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Abstract

Background—We assessed the evidence for association between 23 recently reported prostate 

cancer (PCa) variants and early-onset PCa and the aggregate value of 63 PCa variants for 

predicting early-onset disease using 931 unrelated men diagnosed with PCa prior to age 56 years 

and 1126 male controls.

Methods—Logistic regression models were used to test the evidence for association between the 

23 new variants and early-onset PCa. Weighted and unweighted sums of total risk alleles across 

these 23 variants and 40 established variants were constructed. Weights were based on previously 

reported effect size estimates. Receiver operating characteristic curves and forest plots, using 

defined cut-points, were constructed to assess the predictive value of the burden of risk alleles on 

early-onset disease.

Results—Ten of the 23 new variants demonstrated evidence (p < 0.05) for association with early-

onset PCa, including four that were significant after multiple test correction. The aggregate burden 

of risk alleles across the 63 variants was predictive of early-onset PCa (Area Under Curve = 0.71 

using weighted sums), especially in men with a high burden of total risk alleles.

Conclusions—A high burden of risk alleles is strongly associated with early-onset PCa.
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Impact—Our results provide the first formal replication for several of these 23 new variants and 

demonstrate that a high burden of common-variant risk alleles is a major risk factor for early-onset 

PCa.
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Introduction

Prostate cancer (PCa) is the second leading cause of cancer mortality in men in the United 

States. In 2014, it is estimated that 233,000 men would be diagnosed with PCa and 29,480 

men would die from the disease (1). The major recognized risk factors for PCa are 

increasing age, African ancestry, and positive family history.

Approximately 10% of men diagnosed with PCa in the United States are diagnosed with the 

disease prior to age 56 years (1). Men with early-onset PCa are more likely to be 

aggressively treated for their disease and more likely to die from their disease compared to 

men diagnosed with PCa later in life with similar clinical characteristics (2-4). As with most 

cancers, early intervention in men that need it can significantly increase the rate of survival. 

Given the controversy surrounding prostate-specific antigen (PSA) testing, identifying 

subsets of men that would most likely benefit from early screening would have a major 

impact on the successful treatment of the disease. Early-onset disease is also an indicator for 

heritable disease (2,4,5). An important question is whether we can use the cumulative 

information across associated variants to reasonably predict who is most likely to be 

diagnosed with early-onset PCa.

To date, genome-wide association studies (GWAS), including primarily older men with PCa, 

have identified more than 60 distinct common loci with modest effects associated with the 

disease in men of European descent, including 23 new loci identified using 19,662 PCa 

cases and 19,715 controls included in the PRACTICAL consortium (6-20). Several studies 

have demonstrated the importance of the previously established common variants to early-

onset and familial PCa (12,21-25). Herein, we first test whether these 23 new variants are 

associated with early-onset PCa (20). We then assess the aggregate value of these 23 new 

variants, aggregate value of these new variants plus 40 established variants, and the added 

value of including information from these 23 new variants to the overall burden of risk 

alleles from the 40 established variants in predicting early-onset PCa. We demonstrate that 

the total risk-allele burden across PCa GWAS variants can be useful for identifying a subset 

of men with substantially increased risk for early-onset disease.

Materials and Methods

Study Samples

This study includes 931 unrelated early-onset PCa cases (diagnosed prior to age 56 years) of 

European descent from the University of Michigan Prostate Cancer Genetics Project (UM-

PCGP). Descriptive information about the cases is presented in Table 1. The average age of 
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PCa diagnosis in these 931 cases was 49.7 years. Approximately 62% (576/931) of the cases 

had a reported first or second degree relative with PCa. All UM-PCGP subjects provided 

written informed consent to participate in the study. The protocol and consent documents 

were approved by Institutional Review Board at the University of Michigan Medical School.

Publically available unrelated male controls with GWAS variant data were selected from 

Illumina’s iControlDB database (n = 1126) (26). Controls were selected to have European 

reported ancestry and genotype data generated from a GWAS commercial platform similar 

to the platform used in UM-PCGP cases. Limited descriptive information, including age, 

gender and ancestry, on selected iControlDB subjects can be obtained from the Illumina 

website. Illumina iControls have not been screened for PCa.

