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Abstract

Targeting the dysregulated BRaf-MEK-ERK pathway in cancer has increasingly emerged in 

clinical trial design. Despite clinical responses in specific cancers using inhibitors targeting BRaf 

and MEK, resistance develops often involving non-genomic adaptive bypass mechanisms. 

Inhibition of MEK1/2 by trametinib in triple negative breast cancer (TNBC) patients induced 

dramatic transcriptional responses, including upregulation of receptor tyrosine kinases (RTKs) 

comparing tumor samples before and after one week of treatment. In preclinical models MEK 
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inhibition induced genome-wide enhancer formation involving the seeding of BRD4, MED1, 

H3K27 acetylation and p300 that drives transcriptional adaptation. Inhibition of P-TEFb 

associated proteins BRD4 and CBP/p300 arrested enhancer seeding and RTK upregulation. BRD4 

bromodomain inhibitors overcame trametinib resistance, producing sustained growth inhibition in 

cells, xenografts and syngeneic mouse TNBC models. Pharmacological targeting of P-TEFb 

members in conjunction with MEK inhibition by trametinib is an effective strategy to durably 

inhibit epigenomic remodeling required for adaptive resistance.
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INTRODUCTION

Mutations and genomic amplification of components and regulators of the Ras-BRaf-MEK-

ERK pathway are common in cancer. Activating mutations in Ras have been found in up to 

30% of all tumors that have been sequenced, with the mutant Ras isoform (KRAS, NRAS, 

HRAS) depending on the specific cancer (1). BRAF is mutated in approximately 50% of 

metastatic melanomas and 55% of advanced thyroid carcinomas and at a lower frequency in 

colorectal, ovarian, and lung carcinomas (2–7). Sequencing initiatives including The Cancer 

Genome Atlas (TCGA) are rapidly expanding the tumor sequencing database with additional 

tumor types having lower frequencies but still significant numbers of activating BRAF 
mutations (2). Other cancers such as TNBC are different, with activating mutations in Ras 

and protein kinases being rare, but instead have gene amplification of BRAF or upstream 

regulators of the MAPK pathway (2,8). Approximately 80% of basal-like TNBC have 

genomic amplification of members of the EGFR-KRas-BRaf signaling network correlating 

with the BRaf-MEK-ERK pathway being activated in basal-like breast cancers (2,8,9).

BRaf inhibitors such as vemurafenib or dabrafenib in combination with the MEK inhibitor 

trametinib have proven to have a significant beneficial response for BRAF mutant 

melanoma, including a higher incidence of complete response as well as longer progression-

free survival (10,11). MEK inhibition has also shown benefit in mutant NRAS driven 

melanoma (12). Even though BRaf and MEK inhibitors produce initial clinical responses in 

melanoma, resistance ultimately occurs due to acquired or selected mutations or 

upregulation of adaptive bypass pathways (13–15). Non-genomic adaptive bypass 

mechanisms, for example, involving transcriptional upregulation of receptor tyrosine kinases 

(RTKs), are not limited to melanoma, but rather are increasingly observed as major 

mechanisms of clinical resistance in many cancers (16,17). In TNBC, trametinib inhibition 

of MEK to block the MEK-ERK pathway causes an initial potent growth arrest that is 

overcome by an adaptive bypass response (9). Inhibition of MEK-ERK elicits upregulation 

of alternative kinase pathways contributing to escape from growth inhibition. This adaptive 

kinome remodeling underscores the difficulty of attaining successfully targeted kinase 

inhibitor treatments and suggests that even combination therapies with multiple kinase 

inhibitors will have a poor likelihood of success.
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Mechanistically, one consequence of MEK inhibition is the loss of ERK-catalyzed Myc 

Ser62 phosphorylation causing rapid ubiquitination and proteasomal degradation of Myc 

(18). Myc turnover is required for multiple steps in transcriptional activation including 

histone acetylation and recruitment of BRD4 and P-TEFb to chromatin (19), and inhibiting 

Myc degradation (e.g. by proteasome inhibition) blocks transcriptional activation of Myc 

target genes. Herein, we show that MEK inhibition results in a rapid degradation of Myc and 

dramatic transcriptomic changes resulting in resistance. Surprisingly, the transcriptomic 

changes promoting resistance are driven epigenetically with de novo enhancer formation and 

dramatic genome-wide enhancer and promoter remodeling. Enhancers are distal regulatory 

elements comprised of Mediator complex members that regulate transcription in cis by 

recruiting transcriptional activators and by looping to promoter regions (20,21). Quiescent, 

but poised enhancers are enriched for histone H3 lysine 4 monomethylation (H3K4me1), 

while co-occupancy of H3K4me1 and H3K27 acetylation is a hallmark of active enhancers 

(22). The dynamic nature of enhancers has become increasingly apparent whereby diverse 

stimuli have been shown to induce de novo enhancer formation or to reorganize the existing 

enhancer landscape (23–28). We demonstrate targeting P-TEFb complex members with 

small molecule inhibitors or RNAi blocks enhancer remodeling and the MEK inhibitor 

adaptive transcriptomic response. Combining MEK inhibitor with P-TEFb complex 

inhibitors sustains MEK inhibition and alleviates adaptive resistance by reversing the 

upregulation of adaptive response genes including RTKs.

RESULTS

MEK inhibition induces a transcriptomic/kinome response in patient TNBC tumors

To examine the clinically relevant occurrence of extensive kinome reprogramming following 

therapy with a potent MEK inhibitor, a seven day window-of-opportunity clinical trial was 

used to assess the adaptive response to trametinib in TNBC patients. Pretreatment needle 

core biopsies and surgical tumor resections following 7 day trametinib treatment were 

subjected to RNAseq. Similar to the TCGA, we used RNAseq by Expectation-Maximization 

(RSEM) (29) to quantify transcript abundances from RNAseq data. PAM50 subtype calls 

were made from RNAseq profiles for post and pre-treatment tumor samples for each of the 

six patients in the window trial (30). Five tumors profiled as basal-like in both post- and pre-

trametinib treatment (referred to as BL;BL for post/pre subtype) and one as claudin-low 

(CL;CL). Claudin-low tumors represent less than 10% of TNBC consistent with only one in 

six tumors profiling as this subtype (8,31,32). Increased transcript ratios of post to pre-

treatment RSEM transcript abundance (≥2 fold) ranged from 1.7% (Patient 5, referred to as 

Pt. 5) to 7.8% (Pt. 2) of total expressed transcripts (Fig. 1A). Decreased transcript ratios of 

post to pre-treatment RSEM transcript abundance ranged from 0.8% (Pt. 4) to 16.1% (Pt. 3). 

Examination of the tyrosine kinome showed that trametinib induced up to 26% (23 TKs) of 

the tyrosine kinome (Pt. 2, Pt. 4) among BL;BL patient tumors and in the sole CL;CL tumor, 

16% (14 TKs) was upregulated (Fig. 1B). DESeq2 differential expression analysis (33) was 

used for detection of differentially expressed genes between post and pre-treatment tumors. 

Focusing on the kinome, four patient BL;BL pretreatment biopsies matched to post-

treatment surgical specimens showed overall concordance of the transcriptional response to 

trametinib, with FRK exhibiting the highest mean increase and BMX exhibiting the highest 
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mean decrease among patients 1, 2, 3 and 5 (Fig. 1C). Patient 4 clustered separately from the 

other patients with an enhanced immune kinase upregulation, while Pt. 6 responded 

differently from the five BL tumors.

On average, patient samples expressed ~2500 more transcripts than BL or CL cell lines 

(excluding transcripts with <50 RSEM pre- and post-treatment, Supplementary Fig. S1A). 

Comparing the baseline transcriptomes of two TNBC cell lines (BL, HCC1806 and CL, 

SUM-159PT) to the pretreatment transcriptomes from BL patient 2 and CL patient 6 

respectively revealed tumor transcripts enriched for immune and inflammatory response 

genes absent in the cell lines (Supplementary Fig. S1B), indicating a stromal contribution in 

tumors absent in cell lines. The stromal transcripts responded to MEK inhibition with a 

higher percentage of transcripts suppressed than induced (Supplementary Fig. S1C).

Immunoblot analysis showed upregulation at the protein level in post-treatment tumors of 

FGFR2, KIT, IGF1R, and DDR1 relative to pretreatment biopsies (Fig. 1D). Multiplexed 

inhibitor bead (MIB) chromatography was used to capture expressed protein kinases that 

were assayed using mass spectrometry (MIB/MS) (9,34) as a measure of change in the 

functional kinome in pre- and post-trametinib treated tumors. In BL;BL Pt.5, 3 of 8 

transcriptionally upregulated TKs were concordantly enriched as functional protein kinases 

binding to MIB affinity columns, while in CL;CL Pt. 6, 7 of 14 induced TKs were found by 

MIB/MS, demonstrating functional TK expression increases in patient tumors in response to 

MEK inhibition (Fig. 1E). In addition, MIB/MS patient tumor analysis showed MEK1/2 was 

inhibited by trametinib, observed by loss of MIB binding (Fig. 1E); immunoblots also 

showed decreased pERK1/2 levels (Fig. 1D), demonstrating that trametinib inhibited the 

MEK-ERK pathway in patient tumors. The window trial demonstrated one week of 

trametinib induced a strong adaptive bypass response with upregulation of several TKs that 

upon sustained trametinib treatment would contribute to resistance to MEK inhibition.

