth recency, reference=10+ years, adjusted HR=1.29, 95% CI=0.79, 2.11). The 

associations were stronger among patients with luminal tumors and those surviving longer than 5 

years.

Conclusions—Parity and recent birth are associated with worse survival among breast cancer 

patients, particularly among luminal breast cancers and long-term survivors.

Impact—The biological effects of parity and birth recency may extend from etiology to tumor 

promotion and progression.
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Introduction

Reproductive history is an important determinant of breast cancer risk, with a transiently 

increased risk in the first 5-7 years after last child birth, followed by a long-term risk 

reduction (1, 2). Increased appreciation of etiologic heterogeneity in breast cancer has added 

complexity to our current understanding of reproductive risk factors. Risk of basal-like 

breast cancer/triple-negative breast cancer increases with multiple births and recency of last 

birth/pregnancy , particularly among young women (3-6), while risk of luminal tumors 

follows patterns established for breast cancer overall. These findings suggest that pregnancy 

and the associated events may have mechanistic effects that vary by subtype. The proposed 

biological mechanisms linking parity and the transiently increased risk of breast cancer 

include increased hormonal stimulation, expansion of stem/progenitor cells, growth stimuli, 

and pro-inflammatory and wound-healing changes in microenvironment (7-11). Although 

the role of these mechanisms in breast cancer heterogeneity is still under investigation, these 

mechanisms could influence both risk and prognosis.

Parity variables, including number and recency of birth, have had limited study in the 

association with breast cancer prognosis. While some studies report no association between 

number of births and prognosis (12-16), other studies report that multiple births are 

associated with a poorer prognosis (16-19), and still others show improved prognosis among 

multiparous women (13, 20, 21). These discrepancies may be attributed to different 

distributions of potential effect measure modifiers such as race and menopausal status, and a 

different profile of intrinsic subtypes across study populations. In comparison with 

multiparity, time since last birth shows relatively consistent patterns with survival in 

previous literature. Recent birth appears to be associated with poor outcome among breast 

cancers overall (17, 22-24), but associations by breast cancer intrinsic subtype are poorly 

understood. Using data from the Carolina Breast Cancer Study (CBCS), a large population-

based case-control study, we assessed the impact of multiparity and birth recency on overall 

and breast cancer (BC)-specific survival. These associations were evaluated among breast 

cancers as a whole and in strata defined by specific breast cancer subtypes (basal-like and 

luminal).

Materials and Methods

Study Population

The CBCS is a population-based case-control study, the details of which have been 

described previously (3, 25). Briefly, a total of 1,808 patients aged 20-74 years diagnosed 

with primary invasive breast cancer during 1993-1996 (Phase I) and 1996-2001 (Phase II) 

were identified using rapid case ascertainment from NC Central Cancer Registry, with 

African American and young cases (aged 20-49 years) oversampled using randomized 

recruitment (25). Participants were interviewed in person within 1 year of diagnosis by 
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trained nurses who collected anthropometric measurements and questionnaire responses. 

Clinicopathological information was abstracted from clinical records and pathological 

reports. All study participants gave written informed consent. The study was approved by 

the Institutional Review Board of the University of North Carolina (UNC).

Breast cancer subtype classification

The details of breast cancer subtyping have been published previously (3, 26). Briefly, 

whole, formalin-fixed paraffin-embedded tumor tissues were sectioned and stained for a 

panel of immunohistochemical (IHC) markers in the IHC Core Laboratory at UNC. The 

following markers were used to determine breast cancer intrinsic subtypes: luminal A (ER+ 

and/or PR+, HER2-), luminal B (ER+ and/or PR+, HER 2+), basal-like (ER-, PR-. HER2-, 

HER1+ and/or cytokeratin 5/6+), HER2-enriched (ER-, PR-, HER2+), and unclassified 

(negative for all five markers). We combined luminal A and luminal B as luminal tumors 

due to the small number of luminal B tumors (n=111) and, more importantly, recent 

revisions to the IHC definition of luminal B (27, 28). Luminal A and B tumors cannot be 

reliably distinguished without additional markers (such as Ki-67) or RNA expression data 

(29). Although the information on tumor grade and mitotic index collected in Phase I of the 

CBCS may help classify luminal B and luminal A, the resulting number of luminal B tumors 

was too small to generate reliable estimation in survival analyses. In the CBCS, the 

demographic and tumor characteristics in patients with luminal A and B tumors were 

comparable except luminal B tumors more likely to be lymph node positive (p=0.01).