Genotyping

Nine-hundred-thirty-eight European American UM-PCGP early-onset PCa cases were 

genotyped at Wake Forest University using the Illumina HumanHap 660W-Quad v1.1 

BeadChip. The iControlsDB subjects were genotyped previously using the Illumina 

HumanHap550v1 or HumanHap550v3 commercial genotyping platforms.

Statistical Analyses

Initial genotyping quality control (QC) methodology was uniformly applied to all GWAS 

variants and samples (see Lange et al. (21) for details). Subjects missing >5% of variant 

genotyping calls across all GWAS variants were excluded from consideration. European 

ancestry for all subjects, including controls, was verified using the software ADMIXTURE 

(27); subjects with apparent misidentified ancestry or mixed ancestry were also removed 

from the study. Principal component analysis was also performed using the software 

Eigenstrat (28) on the combined sample of cases and controls using a linkage-disequilibrium 

(LD) pruned set of GWAS variants common across genotyping platforms for UM-PCGP 

cases and Illumina iControls.

We performed genotype imputation on the combined case-control sample to obtain genotype 

data on the 63 variants reported to be associated with PCa in Eeles et al. (20) and Goh et al. 

(29) using the software package MaCH (30,31). Genotype imputation was performed, 

separately, including variants from HapMap Phase II (CEU reference samples), HapMap 

Phase III (CEU + TSI reference samples) and the 1000 Genomes Project (Chromosome X 

only using all reference samples). For the autosomal variants, preference was given to Phase 

III imputation results when a variant was successfully imputed using both Phase II and 

Phase III HapMap samples. To reduce any possible bias in imputed genotype assignments 

due to different coverage of variants in the case and control participants, only variants that 

were successfully genotyped in >98% of both the cases and controls were included in the 

target panel prior to genotype imputation.

Logistic regression models, implemented in Mach2dat (31), were constructed to test the 

association between early-onset PCa and each of the 23 newly reported PCa variants using 

entirely imputed genotype data, scored as dosage values (expected number of copies of the 

minor alleles). The logistic regression models included covariate adjustment for the first 10 

principal components derived from the GWAS data. A Bonferroni-corrected significance 
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threshold for a one-sided test (one-sided p<0.0022), with requirement the direction of effect 

was consistent with the previous report, was applied to maintain an overall type I error rate 

of 0.05.

To assess the cumulative burden of the 23 recently identified variants on early-onset PCa, we 

estimated the total number of risk alleles each subject carries. The risk allele for each variant 

was defined as the allele associated with increased risk of PCa in Eeles et al. (20). For each 

subject, we calculated two risk scores, one based on the unweighted sum of risk alleles and 

the other based on a weighted sum, with the weight given to each variant risk allele equal to 

the natural logarithm of the corresponding variant’s reported odds ratio. For all variants, we 

used imputed genotype data, even if the variant was directly genotyped, to minimize the 

impact of any missing data on risk allele counts. We assessed, using t-tests, whether the 

unweighted total number of risk alleles was associated with PCa. We repeated these analyses 

for 40 previously established PCa variants for populations of European descent summarized 

in Goh et al. (29) (see Supplementary Table 1 for variant identities and their respective 

imputation quality). The individual association results for these 40 variants in UM-PCGP 

subjects have been reported previously (21). Finally, we calculated weighted and unweighted 
totals of risk alleles across all 63 variants.

To assess the relative ability to correctly classify subjects (with respect to case-control 

status), we constructed receiver operating characteristic (ROC) curves and calculated the 

corresponding area under the curves (AUC) for weighted and unweighted aggregate risk 

allele counts for the 23 new PCa variants, 40 established PCa variants and the set of 63 total 

PCa variants. We then focused on the tails of the weighted and unweighted risk-allele sum 

counts and ranked subjects with regard to total number risk alleles, independent of disease 

status.