MEK1/2 inhibition induces differential transcriptomic responses in basal-like and claudin-
low TNBC cells

Having established through RNAseq and MIB/MS analysis that MEK inhibitor-induced TK 

reprogramming occurred in patients, we sought to understand the mechanism. Myc turnover 

is required for histone acetylation, recruitment of BRD4 to chromatin and transcriptional 

elongation (19). Inhibition of MEK1 and 2 (referred to as MEK) leads to rapid ERK activity 

loss and Myc degradation (Fig. 2A) (18). We assessed transcriptional responses to MEK 

inhibition by RNAseq in biological duplicate using TNBC cell lines representing BL and CL 

intrinsic molecular subtypes (Fig. 2B). MEK inhibition by trametinib induced large 

transcriptional responses varying between 2.5 to 28.6% of expressed transcripts. DESeq2 

and Pearson correlation analysis of three biological replicates confirmed the transcriptional 

responses to trametinib in SUM-159PT cells (Supplementary Fig. S2A). Gene Set 

Enrichment Analysis (GSEA) (35,36) revealed global downregulation of Myc target genes 

following trametinib consistent with loss of Myc due to MEK-ERK inhibition 

(Supplementary Fig. S2B). KRas signaling was also inhibited (Supplementary Fig. S2B). 

Collectively, the magnitude of transcriptional changes across TNBC cell lines was striking 
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with loss of Myc and KRas regulated transcription by diminishing MEK-ERK activity with 

a highly selective, allosteric MEK inhibitor.

Distinct BL and CL kinome signatures induced by MEK inhibition

Having determined the magnitude of response induced by trametinib at the level of the 

transcriptome we next employed DESeq2 differential expression analysis to assess the 

response of the kinome. The transcriptional effects on the kinome clearly clustered by 

subtype by DESeq2 using a FDR of 0.05 for significance, indicating that the basal-like and 

claudin-low adaptive kinome responses elicited by MEK inhibition are unique. (Fig. 2C, 

Supplementary Table S1). In addition to this differential expression analysis cross-

comparing adaptive responses by subtype, we analyzed the adaptive response to MEK 

inhibition by DESeq2 with each subtype in isolation (Supplementary Table S2). This 

allowed trametinib-responsive kinases like FGFR2 and PDGFRB that are expressed 

exclusively in one subtype to be considered by DESeq2 for significance that otherwise 

would be excluded in the subtype comparative analysis. There was a strong TK response 

concordance between the BL;BL patient tumors and BL cell lines. Upregulated kinases 

common in the BL;BL patients (Fig. 1C) and BL cell line signature (Supplementary Table 

S2) included FRK, ERBB2, DDR1, CDC42BPG, CDKL5, and CDK19, consistent with an 

adaptive response in patient tumors similar to that observed with in vitro cell models of 

TNBC (Fig. 2D). The TNBC adaptive response to MEK inhibition requires upregulation and 

activation of tyrosine kinases (TKs), bypassing of MEK-ERK inhibition and restoring cell 

growth (9). Each of the BL and CL human cell lines responded with upregulation of TKs 

(Fig. 2E). For the cell lines tested SUM-149PT EpCAM+ BL and SUM-159PT CL cells 

displayed the largest number of induced TKs, 21 and 20, respectively. TKs selectively 

induced by trametinib treatment in BL cells included FGFR2 and CSF1R, with PDGFRB 
and ERBB4 being upregulated in the CL cells (Fig. 2E, Supplementary Table S2). ROS1, 
FRK, DDR1, and ERBB2 were common to both BL and CL subtype signatures. In addition 

to human TNBC cell lines including the WHIM12 PDX-derived line (37), we assessed 

trametinib TK transcriptional response in cells derived from CL T11 orthotopic syngeneic 

transplant (OST) tumors (38) and the mixed BL/CL C3(1)/Tag GEMM (39). In T11 cells, 

PDGFRB and DDR1 were upregulated after trametinib treatment (Supplementary Fig. S2C), 

concordant with the CL cell line response (Fig. 2E, Supplementary Table S2). Given the 

mixed BL/CL nature of the C3(1)/Tag tumor, in addition to upregulation of PDGFRB and 
DDR1, trametinib induced expression of CSF1R of the BL cell line TK signature 

(Supplementary Fig. S2C). Subtype-specific adaptive TK transcriptional signatures were 

confirmed by western blotting (Supplementary Fig. S2D) and proteomically with MIB/MS 

profiles (Supplementary Fig. S2E), showing that adaptive response TKs are functionally 

expressed following MEK inhibition.

SUM-229PE subpopulations display distinct adaptive responses to MEK inhibition

SUM-229PE TNBC cells provided a unique system to study the BL vs CL subtypes of 

TNBC. SUM-229PE cells have two intrinsic subpopulations with differential expression of 

EpCAM and CD49f (Fig. 2F). The epithelial-like EpCAM+/CD49f+ (229 EpCAM+) 

subpopulation exhibits a BL gene expression signature while the more mesenchymal 

EpCAM−/CD49f− (229 EpCAM−) subpopulation profiles as CL and is enriched for 
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epithelial to mesenchymal transition genes (40–42). Whole exome sequencing of the two 

subpopulations identified 8373 common nucleotide variants with no subpopulation-unique 

variants (Supplementary Table S3). Additionally, we performed a model-based assessment 

to probe for copy number alterations (CNAs). No clonal CNAs (>50% of the cells 

experiencing an event) were detected (Supplementary Fig. S2F). Thus, SUM-229PE cells 

provide an isogenic system to study the BL and CL subtype specificity of the adaptive 

response.

RNAseq profiling of the FACS-sorted EpCAM+ or EpCAM- cells following trametinib 

treatment revealed distinct adaptation profiles. EpCAM+ cells were more responsive to 

trametinib than EpCAM− cells, with 15% vs. 9% of their transcriptomes modulated (Fig. 

2G). In response to MEK inhibition, EpCAM+ cells upregulated 594 unique transcripts and 

EpCAM− cells upregulated 369 unique transcripts, while 280 transcripts were upregulated in 

common.

Kinome analysis showed a greater induction (107 kinases) vs. suppression (70 kinases) 

response to trametinib. 37 kinase transcripts unique to EpCAM+ cells and 28 EpCAM− 

kinases were specifically upregulated, while 42 kinases were commonly induced (Fig. 2H). 

MEK inhibition resulted in the downregulation of 29 kinases in common between 

subpopulations, 29 EpCAM+ specific, and 12 kinases specific to EpCAM− cells (Fig. 2H). 

TK and TK-like kinase families were enriched in upregulated transcripts while cell cycle and 

mitotic checkpoint kinases were enriched in the downregulated cohort, consistent with MEK 

inhibition and growth arrest.

Eleven TKs were in the shared upregulated kinases between EpCAM+ and - cells. Members 

of BL and CL TK transcriptional signatures (Fig. 2E) were modulated concordantly with 

EpCAM status in SUM-229PE subpopulations, including BL cell line signature TKs in 

EpCAM+ cells and CL cell line signature TKs in EpCAM− cells (Supplementary Fig. S2G). 

Immunoblotting showed the CL signature RTK PDGFRB specifically upregulated in 

EpCAM− CL subpopulation (Fig. 2I) and FGFR2 increased selectively in the BL 

subpopulation. EpCAM and vimentin protein expression validated the cells’ epithelial BL 

vs. mesenchymal CL phenotype (Fig. 2I).

Genome-wide methylation was assessed for the SUM-229PE EpCAM+ and SUM-229PE 

EpCAM− subpopulations. Methylation fraction (β) at all probes (within 200 bp of TSS) for 

subpopulation-specific induced TKs (Fig. 2H and Supplementary Fig. S2G) did not 

significantly differ between EpCAM+ and EpCAM− populations and (Supplementary Fig. 

S2H and Supplementary Table S4). We tested if trametinib-induced differential cytosine 

methylation changes contributed to transcriptional adaptation. Principal component analysis 

(PCA) of SUM-159PT, SUM-149PT EpCAM+/−, or SUM-229PE EpCAM+/− cell 

populations of genome-wide Illumina 450k methylation data in the presence or absence of 

trametinib revealed a lack of segregation in the top components due to drug (Supplementary 

Figure S3A and Supplementary Table S4). The lack of cytosine methylation variation, 

exonic nucleotide variants and CNAs indicates that the distinct adaptive response signatures 

between SUM-229PE EpCAM+ and EpCAM− subpopulations are not rooted in genomic 
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differences but rather represent modulation of chromatin beyond that of baseline DNA 

methylation.