Exposure and Outcome Assessment

Parity status was evaluated as number of full-term births. Recency of last birth was 

calculated as the year of diagnosis minus the year of the last full-term birth. Their values 

were 0 for nulliparous women. Linkage with the National Death Index provided vital status, 

dates of deaths, and cause of death on the CBCS cases through December 31, 2011. The 

detailed description of linking method has been published previously (30). Briefly, deaths 

among cases were determined using weighted probabilistic scores and predetermined 

matching cutoffs to establish a maximum of 1 match per individual. International 

Classification of Diseases (ICD) breast cancer codes 174.9 (ICD-9) or C50.9 (ICD-10) were 

used to identify deaths due to breast cancer on death certificate.

Statistical Analysis

The current analysis was limited to 1,140 African American or White patients (9 other race 

cases excluded) with available information on intrinsic subtype, parity, and birth recency. 

The demographic and tumor characteristics of the excluded cases (n=668) were compared 

with those of the included cases. No significant differences were detected, except that the 

excluded cases were less aggressive (more likely to be negative lymph node status, tumor 

size ≤ 2 cm, and stage I). Considering categories used in previous studies (3) and the 

distribution of patients in the CBCS, the number of full-term live births was grouped into 

three categories: nulliparous, 1-2 births, and ≥3 births. Birth recency was evaluated among 

parous women, and grouped into three categories: <5 years, 5-<10 years, and ≥10 years. To 

describe the characteristics of the study population, the distribution of age at diagnosis, 

menopausal status, race, body mass index (BMI), waist hip ratio (WHR), family history of 
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breast cancer, education, family income, smoking, alcohol intake, physical activity, the 

usage of hormone replacement therapy (HRT) and oral conceptive (OC), lymph node status, 

intrinsic subtype, tumor size, tumor stage, histology group, nuclear grade, histological grade, 

and mitotic index, were evaluated by multiparity and birth recency categories using Chi-

square test or Student's t-test. The assessment and definition of these variables have been 

described previously (3). Patients living as of December 31, 2011 were censored at the end 

of follow-up, and those who died of causes other than breast cancer were censored at the 

time of event for BC-specific analysis. Kaplan-Meier survival curves and log-rank tests were 

used to compare the difference in overall and BC-specific survivals by multiparity and birth 

recency.

Cox regression analysis was used to estimate hazard ratio (HR) and 95% confidence interval 

(CI) for overall and BC-specific death, with nulliparous as reference in multiparity analyses 

and patients with last birth ≥ 10 years as reference in recency analyses. A model adjusted for 

study design factors (including age, race, and study phase) was considered as the initial 

model. Potential confounders were selected based on a priori knowledge, associations in 

this particular study, and directed acyclic graphs (DAG). Although obesity, alcohol 

abstainers, OC usage, smoking, and HRT were suggested to be associated with parity/

recency, they were not included in the multivariate analysis considering their weak 

relationship with mortality based in previously literature and in the present study. Age, race, 

education, and family income were adjusted as minimally sufficient adjustment set based on 

DAG (31). Lastly, tumor characteristics, including tumor stage, tumor size, lymph node 

status, and histology group, were adjusted to evaluate the influence of other prognostic 

factors. The categorization of covariates is shown in Table 1 and Supplementary Table S1 

and S2. Stratified analyses were performed to evaluate effect modification by intrinsic 

subtype. Only basal-like and luminal strata are presented because unclassified tumors are of 

biologically uncertain subtype, and because too few patients (n=73) are HER2-enriched for 

stable estimation. The proportional hazards assumption in each Cox model was assessed 

using log-log plots of survival and time-dependent cross-product terms of the survival time 

(years) and the variables of interest, and showed no violation of the assumptions. All 

statistical tests were two sided with α=0.05, all analyses were performed using SAS version 

9.2 (SAS Institute), and all figures were generated using R 3.0.0.