We additionally hypothesized that there was a subset of men with relatively extreme values 

of total risk-allele burden that could have their disease more accurately predicted than men 

with total risk-allele counts in the middle of the corresponding total risk-allele count 

distribution. Specifically, we performed two separate categorizations of all subjects based on 

the distribution of total risk alleles in controls. In the first categorization, subjects were 

assigned to a decile grouping based on their total risk allele count using cutoff values 

defined by the observed total-risk-score values in controls (e.g. the highest decile group 

would include cases and controls with observed total risk scores greater than 90% of the 

total risk scores observed in the controls). For each decile grouping, we calculated the odds 

ratios (ORs) comparing the proportions of cases and controls between the corresponding 

decile grouping and the lowest decile grouping (the reference group). In the other 

categorization scheme, we split cases and controls into two groupings defined by total-risk-

allele threshold values across a range of percentiles cut-points (lower 2.5%, 5%, 10%, 25%, 

50%, 75%, 90%, 95%, 97.5%) defined by the controls. For each percentile cut-point, we 

compared the distributions of cases and controls between the participant groupings defined 

by the percentile cut-point. These contingency-table-based analyses were performed using 

both weighted and unweighted risk-allele counts for the 23 new variants, 40 established 

variants and combined set of 63 variants.
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Results

Ten out of 23 variants recently reported (20) achieved at least nominally significant evidence 

(one-sided p<0.05; direction of effect consistent with prior report) for association with early-

onset PCa, including rs3771570 (p=0.032), rs7611694 (p=0.014), rs1270884 (p=0.0028), 

rs8008270 (0.025), rs7241993 (0.0023), rs2405942 (p=0.011), rs42445739 (p=3.0×10-5), 

rs3096702 (p=0.0018), rs2273669 (p=8.6×10-4) and rs1933488 (p=0.0011) (Table 2). The 

latter four variants were significantly associated with PCa after accounting for multiple 

testing (one-sided p<0.0022) (Table 2). Of the remaining 13 variants that did not minimally 

achieve nominal significance, only three (rs1894292, rs7141529 and rs11650494) had a 

direction of effect that was inconsistent with the discovery study.

Early-onset PCa cases had significantly more estimated total risk alleles than unscreened 

controls across these 23 variants (PCa cases: unweighted mean=21.61, se=0.10, 

median=21.70; controls: unweighted mean=20.69, se=0.09, median=20.55; p-diff = 

2.0×10-12). Adding in the 40 established PCa variants, early-onset cases carried 58.02 

(se=0.16, median=57.98) and controls carried 54.49 (se=0.15, median=54.64) risk alleles on 

average (p-diff=8.9×10-59) across all 63 variants. Overlapping histograms plotting the 

distributions of the unweighted and weighted sums of risk alleles for cases and controls 

across the 23 new PCa variants and 63 total PCa variants are presented in Supplementary 

Figures 1 and 2, respectively.

The aggregate burden of the risk alleles across the new variants alone provided a poor ability 

to discriminate between cases and controls (AUC=0.59 for both weighted and unweighted 
sums; Figure 1). The predictive value was only slightly higher when restricting the burden of 

risk alleles to the 10 new variants that demonstrated nominal evidence (p<0.05) of 

association in our study (AUC=0.61 for both weighted and unweighted sums). The ability to 

discriminate was noticeably better for the older established variants (AUC=0.69 for 

weighted sums, AUC=0.68 for unweighted sums). Adding the 23 new variants to the 40 

established variants only modestly improved the ability to discriminate (AUC=0.71 for 

weighted sums, AUC=0.69 for unweighted sums) compared to the older variants by 

themselves.

For all three sets of variants (new, established and combined) there was a steady increase, 

across decile categories, in the odds for men having PCa compared to the odds for men in 

the lowest decile grouping (Figure 2). For brevity, we focus here on results for the weighted 
total risk-allele scores (results were similar for unweighted scores (see Supplementary 

Figure 3)). A large jump in the odds ratios was observed between the highest decile group 

and the next highest decile group for the set of 40 established variants [OR = 10.50 (10th 

decile group) vs. 4.54 (9th decile group)] and combined set of 63 variants [OR = 9.63 vs. 

4.98, respectively]) (Figure 2). The odds ratios across the decile groupings for the set of new 

variants were considerably less striking than for the other sets of variants and there was no 

large jump in the last decile grouping [OR = 2.58 for the 10th decile group vs. OR = 2.49 for 

the 9th decile group]. Categorizing subjects into two groups, based on percentile cut-points 

of the total-risk-allele sums in controls, revealed that the strongest odds ratios were observed 

for both the upper and lower extreme 2.5% tail cut-points of the total-risk-score distribution 
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(see Supplementary Figure 4), consistent with the observed deficits of cases in the extreme 

lower tail and deficits of controls in the extreme upper tail of the total risk allele 

distributions.