Trametinib induces the dynamic formation of an epigenomic landscape

We next specifically assessed the density of a series of enhancer and promoter marks at the 

DDR1 locus, a prototypical adaptive response kinase using ChIPseq. In the MEK inhibitor-

responsive DDR1 locus in SUM-159PT cells at baseline, H3K4me3 occupancy defined a 

core promoter at the TSS, while at a region 50 kb 5′ there was modest density of BRD4, 

MED1, p300, H3K4me1 and H3K27ac markers indicative of an enhancer. Trametinib 

caused a striking increase in occupancy of BRD4 and the other enhancer marks assayed 

(Fig. 3A). MEK inhibition also resulted in increased BRD4 and H3K27ac density at the 

DDR1 core promoter while MED1, p300, H3K4me1 marks displayed a relatively minimal 

degree of promoter change. The induction of de novo BRD4 and associated marker density 

positively correlated with the 8-fold transcriptional induction of DDR1 (Supplementary 

Table S5).

To gain insight into MEK inhibitor-induced regions of BRD4 chromatin occupancy, we 

determined H3K27ac, p300, and MED1 ChIPseq density at the 50 highest ranking BRD4 

ChIPseq peaks induced by trametinib. Concomitant with BRD4 density increase, trametinib 

increased chromatin occupancy of H3K27ac, p300, and MED1 (Fig. 3B). The small 

molecule JQ1 binds the acetyl-lysine binding pocket of BET family bromodomains and thus 

is capable of displacing BRD4 from chromatin by interfering with BRD4 interaction with 

acetylated histones and acetylated non-histone proteins (43). As BRD4 bound the DDR1 
enhancer de novo upon trametinib treatment, we tested the effect of JQ1 on the integrity and 

composition of this enhancer. BET bromodomain inhibition and trametinib significantly 

reduced BRD4 and MED1 chromatin occupancy, while H3K27ac and p300 density was not 

significantly altered, suggesting BRD4 regulates MED1 association with enhancers without 

affecting p300 association. We hypothesized that analysis of DNA sequence motifs enriched 

in BRD4-induced regions would suggest other transcriptional regulatory factors involved in 

the epigenomic remodeling mediated by trametinib. Multiple EM for Motif Elicitation 

(MEME) (44) analysis of all trametinib-induced BRD4 peaks predicted CEBPB and CEBPD 

enrichment at these loci (Supplementary Fig. S3B). Consistent with this prediction, ChIPseq 

studies showed gain of CEBPB density at DDR1 and PIK3R1 enhancers upon trametinib 

treatment, mirroring BRD4 density dynamics (Supplementary Fig. S3C). Like H3K27ac and 

p300, trametinib-induced CEBPB density was not altered by JQ1 co-treatment, suggesting 

CEBPB chromatin occupancy is BET bromodomain independent (Supplementary Fig. S3D).

MEK inhibition induces formation of genome-wide enhancers

The formation of a putative DDR1 enhancer enriched for BRD4 prompted us to quantify the 

genome-wide extent of enhancer formation mediated by trametinib. BRD4 peaks within 12.5 

kb of each other were stitched and designated as putative enhancers for a given gene if they 

resided either within 200 kb 5′ of the TSS or 200 kb 3′ of the 3′-most exon, but did not 

reside within promoter territory defined as +/− 5 kb of a TSS. Using these criteria, at 

baseline (vehicle DMSO-treated), SUM-159PT cells had 1445 BRD4 enriched enhancers 

(Fig. 3C, Supplementary Table S6). Trametinib robustly remodeled the enhancer landscape, 
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with de novo enhancer induction almost doubling, reaching 2782 defined enhancers. Co-

treatment of SUM-159PT cells with trametinib + JQ1 disrupted the trametinib-induced 

BRD4 enhancer landscape returning it to near-baseline (1632 enhancers).

Large, multi-kilobase expanses of enhancer density termed super-enhancers have been 

shown to regulate genes important for development and show enhanced sensitivity to BET 

bromodomain inhibition relative to classical enhancers (25,45,46). Ranking enhancers by 

BRD4 density allowed us to define super-enhancer formation and dissolution during drug 

treatments. 162/2782 enhancers were categorized as super-enhancers following trametinib 

treatment, and JQ1+trametinib co-treatment squelched the number of super-enhancers to 22, 

even below that of the 60 constitutive super-enhancers found at baseline. As expected, JQ1 

treatment alone displaced BRD4 density reducing the 60 baseline super-enhancers to 8. The 

HCC1806 BL cell line similarly displayed remarkable genome-wide enhancer induction 

which was muted by JQ1+trametinib co-treatment (Fig. 3D, Supplementary Table S7). 

SUM-229PE sorted EpCAM+ or EpCAM− subpopulations also displayed remarkably 

distinct enhancer dynamics. SUM229PE EpCAM− cells responded to trametinib treatment 

with a near 30% increase in enhancer number (1328 to 1712) while, strikingly, the 

SUM229PE EpCAM+ enhancer number remained constant (1505 to 1510) (Fig. 3E). The 

paucity of enhancer remodeling in the EpCAM+ subpopulation suggested that these cells 

may not mount as an effective adaptive response relative to the negative population, 

consistent with their enhanced sensitivity to trametinib (Supplementary Fig. S3E).

We determined if de novo BRD4 density positively modulated transcription of genes closest 

to the density. In SUM-159PT cells, following computational stitching of BRD4 density 

peaks, trametinib-induced fold change of BRD4 peaks was compared to trametinib-induced 

fold change of transcription of the genes with TSSs +/− 200 kb from the peaks. There was a 

bias for association of induced transcripts with induced BRD4 density (Fig. 3F and 

Supplementary Table S5), suggesting a large fraction of the MEK inhibitor-induced 

transcriptome is regulated by BRD4 commissioning. To a lesser extent MEK inhibitor-

repressed transcripts correlated with gain of BRD4 density. This anti-correlation is 

consistent with the presence of both positive and negative BRD4 transcriptional regulatory 

paradigms as well as the possibility that induced BRD4 density is regulating more distal 

genes in addition to the gene most proximal to the density. In the SUM-229PE model of BL 

and CL breast cancer differential baseline enhancer density in the EpCAM+ or EpCAM− 

cells correlated with transcription of subpopulation-specific adaptive response kinase genes 

(Supplementary Fig. S3F). Prominent BRD4 enhancer density was detected at RIPK4 and 

LIMK2, EpCAM+ specific trametinib-responsive genes, in the EpCAM+ but not EpCAM− 

cells. Conversely, EpCAM− specific trametinib-responsive genes MAP2K6 and PDK4 
displayed prominent BRD4 enhancer density only in the EpCAM− subpopulation, together 

suggesting that BRD4 enhancer density contributes to defining subtype specificity of the 

TNBC adaptive transcriptional response.
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Dynamics of kinase enhancer formation and blockade by proteasomal or BET 
bromodomain inhibition

Time course ChIPseq for SUM-159PT cells following trametinib showed rapid BRD4 

recruitment within 1–4 h, at which point the majority of de novo enhancers have formed in 

response to trametinib, and was maximal by 72 h (Figs. 4A and B). Myc protein levels were 

inversely correlated with the kinetics of DDR1 protein upregulation (Fig. 4C) and BRD4 

enhancer density formation upon MEK inhibition (Figs. 4A and B). Proteasome inhibition 

blocked Myc degradation (19) and expression of adaptive RTKs (Fig. 4D), as well as 

blocked BRD4 seeding at DDR1 and KDR enhancers (Fig. 4E). More globally, proteasome 

inhibition significantly attenuated the highest ranking trametinib-induced regions in terms of 

fold change in BRD4 density (Supplementary Fig. S4A). We sought to corroborate the 

effects mediated by proteasomal inhibition with Myc loss-of-function studies. An inducible 

Myc shRNA SUM-159PT cell line displayed upregulation of the adaptive RTK KDR 

concurrent with Myc protein loss upon doxycycline induction (Fig. 4F). At the 50 highest 

ranking regions of trametinib-induced BRD4 density, Myc knockdown alone significantly 

increased BRD4 density following 48 h of doxycycline induction, albeit a partial phenocopy 

of trametinib in terms of magnitude of BRD4 density change (Fig. 4G). At PIK3R1, 
WNT5A, KDR adaptive response loci, 48 h of doxycycline induction of Myc shRNA 

phenocopied the genomic location of BRD4 peak induction by trametinib (Fig. 4H). Thus 

Myc shRNA clearly alters enhancer regulation that overlaps with MEK inhibition, and 

combined with proteasomal inhibition effects on Myc stability and RTK adaptive expression, 

our data are consistent with loss of Myc contributing to enhancer seeding required for the 

adaptive transcriptome response to MEK inhibition.

The de novo DDR1 enhancer (Fig. 3A and Fig. 4A, E) was categorized as a super-enhancer 

by our genome-wide analysis of BRD4 ChIPseq data (Fig. 3C). Genes for the SUM-159PT 

adaptive response RTK KDR and PI3 kinase regulatory subunit PIK3R1 were also identified 

as loci harboring MEK inhibitor-induced super-enhancers. BET bromodomain inhibition in 

each case squelched the induced BRD4 density to near baseline (Fig. 4I). Transcriptional 

induction by MEK inhibitor and transcriptional suppression by JQ1 correlated with 

trametinib-induced and JQ1-disrupted BRD4 chromatin occupancy (Supplementary Table 

S5).