Differences in HRs by race and menopausal status within luminal and basal-like tumors 

were explored. In the analysis by menopausal status, perimenopausal women were excluded 

to avoid misclassification (n=95). In addition, because studies have suggested that factors 

predicting survival in early years after diagnosis may differ from those in later years (e.g. 

with tumor biological and pathologic characteristics dominant in early years and lifestyles 

dominant in later years) (32), analyses were conducted conditional on follow-up length: data 

were truncated at five years to evaluate five-year mortality and then survival was assessed 

conditional upon surviving the first five years. Exploratory analyses were conducted to 

characterize the dose-response relationship of multiparity and birth recency with mortality. 

To assess the potential interactions of multiparity-breastfeeding or multiparity-birth recency, 

compound variables were created and their corresponding HRs were calculated (multiparity-

breastfeeding: nulliparous, 1-2 births and ever breastfed, 1-2 births and never breastfed, 3+ 
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births and ever breastfed, and 3+ births and never breastfed; multiparity-birth recency: 

nulliparous, 1-2 births and last birth <10 years, 1-2 births and last birth ≥ 10 years, 3+ births 

and last birth <10 years, and 3+ births and last birth ≥ 10 years). To evaluate the influence of 

reference selection on estimates for birth recency, we did sensitivity analyses using 

nulliparous women as reference. In addition, we performed sensitivity analyses 1) including 

age at first birth and number of birth in the models, and 2) modeling age at diagnosis as an 

eight-level categorical variable (five-year intervals) and as a quadratic continuous variable.

Results

Patient and tumor characteristics

Among 1,140 breast cancer patients in this study, the average age at diagnosis was 51 years 

(SD=11.5 years, range=23-74 years). Approximately half of patients were African American 

(45%) and premenopausal (49%) per the sampling strategy of the CBCS. A total of 967 

(85%) women were parous, among which 416 (43%) had 3 or more births. 165 (17% of 

parous patients) had last full-term birth within 10 years of breast cancer diagnosis. The 

selected patient demographics by multiparity and by birth recency are shown in Table 1 and 

detailed in Supplementary Table S1 and S2, respectively. Compared with nulliparous 

patients, patients with high parity (3+ births) were significantly older, and were more likely 

to be African American, obese (BMI≥30 kg/m2), lower socioeconomic status (SES) 

(measured by education and family income), alcohol abstainers, and non-OC users. Patients 

with high parity also tended to have last birth more than 10 years prior to diagnosis. 

Consequently, birth recency and multiparity were associated with similar characteristics. 

Additionally, patients who had given birth 10 years more before breast cancer diagnosis 

were more likely to be smokers and HRT users than patients with last birth within 5 years.

Luminal tumors comprised the majority of breast cancers (n=731, 64%), followed by basal-

like tumors (n=205, 18%), unclassified (n=131, 11%), and HER2-enriched tumors (n=73, 

6%). Compared with nulliparous patients, parous patients were more likely to have basal-

like breast cancer (frequency was highest in women with birth within 5-<10 years) and 

lymph node positive tumors (Supplementary Table S1 and S2). Among parous patients, 

lymph node positive and poorly differentiated tumors were more frequent in women with 

recent birth (<5 years).