Discussion

More than 60 independent common PCa variants have been discovered through GWAS in 

men of European ancestry. The initial discoveries, often made with relatively small case-

control samples, were made possible by the relatively strong effects (OR >1.25) of the 

associated variants. The more recent discoveries, including the 23 newly reported variants in 

Eeles et al. (20), required considerably larger sample sizes due to the associated variants 

having much smaller effects (OR~1.10). We have previously demonstrated that many of the 

older, stronger-effect, PCa variants are individually associated with early-onset PCa (21). 

Herein, we sought to assess whether there was evidence of association between early-onset 

PCa and these 23 new variants. We also evaluated the added utility of including the total 

burden of PCa risk alleles for these 23 new variants in combination with 40 previously 

established PCa variants on early-onset disease prediction. We note that we found no 

evidence supporting an association between the cumulative burden of PCa risk alleles and 

measures of disease severity including Gleason grade, tumor stage or PSA (data not shown).

We found at least nominal evidence (one-sided p<0.05; effect direction the same as the 

original study) supporting the reported associations for 10 of the 23 newly reported variants, 

including four that reached the conservative Bonferroni significance threshold. Ten of the 13 

remaining variants had directions of effect consistent with the discovery report. Thus, 

despite relatively low power to detect such replication (for example, using a one-sided 

p=0.05, we had power = 0.38 to detect an associated variant with minor allele frequency = 

0.25 and an OR = 1.10), we were able to provide supportive evidence that many of these 

variants are associated with early-onset PCa. A recent study that compared 312 hereditary 

PCa cases and 620 sporadic PCa cases to 587 common controls across these 23 variants 

found nominal evidence for association between PCa and eight of the variants for hereditary 

PCa (17/23 variants had consistent directions of effect with discovery study) and five of the 

variants for sporadic PCa (18/23 variants had consistent directions of effect) (25). No single 

variant achieved statistical significance after accounting for multiple testing in this study. 

Future larger replication studies are necessary to further validate each of these variants as a 

PCa risk variant.

The aggregate burden of risk alleles for the 23 new variants is strongly associated with early-

onset PCa, but their cumulative predictive value is relatively poor. Not surprisingly, given 

their smaller number and smaller effect sizes, their overall predictive value is considerably 

smaller than was observed for the 40 established variants. Including the burden of these 23 

variants to the burden of the 40 more established variants resulted in modestly stronger 

discrimination, with the greatest additional gains observed in men with extreme values of 

total risk-allele burden. These results suggest finding and including additional lower-effect 

common variants could be beneficial in disease prediction, but their added value will likely 

be small.

Lange et al. Page 6

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Three previous studies have evaluated the predictive value of the cumulative burden of 

established common risk alleles for PCa diagnosis (25,32,33). The recent report by Cremers 

et al. (25) described the cumulative risk for 74 PCa variants, including the same variant or a 

strong LD proxy for 39/40 of our established variants and all 23 new variants, separately in 

312 Dutch hereditary PCa cases (mean age diagnosis 62 years) and 620 sporadic PCa cases 

(mean age diagnosis 65 years) compared to 587 common controls. Using an unweighted 
total risk allele score, Cremers et al. reported that the discriminative value based on these 74 

variants was stronger for the hereditary PCa cases [AUC=0.73] than for the sporadic PCa 

cases [AUC=0.64]. The two earlier studies limited their analyses to established variants that 

demonstrated evidence for association in their own cohorts, whereas our study and the study 

by Cremers et al. included all previously reported associated variants regardless of evidence 

in our own studies. In Lindstrom et al. (32), 23/25 variants included in their risk calculations 

were included or had a strong LD proxy among our 40 established variants. Lindstrom et al. 