Functional validation of DDR1 induced enhancer density

To assess the function of drug-induced BRD4 enhancer density we deleted the 17 kb 

putative DDR1 super-enhancer (Fig. 3A and Figs 4A,E,I) by CRISPR-Cas9 (Fig. 4J and 

Supplementary Fig. S4B) and established clonal SUM-159PT cell lines for the deletion in 

either a heterozygous or homozygous state. Both the heterozygous and the homozygous 

deletion strongly attenuated the MEK inhibitor-induced DDR1 upregulation (Fig. 4J), 

validating the functional relevance of the induced density as an adaptive response enhancer.

BET bromodomain inhibition synergizes with MEK inhibition for growth suppression

JQ1 and I-BET151, both selective BET bromodomain inhibitors, strongly enhanced 

trametinib-induced growth inhibition in short-term (4-day) growth assays in claudin-low cell 

lines SUM-159PT and MDA-MB-231, respectively (Fig. 5A and B). It should be noted 
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growth assays used a lower trametinib dose (30 nM) relative to those employed in our 

RNAseq studies (100–500 nM) to maximize adaptive responses without eliciting apoptotic 

signatures resulting from high dose 4 day trametinib treatments. SiRNA knockdown of 

super-enhancer regulated adaptive response genes DDR1, KDR, PIK3R1, and ROS1 each 

enhanced growth suppression during 72h trametinib treatment while knockdown of all genes 

except PIK3R1 yielded significant growth suppression in the absence of drug—establishing 

a growth promoting role for the proteins whose MEK inhibitor induced super-enhancer is 

disrupted by JQ1 (Fig. 5C). I-BET151 co-treatment with trametinib blocked the adaptive 

upregulation of PDGFRB, DDR1, and KDR (Fig. 5D) and the combination increased BIM, 

indicative of pro-apoptotic priming that does not occur with single agents. SiRNA 

knockdown of BRD4 phenocopied the BET bromodomain inhibitors, blocking trametinib-

induced PDGFRB and DDR1 (SUM-159PT CL cells) and FGFR2 and DDR1 (BL 

SUM-229PE) (Fig. 5E).

Trametinib treatment induced >2000 SUM-159PT transcripts > 2 fold; the JQ1/trametinib 

combination suppressed 26% of the induced transcripts > 2 fold (Fig. 5F). This fraction of 

JQ1-suppressed transcripts increased when considering enhancer regulation only, whereby 

JQ1/trametinib co-treatment nearly exclusively resulted in the suppression of enhancer-

associated transcripts induced > 2 fold by trametinib (Fig. 5G). Trametinib + JQ1 synergy 

was also observed for inhibiting KRas signaling-associated molecules and Myc targets 

identified as being regulated transcriptome-wide by trametinib (Supplementary Fig. S2B). 

GSEA indicated enhanced suppression of both KRas signaling and Myc target transcripts 

upon trametinib + JQ1 treatment relative to trametinib treatment alone (Supplementary Fig. 

S4C). BET bromodomain and MEK inhibition synergize for growth suppression by 

attenuating enhancer-regulated adaptive response transcription. In parental cells, co-

treatment of trametinib+JQ1 resulted in a durable synergistic growth suppression in long-

term (4 week) crystal violet colony formation assays (Fig. 5H). Continual passage of 

SUM-159PT cells in low-dose trametinib established a trametinib-resistant cell line, 

SUM-159R, with an IC50 of 18.4 nM relative to the parental IC50 of 1.2 nM (Supplementary 

Fig. S4D). Addition of JQ1 resulted in the re-sensitization of the resistant cell line to 

trametinib (Fig. 5H), indicating BRD4 inhibition sensitizes SUM-159R cells to trametinib 

growth inhibition.

Trametinib and I-BET151 synergize in vivo for tumor growth inhibition

To examine synergistic effects using an in vivo model, we used orthotopic xenografts. 

Orthotopic SUM-159PT cell xenografts were allowed to grow until tumors reach a volume 

of 100 mm3 at which point 4 treatment groups were established: vehicle control, trametinib, 

I-BET151, and trametinib/I-BET151 combination. Mice receiving the combination treatment 

displayed a pronounced difference in tumor volume relative to single-agents (Fig. 6A). 

Tumors in the combination treatment group remained static, whereas the single-agent 

cohorts displayed rapid tumor growth by day 15 of treatment. We also assessed the effects of 

dual trametinib/I-BET151 treatment in orthotopic syngeneic transplant (OST) murine 

models of triple-negative breast cancer (38,47). In both T11 (CL) and 2225 (BL) OST 

tumors the combination treatment significantly inhibited tumor growth relative to single 
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agents (Fig. 6B,C), validating the cell culture growth suppression in vivo in 3 TNBC tumor 

models.

Suppression of trametinib-induced transcription in vivo by BET bromodomain inhibition

qRT-PCR analysis from xenograft total RNA or from actively translated riboTRAP RNA 

showed that DDR1 and PDGFRB were induced by trametinib at 48 hours; co-treatment with 

I-BET151 suppressed induction (Fig. 6D). Loss of expression of G2/M checkpoint genes 

and MYC targets was observed by GSEA in trametinib-treated xenografts (Supplementary 

Fig. S4E). Of the 1751 genes transcriptionally upregulated by trametinib in SUM-159PT 

xenografts, I-BET151 suppressed 47%, with only 4% being upregulated (Fig. 6E). Notably, 

the trametinib-induced TK family exhibited robust I-BET151-mediated suppression (Fig. 

6F).

Depletion of P-TEFb complex associated proteins attenuates the adaptive response to 
MEK inhibition

We hypothesized that targeting components of the P-TEFb transcriptional elongation 

regulatory complex would block the adaptive response. The extra-terminal (ET) domain of 

BRD4 interacts with NSD3, an H3K36me3 histone methyltransferase, as well as with 

JMJD6, a Jmj-C family demethylase—both of which are components of P-TEFb-associated 

transcriptional regulatory complexes (48,49). Knockdown of NSD3 or JMJD6 attenuated the 

trametinib-mediated upregulation of PDGFRB and DDR1 to the same magnitude as BRD4 

siRNA (Fig. 7A). CDK9, comprising the core P-TEFb complex along with cyclin T, and 

CDK7, are known to phosphorylate BRD4 and the CTD of RNA Pol II for control of 

transcriptional pause-release (50). CDK7 siRNA (Fig. 7A) and CDK9 siRNA (Fig. 7B) both 

blocked the induction of PDGFRB and DDR1 by MEK inhibitor. Small molecule inhibitor 

of CDK9, HY-16462, similarly blocked adaptive PDGFRB and DDR1 upregulation (Fig. 

7C). Thus, targeting members of P-TEFb regulatory complexes results in the blockade of 

adaptation to MEK inhibitor.

Pharmacological p300 or jumonji-C demethylase inhibition disrupts enhancer composition 
and increases MEKi-mediated growth suppression

As an established member of P-TEFb regulatory complexes, we predicted CBP/p300 lysine 

acetyl transferases (KATs) are primary H3K27 KATs of the MEK inhibitor adaptive 

response to MEK inhibitor. CBP30 is a small molecule inhibitor of the CBP/p300 

bromodomains with 40-fold selectivity over the tandem bromodomains of BRD2/3/4 (51). 

We performed BRD4 and p300 ChIPseq in SUM-159PT cells in the presence or absence of 

trametinib or CBP30 to assess the consequences of CBP/p300 inhibition on MEK inhibitor 

adaptation. Co-treatment of CBP30 and trametinib reduced MEK inhibitor-induced density 

of p300 to near baseline at the CRISPR-Cas9 functionally-validated DDR1 super-enhancer 

(Fig. 7D). In contrast, MEK inhibitor-induced BRD4 density was only modestly reduced. 

Assessing p300 chromatin occupancy at the 50 top-ranking trametinib-induced BRD4 peaks 

(in addition to the DDR1 super-enhancer) revealed similar enhanced CBP30 suppression of 

induced p300 relative to BRD4 density (Supplementary Fig. S4F). CBP30 co-treatment with 

trametinib was sufficient to block adaptive RTK upregulation of PDGFRB, KDR, and DDR1 
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protein levels (Fig. 7E), showing that CBP/p300 inhibition can block the adaptive response 

by loss of p300 from induced transcriptional regulatory complexes.

JIB-04 is a pan jumonji-C family demethylase inhibitor that prolonged survival in a murine 

model of breast cancer (52). JIB-04 + trametinib, like CBP30 + trametinib, depleted induced 

p300 but not induced BRD4 density from the DDR1 super-enhancer and at the highest 

ranking regions of trametinib-induced BRD4 chromatin occupancy (Fig. 7D and 

Supplementary Fig. S4F). JIB-04, like other inhibitors of P-TEFb complex members JQ1/I-

BET151, HY-16462, and CBP30, blocked trametinib-induced upregulation of PDGFRB and 

DDR1 (Fig. 7F).

CBP30 co-treatment with trametinib showed strong enhanced growth suppression in 

SUM-159PT and MDA-MB-231 cells relative to single-agents (Fig. 7G). JIB-04/trametinib 

co-treatment also enhanced growth suppression in SUM-159PT cells relative to single agents 

(Fig. 7H). Transcriptomically, CBP30 was capable of attenuating 11% of trametinib-induced 

SUM-159PT transcripts compared to the ability of JQ1 to suppress 26%. CBP30 suppressed 

186 transcripts in common with JQ1 (Fig. 7I), which defines a cohort of critical transcripts 

regulated by BRD4/p300 whose loss reverses adaptive reprogramming and inhibits cell 

growth.