Associations of multiparity and birth recency with prognosis

The median follow-up time was 13.5 years, ranging from 0.2 years to 18.7 years. By the end 

of follow-up (December 31, 2011), there were 450 deaths, 61% due to breast cancer 

(n=276). Among breast cancer deaths, 159 (58%) had occurred within 5 years of diagnosis, 

and 78 (28%) occurred between 5 and 10 years. Patients with higher parity tended to have 

poorer overall and BC-specific survival (overall, Supplementary Fig. S1; BC-specific, 

Figure 1). Comparing patients with three or more births to nulliparous patients, the age- and 

race-adjusted HR was 1.77 (95% CI=1.18-2.66) for BC-specific mortality (Table 2). Parous 

women with recent birth (<5 years) tended to have an increased risk for BC-specific 

mortality (adjusted HR=1.28, 95% CI=0.80-2.06, reference=10+ years). Neither multiparity 

nor birth recency were significantly associated with all-cause mortality (parity ≥ 3, adjusted 
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HR=1.03, 95% CI=0.76-1.39; recency <5 years, adjusted HR=1.31, 95% CI=0.81-2.12; 

Supplementary Table S3).

The association of multiparity with BC-specific survival remained after adjusting for SES 

factors (parity 3+, adjusted HR=1.76, 95% CI=1.13-2.73), but were attenuated after further 

adjustment for tumor characteristics (parity ≥ 3, adjusted HR=1.42, 95% CI=0.91-2.23). The 

association with birth recency was suggested, but statistically insignificant (recency <5 

years, adjusted HR=1.29, 95% CI=0.79-2.11). The recency analyses were repeated when 

including all women and using nulliparous women parous women as reference, and a 

significantly increased risk for BC-specific mortality in patients with more recent birth was 

observed (adjusted HR=1.90, 95% CI=1.10-3.34, adjusted for age, race, study phase, and 

selected SES factors). Dose-response relationships were evaluated without significant results 

detected (multiparity, p trend=0.40; birth recency, p trend =0.76; adjusted for age, race, 

study phase, and selected SES factors).

In stratified analyses, multiparity and birth recency showed distinct associations by intrinsic 

subtype (Figure 1). Compared with luminal tumors, basal-like tumors had a worse survival 

across different exposure levels, particularly in the first five years of follow-up. Higher 

parity and more recent birth predicted poorer BC-specific survival, with a stronger 

association observed in luminal tumors than in basal-like tumors (p-value of the interaction 

term was 0.09 and 0.11 for multiparity and recency, respectively), although the HR 

estimates in basal-like tumors were imprecise. As shown in Table 2, the associations of BC-

specific mortality with multiparity and recency in women with luminal tumor were 

independent of age, race, and SES factors (parity ≥ 3, adjusted HR=2.34, 95% CI=1.22-4.47, 

reference=nulliparous; last birth < 5 years, adjusted HR=2.03, 95% CI=1.09-3.81, 

reference= 10+ years), but was attenuated after adjustment for tumor characteristics. Our 

sensitivity analysis demonstrated that this increased risk for BC-specific mortality in luminal 

cases with more recent birth was not confounded by multiparity or age at first birth, nor 

influenced by the way modeling age at diagnosis (data not shown). Consistent with results 

among all cases, no association of multiparity or birth recency with overall survival was 

detected in either luminal or basal-like tumors, except that birth within 10 years was 

associated with poor outcome in patients with luminal tumors (Supplementary Table S3).

Exploratory analyses

To explore potential temporal difference in the influence of multiparity and recency on 

survival, we stratified analyses on survival time (5 years), although no statistically 

significant violation of proportional hazards assumptions were detected. Compared with 

effect estimates for the first five years, HRs for BC-specific mortality were greater after 

conditioning on survival to 5 years, particularly among patients with luminal tumors (Table 

3). The 5-year conditional associations of multiparity and birth recency in luminal tumors 

were independent of the tumor characteristics (parity ≥ 3, adjusted HR = 2.68, 95% 

CI=1.02-7.05, reference=nulliparous; last birth < 5 years, adjusted HR = 2.74, 95% 

CI=1.25-6.00, reference=10+ years). No significant differences were detected by 

menopausal status, younger age (<40 years) or race, although a stronger effect of birth 

recency was suggested in White women and younger women with luminal tumors.
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We explored the combined effect of multiparity and birth recency on breast cancer 

prognosis. As presented in Figure 2, parous patients with parity ≥ 3 births and recency < 10 

years had the worst prognosis after adjustment for age, race, study phase, and SES factors 