showed that the predictive value of the burden of common established risk alleles was 

stronger for men diagnosed with PCa earlier in life [e.g. AUC = 0.66 using men diagnosed 

age 60 years and younger compared to AUC = 0.60 in men diagnosed after the age of 75 

years]. Agalliu et al. (33) identified 17/31 established variants that demonstrated at least 

nominal evidence for significance in a cohort of 979 PCa cases and 1,251 controls of 

Ashkenazic descent that were subsequently included in the construction of an unweighted 
total risk score (12/17 variants were included among our 40 established variants). The 

overall discriminative value of these 17 variants [AUC=0.64] was similar to the overall value 

observed by Lindstrom et al. [average AUC=0.63 across all ages for the 25 variants included 

in their study]. Consistent with Lindstrom, Agalliu et al. also observed a stronger association 

between total risk allele burden and PCa in younger cases. When comparing all men in the 

upper 25% of the total risk allele distribution to men in the lower 25%, Agalliu et al. found 

higher odds ratios in the younger men (diagnosed at age 60 years or younger; n=238) with 

PCa (OR = 5.20; 95% CI: (2.94,9.19)) than in the men diagnosed with PCa after age 60 

years (OR = 3.30; 95% CI: (2.32, 4.68)).

One very interesting feature of the distribution of total risk alleles is the lack of evidence for 

a bi-modal distribution among cases and a noticeable deficit of cases in the lower tail of the 

total risk allele distribution (see Supplementary Figures 1 and 2). The shapes of the 

distributions of total risk alleles in cases looked very similar to those of controls, with the 

distribution for the cases shifted to the right. This observation would suggest that the burden 

of common risk-alleles plays an important role in the probability of developing disease 

irrespective of other risk factors (e.g. rare variants, environmental factors, epigenetic 

factors). A widely held hypothesis is that yet to be discovered uncommon high-penetrant 

risk alleles explain a significant proportion of the increased genetic susceptibility in PCa 

families and men with early-onset disease. This hypothesis is supported by our recent 

discovery of such a mutation, G84E, in HOXB13, which has a considerably higher 

frequency in men with early-onset and/or familial disease (34). It has been reported that a 

high burden of established common variants increases disease risk even among HOXB13 
G84E carriers (35). Consistent with this report, among 23 UM-PCGP PCa HOXB13 G84E 

carriers in our study, the mean cumulative number of risk alleles across all 63 variants was 

59.10 (sd=4.88) compared to 57.99 (sd=4.92) in non-G84E-carriers.
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Disease misclassification in cases and/or controls can create biased estimates of effect. We 

note all cases in our study were confirmed by pathology report. Our controls were largely 

young males (average age 20 years) who have not, to our knowledge, been screened for PCa. 

While approximately 15% of these men will develop PCa some time in their lives, based on 

the age distribution of our cases and National Cancer Institute Surveillance, Epidemiology, 

and End Results (SEER) Program PCa prevalence rates (36), we would expect a disease 

misclassification rate of ~0.7% (n~8/1126 of our controls) using our unscreened controls 

compared to a perfectly-diagnosed age-matched control sample for our early-onset PCa case 

sample. To assess the impact of this misclassification, we recalculated the mean number of 

total risk alleles in our iControls using this misclassification rate and the observed risk allele 

counts in our cases to get an unbiased maximum-likelihood-based estimate (MLE) of mean 

total risk alleles in our control sample. Using the MLE-based estimates would decrease the 

parameter estimates for mean number of total risk alleles from 20.69 (using the uncorrected-

sample mean) to 20.68 (MLE-based mean) for the 20 new variants, 33.80 to 33.79 for the 43 

established variants, and 54.49 to 54.47 for the combined set of variants. Thus, any bias 

using these unscreened young controls, relative to age-matched controls, is expected to be 

small and result in slightly conservative conclusions. Further, we note that our expected rate 

of disease misclassification in our controls is likely lower than that for most PCa case-

control studies of older men that rely on PSA and digital rectal exam (DRE) screening. 

There is considerable overlap in distributions of PSA for men with and without PCa (37) and 

DRE screening misses Stage T1 PCa and PCa that does not occur peripherally in the 

posterior and lateral aspects of the prostate gland.