DISCUSSION

Our studies demonstrate TNBC patients treated with trametinib for seven days resulted in 

their tumors having an inhibition of MEK-ERK and a robust transcriptional response that 

included a significant reprogramming of the tyrosine kinome. Although our patient number 

is low due to the inherent difficulty in doing such window trials, our study serves as proof-

of-concept that the adaptive bypass response occurs in patients. A similar transcriptional 

response and reprogramming of the tyrosine kinome is seen in TNBC cell lines and mouse 

xenografts. TNBC has been characterized to have two primary subtypes, basal-like and 

claudin-low (8,31,41), based on their differing transcriptional profiles in patient tumors that 

is also seen in cell lines derived from human tumors and mouse models of TNBC. We 

determined basal-like and claudin-low human TNBC cells and mouse tumor subtypes have 

different adaptive transcriptional responses to MEK-ERK inhibition. The basal (EpCAM+) 

and claudin-low (EpCAM−) SUM-229PE subpopulations are isogenically similar and do not 

have significant differences in DNA methylation, copy number or exonic nucleotide variants, 

indicating that chromatin regulation independent of baseline DNA methylation is 

responsible for subtype-specific gene expression signatures. In SUM-229PE subpopulations 

inhibition of MEK-ERK led to differential subtype-specific genome-wide enhancer 

formation and enhancer/promoter remodeling driving the basal versus claudin-low adaptive 

transcriptional response.

We previously showed that MEK inhibition upregulated PDGFRB, KDR and PDGFB in 

SUM-159PT cells (9). This could be blocked by siRNA to Myc, proteasome inhibitor or 

mutation of Myc Thr58 to Ala to suppress Myc degradation. Our current study indicates that 

Myc turnover contributes to the modulation of the adaptive response to MEK inhibition by 

stimulating dynamic enhancer formation and remodeling. There has been increasing 
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evidence for stimulation-dependent enhancer dynamics. For example, de novo enhancers are 

formed in macrophages in response to LPS activation of the toll receptor 4 (23,24), and 

proinflammatory TNFα stimulation drives the formation and reorganization of enhancers 

rich in NFκB and BRD4 (25). Endocrine responses in estrogen receptor (ER) positive breast 

cancer are dependent on the transcription factor FOXA1, as it regulates ER/enhancer 

interactions and transcriptional activity (26). In the context of oncogenic kinase signaling, 

perturbation of ERK signaling by Sprouty deletion or G12V HRas expression remodel 

histone modifications at both super-enhancers and classical enhancers by distinct 

mechanisms (27). Looping of the MET enhancer leading to the binding of the transcriptional 

start site in a 3C assay was shown to be regulated in response to BRaf inhibition (28). These 

findings together with our current study demonstrate the integration of signaling networks 

with the epigenetic control of transcription that identifies potential targets for 

pharmacological intervention.

P-TEFb is recruited by BRD4 to promoters and associates with Mediator complex members 

to facilitate chromatin looping of enhancer sequences to promoters for pause-release and 

transcriptional elongation (53). Myc turnover is required for enrichment of histone 

acetylation and recruitment of P-TEFb/CDK9 to promoters (19). We reasoned that targeting 

P-TEFb complex associated proteins would block the transcriptional induction of the 

adaptive bypass response both by disruption of induced or remodeled enhancer complex 

architecture, and by preventing promoter recruitment and function of core P-TEFb 

components. Using RNAi and small molecule inhibitors we found that targeting P-TEFb 

associated proteins JMJD6, NSD3, p300, CDK7 or CDK9 as well as BRD4 inhibited the 

transcriptional upregulation of the adaptive bypass response. Importantly, cells that had 

become resistant to trametinib were made sensitive to the drug by JQ1 inhibition of BRD4, 

effectively reversing resistance to trametinib by suppressing the adaptive upregulation of 

RTKs. Combination trametinib plus I-BET151 gave synergistic growth inhibition in vitro 
and in vivo for different TNBC mouse models. In lapatinib-resistant HER2+ breast cancer 

cells we observed a similar result where we could reverse resistance to a targeted kinase 

inhibitor with a BET bromodomain inhibitor (34). Cumulatively, our studies define P-TEFb 

complex associated proteins as validated targets to block adaptive resistance produced by 

MEK inhibition.

The importance of blocking adaptive bypass resistance to kinase inhibitors at its epigenetic 

root has significant clinical implications for making therapeutic responses more durable. The 

relevance of such an approach is evident in our TNBC studies. If the adaptive response to 

single kinase inhibitors such as trametinib could be blocked epigenetically, by targeting 

enhancer formation/remodeling by inhibiting P-TEFb constituents such as BRD4, p300, 

JMJD6, CDK7 or CDK9 adaptive resistance could be prevented and our results suggest 

resistance could be possibly reversed. Rather than pursuing kinase inhibitor combinations 

that will invariably lead to adaptive bypass, combining a kinase inhibitor with an epigenetic 

inhibitor is a novel approach to arrest adaptive reprogramming. Pharmacological targeting of 

P-TEFb complex associated proteins, localized at de novo enhancer/promoters seeded by 

MEK inhibition, is an effective strategy to durably inhibit adaptive resistance to MEK 

inhibition (Fig. 7J).
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METHODS

Window-of-opportunity clinical trial

The window trial “Defining the Triple Negative Breast Cancer Kinome Response to 

GSK1120212” is registered under the ClinicalTrials.gov Identifier NCT01467310. 

GlaxoSmithKline and Novartis generously provided trametinib for the window trial. Eligible 

women included those with stage I–IV newly diagnosed and previously untreated triple 

negative breast cancer that was accessible for biopsy and surgery; stage I–IIIc subjects could 

not be candidates for therapeutic neoadjuvant treatment. Triple negative status was based 

upon the clinical assays and defined by ASCO/CAP criteria including estrogen receptor 

(ER) and progesterone receptor (PR) <1% staining by immunohistochemistry (IHC) and 

HER2-negative by IHC or fluorescence in situ hybridization. Study subjects provided 

written informed consent that included details of the nontherapeutic nature of the trial, and 

the study was approved by the UNC Office of Human Research Ethics and conducted in 

accordance with the Declaration of Helsinki. After enrollment, study subjects underwent 

core biopsy of the breast tumor, and then received trametinib for the 7 consecutive days prior 

to the scheduled surgery date. The last dose of trametinib was taken ≤ 24 hours before 

surgery. At surgery a post trametinib tumor specimen was reserved for research. Patients 

were monitored for toxicity during and up to several weeks after treatment, until any 

evidence of toxicity had resolved. The dosing schedule of trametinib was determined by the 

surgery date; delays in standard therapy for trial purposes were not permitted. Given the 

nontherapeutic nature of the trial, the dose was deliberately set low at 1.5 mg orally daily 

under fasting conditions; this dose was increased per protocol to 2 mg daily after interim 

analysis of pharmacodynamic endpoints in the pre- and post-treatment tumor samples from, 

and toxicity assessment of, the first 3 patients enrolled.

Biopsy and surgical specimens were immediately placed into liquid nitrogen. Both pre- and 

post- trametinib tumor tissue was analyzed for baseline kinome profile and for the dynamic 

effects of MEK inhibition on the whole kinome. Frozen tissue intrinsic subtyping was 

performed by gene expression profiling using Agilent DNA microarrays and the PAM50 

algorithm (54); claudin-low subtyping used a centroid-based predictor (41).

Cell culture

SUM-159PT and MDA-MB-231 cells were maintained in DMEM/F12 medium (Gibco, 

ThermoFisher Scientific) supplemented with 5% FBS, 5 μg/ml insulin, 1 μg/ml 

hydrocortisone, and antibiotic:antimycotic cocktail (Gemini Bio Products). HCC1806, 

MDA-MB-468, WHIM12, Hs 578T, T11, and T2 C3(1)/Tag cells were maintained in RPMI 

1640 (Gibco, ThermoFisher Scientific) supplemented with 10% FBS and 

antibiotic:antimycotic cocktail (Gemini Bio Products). SUM-149PT EpCAM+ cells were 

maintained in HuMEC medium (with defined HuMEC supplements, Gibco, ThermoFisher 

Scientific) supplemented with 5% FBS and antibiotic:antimycotic cocktail (Gemini Bio 

Products). SUM-229PE parental cells and FACS subpopulations were maintained in F12 

medium (Gibco, ThermoFisher Scientific) supplemented with 5% FBS, 5 μg/ml insulin, 1 

μg/ml hydrocortisone, 10 mM HEPES, and penicillin/streptomycin cocktail (Gibco, 

ThermoFisher Scientific).

Zawistowski et al. Page 14

Cancer Discov. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Trametinib-resistant SUM-159PT (SUM-159R) cells were established by pooling all 

resistant subclones following continual passage in 30 nM trametinib for > 1 month. 

Doxycycline-inducible MYC shRNA SUM-159PT cells were created by pooling all resistant 

subclones following 2.5 μg/ml puromycin selection for pLKO.1 tet-on driven shRNA 

TRCN0000327647.