(adjusted HR=2.02, 95% CI=1.09-3.73; reference=nulliparous). Reduced survival was also 

observed among patients with 1-2 births and recency < 10 years (adjusted HR=1.69, 95% 

CI=1.06-2.67). No significant association with survival was observed among parous patients 

with recency ≥ 10 years (parity ≥ 3 birth and recency ≥ 10 years: adjusted HR=1.47, 95% 

CI=0.87-2.50; parity 1-2 birth and recency ≥ 10 years, adjusted HR=1.42, 95% 

CI=0.92-2.21). Nulliparous patients had the best prognosis. No significant modification of 

hazard ratios by breastfeeding status was detected. We also evaluated possible immune time 

bias (due to time elapsed between diagnosis and enrollment) and found that time-to-

enrollment did not differ by parity/recency (multiparity, p=0.83; recency, p=0.68).

Discussion

In this study, patients with high parity or recent birth had worse BC-specific survival 

compared to nulliparous patients or compared to patients who gave birth more than 10 years 

prior. These associations were independent of age, race, and SES factors, and were 

attenuated, but not fully explained by tumor characteristics. Stronger effects of parity and 

birth recency were observed in long-term survivors (i.e. those with survival ≥ 5 years) and in 

patients with luminal tumors.

Birth recency, defined as time interval from last birth until diagnosis, has consistently been 

related to deleterious tumor characteristics (e.g. advanced stage, high histological grade, and 

high proportion of hormone receptor-negative tumors) (5, 19, 24), and consequently poor 

prognosis (19, 22-24). Multiparity has also been associated with higher mortality, 

particularly BC-specific mortality (20, 33). Our findings are in line with these previous 

studies. While effects of multiparity and recency of birth are most often considered as 

separate dimensions of exposure, we considered the joint effects of these two variables. 

Women with high parity and short time since last birth had the highest BC-specific 

mortality, while nulliparous women had the lowest BC-specific mortality. These findings 

indicate that multiparity and recency, as quantitative and temporal measures of pregnancy, 

may influence the natural history of breast cancer through distinct pathways. Survivorship of 

nulliparous women relative to parous women has been controversial in previous studies (23, 

33-36), with differences in age being one possible explanation for between-study 

differences. However, in our analysis, flexible modeling of age reduced concerns about 

possible residual confounding by age and our findings support better prognosis in 

nulliparous women relative to parous women. The inconsistent findings in previous studies 

may result from distributional differences in other effect modifiers. Indeed, pregnancy is a 

complex biological exposure and epidemiologic variable. While we were underpowered to 

address all parity-related variables (37, 38), other factors beyond number and recency of 

births (e.g. breastfeeding, age at first birth, and interval between births), may modify the 

effect of pregnancy in breast cancer development and progression.

Most previous studies of parity and survival considered subtype (usually defined by 

hormone receptor status) as a confounder (36, 39). However, the heterogeneous association 
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of parity with breast cancer risk across intrinsic subtype indicates that the underlying 

mechanisms may be different for each subtype (3-6, 40-42). As a result, we considered 

subtype as an effect modifier in this study. We found that multiparity and birth recency had 

weaker effects among patients with basal-like tumors than among patients with luminal 

tumors. The trend of decreased mortality risk with time since last birth has been reported 

previously (12, 24, 43), but in our study was confined to luminal tumors. Thus far, there are 

very few studies examining the influence of multiparity and birth recency on mortality by 

breast cancer intrinsic/molecular subtype (23, 44). One study was based on 526 young 

patients (20-44 years) with invasive breast cancer in Japan. Although no association between 

multiparity and mortality was detected, worse prognosis was observed in patients with more 

recent birth. Similar to our results, this association was stronger in luminal tumor patients 

than in all breast cancer patients (HR for ≤2 years group=3.07 vs 2.19, 

reference=nulliparous). However, the very small sample size of triple-negative tumors 

(n=79) and lack of subtype-specific markers for basal-like breast cancer prevented 

inferences about basal-like breast cancer in that study. In another Israeli study among triple 

negative breast cancer patients with family history prevalence of 35% (compared with 16% 

among basal-like tumors in the present study), a significantly poorer survival among women 

with high parity (4+ children) was observed (HR of survival for nulliparous=0.31, 95% 

CI=0.10-0.95, reference = 4+) (44). Thus, effect modification by subtype is supported by 

previous literature as well as our own findings.