Our study includes several other features worthy of discussion. First, the iControls do not 

have available PCa family history and thus we cannot assess the additive value of PCa risk 

variants in conjunction with family history. Second, cases and controls were genotyped at 

separate times on separate, but similar, genotyping platforms. As we reported previously 

looking at >450,000 genotyped variants, we saw no evidence for systematic inflation of test 

statistics when comparing these cases to these controls (21). Still, it is possible that a small 

number of individual variants could be influenced by small genotype batch effects – though 

the direction of those batch effects would equally likely make our results conservative or 

anti-conservative, as the determination of the “risk allele” for each variant was based on 

independent data from previous reports. Third, we used imputed genotype data rather than 

directly genotyped data for analyses. Not all risk variants were directly genotyped and, when 

constructing burden scores for genotyped variants, missing data would cause unnecessary 

variation. We included only variants with high genotyping rates in both cases and controls in 

the target panel prior to genotype imputation and note that imputation quality was estimated 

to be excellent (R2>0.9) (see Table 1 and Lange et al.(21)) for the vast majority of variants. 

Fourth, a subset of patients (n=127) were directly ascertained for inclusion in linkage studies 

based on having known living relatives with disease and many other cases were symptomatic 

and identified in a hospital-based setting. Thus, this collection of 931 cases is likely not 

representative of early-onset PCa cases identified through standard epidemiological 

screening studies. Fifth, using previously reported ORs from studies based primarily on 

older men with disease, we demonstrate a small improvement in disease prediction using 

weighted total risk-allele counts compared to unweighted total risk-allele counts. Prediction 
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of early-onset disease could be improved further by applying variant weights based 

specifically on studies of early-onset disease. We note that using weights based on our own 

individual variant effect estimates in an aggregate variant burden setting would be anti-

conservative. Appropriate variant weighting for early-onset PCa aggregate risk-allele testing 

will need to be continuously refined as additional PCa populations are studied and new PCa 

variants are identified.

In summary, we provide the first significant evidence to support the association of several 

recently identified PCa variants to early-onset PCa. We establish that a high-burden of 

common risk alleles is strongly associated with early-onset PCa and that men with an 

aggregate burden of risk alleles in the tails of the total risk allele distribution have either high 

(men in the upper tail) or low (lower tail) odds of having early-onset PCa. Given the strong 

odds ratios observed in the upper tail, men with an unusually high number of risk alleles 

should be considered candidates for earlier PCa screening. The ability to discriminate 

between case-control status was largely driven by older established variants; including the 

23 new variants only modestly improved disease prediction. Despite odds ratios that were 

considerably elevated there still remained considerable overlap between the case and control 

total risk allele distributions. Given this overlap and the apparent diminishing discriminating 

value of including newly discovered lower penetrant common variants, expanding the search 

for uncommon high-penetrant risk variants could be especially critical to further improving 

our ability to accurately predict men who will get early-onset disease.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Receiver operating characteristic curves, and corresponding area under curve (AUC), using 

weighted and unweighted burden of risk alleles for 23 new PCa variants, 40 established PCa 

variants and the 63 combined variants.
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Figure 2. 
Association between decile categories (lowest decile group is reference category) for 

weighted number of risk alleles carried and PCa. Decile-specific odds ratios were estimated 

based on the imputed dataset (931 cases and 1,126 controls) for (a) 23 newly reported PCa 

variants (b) 40 established PCa variants (c) 63 combined PCa variants.
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Table 1

Characteristics of 931 UM-PCGP early-onset PCa casesa.

Clinical Trait Mean (Standard Deviation) Median (Range)

Age at Diagnosis (years) 49.7 (4.1) 50 (27-55)

Prediagnostic PSA (mg/dL)b 20.6 (199.5) 5.2 (0.4-5428)

Gleason Score Nc %

≤ 6 410 44.6

7 427 46.4

≥ 8 83 9.0

T Stage Nd %

T1 1 0.1

T2 660 82.1

T3 140 17.4

T4 3 0.4

a
Includes 20 metastatic cases and 32 cases with lymph node involvement.

b
Prediagnostic PSA available on 870 cases.

c
Gleason scores available on 920 cases. Note: Prostatectomy Gleason used when available (n = 787), otherwise biopsy Gleason scores used (n = 

133).

d
T Stage available on 804 cases.
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