Cell line authentication

Cell lines were obtained from the UNC Lineberger Comprehensive Cancer Center Tissue 

Culture Facility or collaborating labs within the last five years. All established cell lines used 

in these studies have been authenticated by the Johns Hopkins Genetics Core Resources 

Facility using their short tandem repeat (STR) profiling service. New cell lines generated 

from PDXs are whole exome sequenced and RNA sequenced for reference. Cells are 

routinely checked for mycoplasma.

Compounds

Trametinib, JQ1, I-BET151, SGC-CBP30, JIB-04, and bortezomib were obtained from 

Selleck Chemicals. HY-16462 was obtained from MedChem Express.

Antibodies

ChIP—The following ChIP-grade antibodies were used: BRD4 (Bethyl Laboratories 

A301-985A), CEBPβ (Santa Cruz Biotechnology sc-150 X), histone H3K27ac (Active 

Motif 39133), histone H3K4me1 (Active Motif 39297), histone H3K4me3 (EMD Millipore 

07-473), MED1/CRSP1/TRAP220 (Bethyl Laboratories A300-793A), p300 (Santa Cruz 

Biotechnology sc-585 X).

Western blotting—Abcam: EpCAM. Bethyl Laboratories: BRD4. Cell Signaling 

Technology: AKT, BIM, CDK9, DDR1, IGF1R, KDR, KIT, MEK1/2, MYC, pAKT (S473), 

pAKT (T308), PDGFRB, pERK1/2 (T202,Y204), pSRC (Y416), vimentin. Santa Cruz 

Biotechnology: ERK2, FGFR2.

RNAseq

Cell lines

For SUM-229PE and T11 OST, C3(1)Tag - T2 datasets: 2 μg total RNA isolated using 

Qiagen RNeasy Plus kit was used for library construction by the UNC Lineberger 

Comprehensive Cancer Center Genomics Core using Illumina TruSeq RNA Library Prep Kit 

v2 with 15 cycles of amplification. 1×50 Illumina HiSeq2000 sequencing was performed by 

the UNC High Throughput Sequencing Facility.

For all other RNAseq datasets: 4 μg total RNA isolated using Qiagen RNeasy Plus kit was 

used for library construction with KAPA Stranded mRNAseq kits and Illumina TruSeq 

indexed adapters following the manufacturer’s recommended protocol with the following 

exception: 10 cycles of PCR were used with 0.5 X the recommended template DNA. 12-

plex, single-indexed, 1×75 bp Illumina NextSeq500 sequencing was employed for RNAseq 

libraries to yield an average of 3.5–4.0 × 107 reads per sample.
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Patient tumors: Total RNA was isolated with Qiagen RNeasy Mini kit. mRNAseq libraries 

were made with Illumina TruSeq RNA Sample Prep Kit with 0.5–1 μg of total RNA. 

Libraries were sequenced using an Illumina HiSeq2000, producing 48×7×48 bp paired-end 

reads with multiplexing.

Cell line raw and processed RNAseq is deposited in GEO as SuperSeries GSE87424. Patient 

tumor RNAseq data deposition to dbGaP is in progress.

ChIPseq

Chromatin immunoprecipitation: Formaldehyde fixation and chromatin 

immunoprecipitations were performed as described for BRD4 (46) with the following 

modifications:. ~ 1 × 107 cells were used per IP, a Bioruptor Pico (Diagenode) chilled water 

bath sonicator was used for chromatin shearing (15 cycles: 30 sec pulse, 30 sec cooling), and 

Qiagen MinElute PCR Purification columns were used for ChIP DNA purification after 

decrosslinking and RNase/proteinase treatment. Buffers: Lysis buffer 1: 50 mM HEPES pH 

7.3, 140 mM NaCl, 1 mM EDTA, 10% glycerol, 0.5% NP-40, and 0.25% Triton X-100; 

Lysis buffer 2: 10 mM Tris-HCl pH 8.0, 200 mM NaCl, 1 mM EDTA pH 8.0 and 0.5 mM 

EGTA pH 8.0; LiCl wash buffer: 20 mM Tris pH 8.0, 1 mM EDTA, 250 mM LiCl, 0.5% 

NP-40, 0.5% sodium deoxycholate.

Amount of antibody per IP: 10 μg BRD4, 5 μg H3K27ac, 10 μg CEBPB, 10 μg p300, 10 μg 

MED1, 10 μl H3K4me1, 4 μg histone H3K4me3 (EMD Millipore 07-473).

Library preparation and sequencing—10–50 ng ChIP DNA was used for library 

construction using KAPA HyperPrep kit and Illumina TruSeq indexed adapters. Dual size 

selection was performed after 18 cycles of PCR amplification according to KAPA’s 

recommended protocol. 12-plex, single-indexed, 1×75 bp Illumina NextSeq500 sequencing 

was employed for ChIPseq libraries to yield an average of 3.5–4.0 × 107 reads per sample.

Library preparation and sequencing for H3K4me3 ChIPseq was performed by the UNC 

High Throughput Sequencing Facility. H3K4me1 ChIPseq libraries were constructed using 

DNA SMART ChIP Seq kit (Clontech) with 10 ng ChIP DNA, 18 cycles of amplification, 

and double size selection post-PCR following the manufacturer’s suggested protocol. For the 

DNA SMART ChIPseq libraries, the first three bases of the sequencing read, corresponding 

to the template switching oligo, were trimmed prior to mapping.

Raw and processed ChIPseq data is deposited in GEO as SuperSeries GSE87424. Python 

code generated in the laboratory for ChIPseq analysis is available at GitHub (55).

SUM-229PE subpopulation cell sorting

SUM-229PE cells were trypsinized and resuspended in Hank’s Balanced Salt Solution 

containing 2% fetal bovine serum (HF media). For analytical flow cytometry, cells were 

fixed with 3% paraformaldehyde. Cells were stained for 30 minutes at 4°C with the 

fluorescently-labeled primary antibodies EpCAM-FITC (Stem Cell Technologies) and 

CD49f-PE-Cy5 (BD Biosciences), washed twice with HF media and filtered with a 30 μm 

filter. Fixed cells were analyzed using a Beckman-Coulter CyAn Cytometer, and live cells 
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were sorted using a Sony iCyt Reflection Cytometer. Sorting was analyzed with FlowJo 

v7.6.5 software.

SUM-229PE subpopulation whole exome sequencing

Genomic DNA was isolated from EpCAM+/Cd49f+ and EpCAM−/Cd49f− FACS 

populations using Qiagen DNeasy Blood and Tissue Kit and subsequently treated with 

RNase A (Sigma). 300 ng genomic DNA was submitted to the UNC High Throughput 

Sequencing Core Facility for Nextera Rapid Capture exome enrichment (Illumina) followed 

by 2X100 HighSeq2500 sequencing.

Exome sequencing data is deposited in GEO as SuperSeries GSE87424.

siRNA transfection

siGENOME SMARTpools (GE Dharmacon) were transfected using Dharmafect 1 reagent 

(GE Dharmacon) at 25 nM final concentration. Unless otherwise noted, siGENOME Non-

Targeting siRNA pool #2 was used as a negative control. Cells were incubated 48 h post-

siRNA transfection to ensure knockdown prior to the addition of drug, except for the cell 

counting analysis shown in Fig. 5C whereby drug was added concurrently with transfection

Cell lysis – western blotting

Cells were harvested in RTK array lysis buffer containing 20 mM Tris-HCl (pH 8.0), 1% 

NP-40, 10% glycerol, 137 mM NaCl, 2 mM EDTA, 1X EDTA-free protease inhibitor 

cocktail (Roche), and 1% each of phosphatase inhibitor cocktails 1 and 2 (Sigma).

CRISPR/Cas9 enhancer deletion

CRISPR/Cas9 sgRNAs were identified using the MIT CRISPR Design tool. Two sets of 

sgRNAS where chosen; sgRNA Set 1 was cloned into lentiCRISPRv2 (Addgene #52961) 

and the sgRNA Set 2 was cloned into pSpCas9(BB)-2A-GFP (Addgene #48138). 

SUM-159PT cells were first infected with lentiCRISPRv2-DDR1-Set 1. Single cells were 

sorted into 96-well plates and selected with 2.5 μg/ml puromycin. sgRNA Set 2 was 

delivered to SUM-159PT-DDR1-SE+/− cells by electroporation using the Neon 

(ThermoFisher Scientific) electroporation system. Cells expressing GFP were sorted in 96-

well plates and tested for biallelic deletion. To detect monoallelic and biallelic deletion of 

the DDR1 super-enhancer, genomic DNA was extracted using QIAamp DNA extraction kit 

(Qiagen) and then used as template for PCR with Expand High-Fidelity DNA polymerase 

(Roche) with the primers: DDR15FV2 (TGAGTCAGAACCCAACAGGC), DDR15RV2 

(ATTGCAAAGGAGGCACCACT), DDR13FV2 (GCAAGGAAGACAGCTCACCT) and 

DDR13RV2 (GGCTCTTAGACTTGGGCCAG). PCR products were gel purified with 

Qiagen QIAquick PCR purification kit prior to sequencing.