Whether the prognostic value of parity is independent of established clinical variables is still 

under debate. If parity shifts tumors toward more aggressive characteristics at diagnosis, 

then the effect of parity variables on survival should be diminished upon adjustment for 

tumor characteristics. In this study, we adjusted for tumor characteristics and found that the 

adjustment only modestly influenced the effect of parity, consistent with previous studies 

(23, 36, 39, 45). Furthermore, if parity does not act primarily by altering tumor clinical 

factors, but through influencing host factors, then likely its effect would be more 

pronounced in the later survival when the influence of tumor characteristics has decreased. 

Therefore, we conducted survival analyses conditioning upon the survival of the first five 

years, and observed a stronger effect of parity among patients surviving longer than five 

years. How parity, as a host factor, influences BC-specific survival requires better 

understanding of the long-term biological consequences of pregnancy.

There are many biological mechanisms that have been proposed for pregnancy-associated 

breast cancer progression. High levels of pregnancy hormones is a plausible mechanism, 

given the influence of estrogen in breast cancer progression (11, 46-48). Considering the 

relatively long latent period of breast tumors, the hormonal milieu of pregnancy may 

stimulate growth and promotion of occult tumor cells. This pathway is expected to 

specifically influence ER-positive tumors. Alternatively, the post-partum /post-lactation 

involution hypothesis is also widely accepted, wherein inflammatory changes that 

accompany involution may promote tumor progression (11). Our previous research showed 

parity-induced changes in microenvironment gene expression that differed by ER status 

(49), consistent with the observation in the current investigation that pregnancy may have 

strongest effects on ER-positive/luminal tumor progression (50).
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Our study should be interpreted in light of some limitations. First, as a survival cohort, our 

study is subjective to immortal person-time bias because participants have to survive to time 

of enrollment (51). To minimize the impact of this issue, the CBCS used the rapid 

identification system from NC Central Cancer Registry (25), with the average time interval 

between interview and diagnosis of 145 days (SD=123). In addition, we evaluated whether 

time-to-enrollment differed by parity/recency, and concluded that our findings were not 

substantially affected by immune time bias. Second, while the CBCS oversampled young 

and African American patients and therefore had a higher proportion of basal-like patients, 

stratified analyses by subtype still suffered from small sample size and imprecise estimates. 

For instance, our results demonstrated an effect modification by follow-up period that 

interestingly showed different patterns by intrinsic subtype, but we were underpowered to 

detect significant statistical interactions. Analyses among HER2-enriched tumors were also 

underpowered. Third, we adjusted for several key determinants of therapy (e.g. age, lymph 

node status, and SES) (52, 53), however treatment data was not collected. Treatment 

heterogeneity has undoubtedly increased variability in our study, but by controlling for 

tumor characteristics we have decreased bias due to differences in treatment. Finally, 

classification of luminal A and B in epidemiologic studies remains problematic. Recent data 

show that stratification of Luminal A vs. B using HER2 status (as has been done previously 

in the CBCS) results in substantial misclassification (29). We combined luminal A and B in 

this analysis, which prevented analysis of luminal A versus B progression.

In summary, our study identified multiparity and birth recency as predictors of breast cancer 

outcome, deepening the understanding of parity-associated survival. Given that the effect of 

parity may vary by intrinsic subtype, it may be important to consider reproductive history as 

a prognostic variable in clinical settings. Studies with large sample size and endocrine 

treatment data are needed to validate our findings and to further investigate the mechanisms 

and significance of parity in ER-positive and luminal breast cancer.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
BC-specific survival by parity and last birth recency, overall, among luminal tumors, and 

basal- tumors.
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Figure 2. 
BC-specific survival by multiparity-recency groups.
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Table 2

HRs of BC-specific mortality associated with parity and birth recency, in the CBCS Phases I and IIa.