Cell line growth assays

96 h and 8-day growth assays were performed in 96-well plates. Cells were plated one day 

prior to first treatment. Media containing fresh drug was changed every 24 h unless 

otherwise noted. Live cells were stained with Hoescht in PBS for 20 min at 37°C and 

imaged/counted with a Thermo Cellomics ArrayScan VTI at 25 frames per well.
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Crystal violet colony formation assays

Crystal violet assays were performed in 6-well plates, with three technical replicates per 

condition. Drug-containing media was changed every 3 days for 4 weeks. Cells were rinsed 

with PBS, fixed in methanol (10min, −20°C), and stained with 0.5% crystal violet for 

20min. Crystal violet was solubilized with 30% acetic acid and quantified by absorbance at 

600nm.

In vivo tumorigenesis experiments

SUM-159PT xenografts—Female NOD/SCID mice (Jackson Labs) were given 

orthotopic mammary fat pad injections of 2×106 SUM-159PT cells suspended in 50% 

matrigel. Mice were housed and treated in accordance with protocols approved by the 

Institutional Care and Use Committee for animal research at the University of North 

Carolina. Once tumor volume reached approximately 100 mm3 mice were treated daily with 

2.0 mg/kg trametinib by oral gavage (vehicle: 0.5% hydroxypropylmethylcellulose, 0.2% 

tween 80 in diH2O) or 30mg/kg I-BET151 by IP injection (vehicle: 5% tween 80, 5% 

DMSO in saline) as single agents or in combination. Tumor volume was calculated daily by 

caliper measurements ((width)2 × length))/2 until tumors reached maximum size of 2,000 

mm3 or at the end of treatment. Tumors used for long-term growth study were snap-frozen 

in liquid nitrogen and stored at −80°C. Tumors used for riboTRAP and RNA sequencing 

were treated 48 hours and fresh tissue was harvested for downstream analysis. Tumor 

number for Fig. 6A: vehicle: n=5, trametinib: n=6, I-BET151: n=4, trametinib+I-BET151 

combination: n=3.

OST models—BALB/c females (Jackson Labs strain 000651) aged 6–8 weeks old were 

inoculated in the mammary gland with 5X105 cells of “T11”or “2225”, both p53 null cell 

lines described previously (38,47). Mice were housed and treated in accordance with 

protocols approved by the Institutional Care and Use Committee for animal research at the 

University of North Carolina. Once inoculated, mice were examined for tumors weekly until 

a palpable mass was found. Treatment began the same day. Tumor size was assessed once 

weekly by caliper measurements of tumor areas ((width)2 × length))/2 until reaching tumor 

burden. Percent change of tumor volume was calculated using (Final volume – Initial 

Volume)/Initial Volume. Trametinib was incorporated into the diet (Research Diets, New 

Brunswick, NJ) of mice to achieve a daily dose of 1.0 mpk and I-BET151 was delivered IP 

at 30 mpk thrice weekly. Food was provided ab libitum and the amount of daily food intake 

was pre-determined using Jackson Labs Phenome Database. Tumors at harvest were cut in 

half and either snap-frozen in liquid nitrogen and stored at −80°C or placed in neutral 

buffered 10% formalin solution.

riboTRAP analysis of SUM-159PT xenograft tumors

Translating ribosome affinity purification (riboTRAP) was performed on fresh tissue from 

SUM-159PT xenograft tumors harvested in ice-cold dissection buffer (1X HBSS, 2.5 mM 

HEPES-KOH (pH7.3), 35 mM glucose, 4 mM NaHCO3, 100 μg/ml cycloheximide). 

SUM-159PT cells were infected with lentivirus to express L10a-GFP (construct kindly 

provided by Marc Caron). Tumors were processed as described (56) with minor 
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modifications. Briefly, fresh tissue was homogenized in 15-second pulses using a tissue-

tearor homogenizer at approximately 15,000 rpm on ice in lysis buffer (20mM HEPES-KOH 

(pH 7.3), 150 mM KCl, 10 mM MgCl2, 1% NP-40, Roche EDTA-free protease inhibitor 

tablet (1 per 10 ml), 0.5mM DTT, 100 μg/ml cycloheximide). Lysate was centrifuged at 4.7 

rpm for 10 minutes at 4°C. Supernatant was treated with 1/9 volume of 300mM DHPC and 

10% NP-40 and incubated on ice 5 minutes before centrifugation for 10 minutes at max 

speed. The resulting supernatant was used for immediate IP overnight at 4°C with GFP 

antibodies (Memorial Sloan Kettering Monoclonal Antibody Facility; clone names: Htz-

GFP-19C8 and Htz-GFP-19F7) bound to 200 μl protein G magnetic beads. A small aliquot 

of total supernatant was saved at this point for comparison. After IP samples were washed 

four times with high salt buffer (20mM HEPES-KOH (pH 7.3), 350 mM KCl, 10 mM 

MgCl2, 1% NP-40, Roche EDTA-free protease inhibitor tablet (1 per 10 ml), 0.5mM DTT, 

100 μg/ml cycloheximide). RNA was eluted from the beads in 100 μl Qiagen RNeasy lysis 

buffer with β-mercaptoethanol added and RNA was purified for downstream analysis 

according to the manufacturer’s instructions.

SUM-159PT xenograft qPCR

Total RNA was isolated from fresh SUM-159PT xenograft tumors using Qiagen RNeasy 

Plus kit. First strand cDNA was synthesized from 2.0 μg total RNA or riboTRAP RNA (see 

riboTRAP analysis of SUM-159PT xenograft tumors) using High-Capacity cDNA Reverse 

Transcription kit (Applied Biosystems/ThermoFisher Scientific) according to the 

manufacturer’s recommended protocol. The following TaqMan (Applied Biosystems/

ThermoFisher Scientific) primers were used: DDR1: Hs01058430_m1, PDGFRB: 
Hs01019589_m1, ERK2: Hs_01046830_m1.

MIB/MS

Tumor tissue and cell lines were processed in lysis buffer (50 mM HEPES, 150 mM NaCl, 1 

mM EDTA, 1 mM EGTA, 0.5% Triton X-100, at pH 7.5 containing inhibitors [10 mM NaF, 

2.5 mM NaVO4, Sigma phosphatase inhibitor cocktails 2+3, and Roche protease inhibitor 

tablets]) and gravity-flowed over MIBs (multiplexed kinase inhibitor beads; Sepharose 

conjugated to VI-16832, CTx-0294885, PP58, Purvalanol B, UNC8088A, UNC21474). 

MIBs were sequentially washed with lysis buffer without inhibitors containing 1M NaCl, 

then 150 mM NaCl+0.1% SDS. Bound kinases were eluted by boiling in 100 mM Tris-HCl, 

0.5% SDS, and 1% beta-mercaptoethanol, pH 6.8, then treated with 5mM DTT at 60°C and 

15 mM iodoacetamide at RT. Proteins were concentrated on Amicon Ultra-4 (10K cutoff) 

spin columns, purified by methanol/chloroform extraction, then trypsinized overnight in 50 

mM HEPES, pH 8. Triton was removed by extraction with hydrated ethyl acetate and 

peptides were de-salted by C-18 spin column (Pierce, ThermoFisher Scientific).

For patient biopsies and tumor tissue, 50% of the peptides were loaded onto a Thermo Easy-

Spray 75μm × 25cm C-18 column with an Easy nLC-1000. Peptides were separated on a 

300-minute (5–40% ACN) gradient as a single fraction and identified by a Thermo Q-

Exactive orbitrap mass spectrometer. Parameters are as follows: 3e6 AGC MS1, 80 ms MS1 

max inject time, 1e5 AGC MS2, 100 ms MS2 max inject time, 20 loop count, 1.8 m/z 

isolation window, 45 s dynamic exclusion.
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Spectral data was searched against the Uniprot/Swiss-prot protein database using MaxQuant 

1.5. Default parameters were used with the following exceptions: a minimum of 2 unique 

peptides was required for quantitation, razor peptides were excluded, peptide matching 

between runs was included, and peptides containing phospho-STY, acetylation, oxidation, 

and deamidation modifications were included. Label-free quantification (LFQ) values for 

each kinase were used for comparison between pre/post-treatment.

DNA methylation

An Illumina Infinium HumanMethylation450 BeadChip array was employed to assess 

cytosine methylation at baseline and upon trametinib treatment. Genomic DNA was isolated 

using Qiagen DNeasy Blood & Tissue kit from SUM-159PT or SUM-149PT EpCAM+/− 

cells treated with either 24 h 100 nM trametinib or DMSO vehicle control or SUM-229PE 

EpCAM+/− cells treated with either 24 h 30 nM trametinib or DMSO vehicle. Bisulfite 

conversion of genomic DNA was performed using EZ DNA Methylation kit (Zymo 

Research) following the manufacturer’s recommended conditions. Hyper-methylated and 

unmethylated genomic DNA (Human WGA Methylated & Non-methylated DNA kit, Zymo 

Research) were included on the array as controls. BeadChip hybridization and imaging was 

performed by the UNC Mammalian Genotyping Core. See Supplementary Table S4 for 

normalized (to Illumina internal controls) methylation fraction (β) values output from 

GenomeStudio (Illumina). Principal component analysis was performed using R version 

3.2.3 on the normalized beta values.