Variable

Model 1 Model 2 Model 3

Deaths/N HR (95%CI) HR (95%CI) HR (95%CI)

Parity

All BC patients

nulliparous 31/173 1 1 1

1-2 132/551 1.32 (0.89, 1.95) 1.44 (0.94, 2.21) 1.16 (0.76, 1.78)

3+ 113/416 1.77 (1.18, 2.66) 1.76 (1.13, 2.73) 1.42 (0.91, 2.23)

Basal-like

nulliparous 6/24 1 1 1

1-2 30/109 1.05 (0.43, 2.56) 1.28 (0.49, 3.39) 1.44 (0.52, 4.03)

3+ 26/72 1.52 (0.61, 3.82) 1.56 (0.58, 4.21) 1.45 (0.52, 4.05)

Luminal

nulliparous 13/118 1 1 1

1-2 78/349 2.02 (1.12, 3.64) 2.12 (1.14, 3.91) 1.46 (0.78, 2.75)

3+ 62/264 2.54 (1.38, 4.68) 2.34 (1.22, 4.47) 1.56 (0.81, 3.03)

Birth recency

All BC patients

10+ years 190/801 1 1 1

5-<10 years 27/89 0.99 (0.63, 1.54) 0.98 (0.61, 1.57) 0.87 (0.53, 1.44)

<5 years 28/76 1.28 (0.80, 2.06) 1.29 (0.79, 2.11) 1.10 (0.64, 1.86)

Basal-like

10+ years 43/141 1 1 1

5-<10 years 8/26 1.89 (1.03, 3.46) 0.88 (0.37, 2.10) 0.49 (0.19, 1.26)

<5 years 5/14 1.51 (0.83, 2.75) 1.11 (0.39, 3.16) 0.81 (0.29, 2.30)

Luminal

10+ years 108/529 1 1 1

5-<10 years 14/41 0.86 (0.36, 2.04) 1.51 (0.76, 3.03) 1.66 (0.82, 3.35)

<5 years 18/42 1.13 (0.40, 3.14) 2.03 (1.09, 3.81) 1.85 (0.93, 3.69)

a
Model 1 was adjusted for age, race, and study phase; model 2 was additionally adjusted for income and education; model 3 was additionally 

adjusted for tumor stage, tumor size, lymph node status, and histological group.
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Table 3

HRs of BC-specific mortality associated with parity and birth recency, by follow-up length, in the CBCS 

Phases I and IIa.

Variable

≤ 5 years > 5 years

Deaths/N HR (95%CI) Deaths/N HR (95%CI)

Parity

All BC patients

nulliparous 20/173 1 11/143 1

1-2 78/551 1.26 (0.75, 2.10) 54/459 1.70 (0.84, 3.47)

3+ 61/416 1.31 (0.76, 2.24) 52/341 2.51 (1.22, 5.16)

Luminal

nulliparous 8/118 1 5/102 1

1-2 34/349 1.59 (0.70, 3.61) 44/306 2.87 (1.13, 7.28)

3+ 25/264 1.49 (0.63, 3.51) 37/229 3.40 (1.31, 8.82)

Birth recency

All BC patients

10+ years 109/801 1 81/665 1

<5 years 16/76 1.20 (0.65, 2.22) 12/60 1.40 (0.72, 2.75)

5-<10 years 14/89 0.86 (0.46, 1.61) 13/74 1.14 (0.60, 2.16)

Luminal

10+ years 48/529 1 60/463 1

<5 years 6/42 1.38 (0.54, 3.51) 12/36 2.62 (1.27, 5.40)

5-<10 years 5/41 0.89 (0.27, 2.98) 9/35 2.03 (0.91, 4.51)

a
HRs were adjusted for age, race, study phase, income and education. The data of basal-like tumors is not shown because of no reliable 5-year 

conditional HRs generated due to small sample size.
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