DNA methylation data is deposited in GEO as SuperSeries GSE87424.

For analysis of RNAseq, ChIPseq, and exome sequencing datasets and statistical analyses, 

see Supplementary Methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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STATEMENT OF SIGNIFICANCE

Widespread transcriptional adaptation to pharmacological MEK inhibition was observed 

in triple negative breast cancer patient tumors. In preclinical models MEK inhibition 

induces dramatic genome-wide modulation of chromatin, in the form of de novo 

enhancer formation and enhancer remodeling. Pharmacological targeting of P-TEFb 

complex members at enhancers is an effective strategy to durably inhibit such adaptation.
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Figure 1. 
Response to MEK inhibition in TNBC patient tumors from window-of-opportunity clinical 

trial. (A) Transcriptional response to trametinib in TNBC patient tumors in pre-treatment 

needle core biopsies (NCBs) and in corresponding surgical resections following 7 day 

trametinib treatment. Total number of expressed genes are indicated in black; percentage of 

transcripts induced (red) or suppressed (green) > 2 fold after trametinib treatment are 

indicated. (B) Tyrosine kinome transcriptional response (> 1.5 fold) to trametinib treatment 

in BL;BL patient tumors (blue) or CL;CL patient tumor (red). (C) Differential Expression-

Seq2 (DESeq2) analysis comparing pre-trametinib and post-trametinib BL;BL tumors. 
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Shown are differentially expressed kinases using 0.05 FDR for significance. Pt. 4 was 

excluded from the DESeq2 analysis because of high immune kinase expression but 

presented in the heat map for comparison. CL;CL tumor 6 is presented in the heat map for 

comparison to the BL;BL tumor response. (D) Adaptive response RTK protein upregulation 

in BL;BL patient tumors. (E) Scatterplot of RSEM transcript abundance values vs. MIB/MS 

TK MIB binding as a ratio of trametinib-treated surgical resection:pre-treatment NCB in 

BL;BL Pt. 5 (blue) and CL;CL Pt. 6 (red). Non-TKs are indicated with black circles. Arrows 

highlight decreased MEK1/2 MIB binding following trametinib.
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Figure 2. 
Trametinib elicits a subtype-specific transcriptional response in TNBC cells. (A) Myc 

protein loss and RTK upregulation in SUM-159PT CL cells and HCC1806 BL cells after 48 

h 10 nM trametinib treatment. (B) RNAseq results (mean RSEM of biological duplicates) in 

the indicated BL or CL human cell lines following 24 h 500 nM trametinib. (C) DESeq2 

differential expression analysis of the kinome response to 24 h 500 nM trametinib 

comparing basal-like cell lines (HCC1806, SUM-149PT EpCAM+/CD49f+, MDA-MB-468) 

or claudin-low cell lines (SUM-159PT, Hs 578T, WHIM12). Log2 fold trametinib changes 

for kinases significant with a threshold of 0.05 FDR (Supplementary Table S1) are displayed 
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in heat map following hierarchical clustering using (1 − Spearman Correlation)/2 as the 

distance metric and row scaling. (D) BL;BL patient tumor trametinib-upregulated kinases 

(Fig. 1C) overlapping with basal-like cell line trametinib-upregulated kinases 

(Supplementary Table S2). Hypergeometric test p value for overlap = 0.007 (patient FDR = 

0.05, cell line FDR = 0.01). (E) Mean tyrosine kinome response to 24 h 500 nM trametinib 

of biological duplicates. TK transcripts upregulated > 1.5 fold are displayed and Log2 

magnitude of response plotted for BL (HCC1806, SUM-149PT EpCAM+; blue) and CL 

(SUM-159PT, Hs 578T, WHIM12; red) cells. TK transcripts upregulated > 1.3 fold are 

displayed for MDA-MB-468 cells due to low relative transcriptome-wide responsiveness to 

trametinib (B). (F) Sorting SUM-229PE parental cells into distinct BL EpCAM+/CD49f+ 

and CL EpCAM−/CD49f− populations using flow cytometry. (G) Top: Commonly (grey) 

and uniquely (blue, red) induced (> 2 fold) transcripts following 24 h 30 nM trametinib 

treatment of EpCAM+ or EpCAM− subpopulations. Bottom: mRNAseq in EpCAM+ or 

EpCAM− subpopulations showing response to 24 h 30 nM trametinib treatment. (H) 
Kinases induced > 1.5 fold or suppressed > 1.5 fold after 24 h 30 nM trametinib treatment 

that are either unique to EpCAM+ cells (blue) or EpCAM− cells (red), or both 

subpopulations (grey). (I) Upregulation of BL adaptive response RTK FGFR2 in EpCAM+ 

cells and CL adaptive response RTK PDGFRB in EpCAM− cells following 24 h 30 nM 

trametinib.
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Figure 3. 
Remodeling of epigenomic landscape induced by MEK inhibition. (A) SUM-159PT 

ChIPseq density tracks at the DDR1 adaptive response RTK locus in the presence or absence 

of 24 h 100 nM trametinib. (B) Response of BRD4, H3K27ac, MED1, and p300 ChIPseq 

density to 24 h 100 nM trametinib alone, or the combination of 300 nM JQ1 at the highest 

50 ranking BRD4 peaks defined by trametinib induction magnitude. Quantification of 

enhancers and super-enhancers by BRD4 density following 24 h 100 nM trametinib, 300 nM 

JQ1 or the combination in SUM-159PT (C) or HCC1806 (D) cells. (E) Enhancer 

quantification by BRD4 density following 24 h 30 nM trametinib in SUM-229PE EpCAM+/

CD49f+ (dotted lines) or EpCAM−/CD49f− (solid lines) cells. (F) Left: Fold change of 

genome-wide BRD4 stitched peak ChIPseq density vs. transcriptional fold change of genes 

whose TSS resides +/− 200 kb from the BRD4 peak density in SUM-159PT cells with 24 h 
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100 nM trametinib. Right: Zoom of plot on left with warmer colors representing higher 

density of points showing enrichment in upper right quadrant. Empirical p value (< 10−5) 

from randomization test indicates that in each of 10,000 cycles of data randomization the 

number of points under the null hypothesis of no enrichment did not exceed the number of 

observed counts for this quadrant.
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Figure 4. 
Proteasome or BET bromodomain inhibition attenuates trametinib-induced enhancers at 

kinase loci. (A) Time course of BRD4 density induced by 100 nM trametinib treatment at 

the DDR1 enhancer. (B) Classical enhancer (left) or super-enhancer (right) quantification by 

BRD4 density over 100 nM trametinib time course. (C) Time course of Myc protein levels 

following trametinib treatment showing anticorrelation of DDR1 protein induction and 

BRD4 density (A) or enhancer induction (B). (D) Western blot showing Myc stabilization 

and loss of PDGFRB, DDR1, and KDR upregulation with 8 h co-treatment of 100 nM 

trametinib and 30 nM bortezomib. (E) Loss of trametinib-induced DDR1 (left) and KDR 
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(right) BRD4 enhancer density upon co-treatment with 30 nM bortezomib. (F) Upregulation 

of adaptive response RTK KDR upon doxycycline induction of Myc shRNA in stable 

SUM-159PT cells. (G) BRD4 density change at the highest ranking 50 trametinib-induced 

regions in response to 48 h 100 nM trametinib or 1 μg/ml doxycycline induction of Myc 

shRNA. (H) BRD4 density induction following 48 h 100 nM trametinib or 1 μg/ml 

doxycycline induction of Myc shRNA at PIK3R1, WNT5A or KDR1 adaptive response loci. 

(I) BRD4 ChIPseq density tracks depicting enhancer formation following 24 h 100 nM 

trametinib and enhancer blockade following co-treatment with 300 nM JQ1 at the DDR1, 

PIK3R1, and KDR SUM-159PT adaptive response genes. (J) Top: CRISPR/Cas9 deletion of 

the SUM-159PT DDR1 trametinib-induced enhancer. Bottom: Attenuation of DDR1 protein 

induction following 24 h 100 nM trametinib in stable SUM-159PT cell lines either 

heterozygous or homozygous for the enhancer deletion.
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Figure 5. 
BET bromodomain inhibition enhances growth suppression elicited by MEK inhibition. (A) 
SUM-159PT four day growth curve with 30 nM trametinib, 300 nM JQ1, or the 

combination. (B) MDA-MB-231 (CL) four day growth curve with 30 nM trametinib, 500 

nM I-BET151, or the combination. (C) Cell counting assay showing growth suppression in 

SUM-159PT cells in the presence or absence of 72 h 1 nM trametinib and the indicated 

siRNAs, normalized to non-targeting control siRNA. In the DMSO condition, all super-

enhancer associated siRNAs yielded significantly different (p < 0.05) growth suppression 

relative to control siRNA except for PIK3R1. P values are indicated for siRNAs that showed 

significantly different growth suppression between DMSO and trametinib conditions. (D) 
Westerns with indicated antibodies in SUM-159PT cells treated 24 h with 100 nM 

trametinib, 500 nM I-BET151, or the combination. (E) Westerns showing loss of adaptive 

response RTKs in SUM-159PT cells (left) or SUM-229PE parental cells (right) in cells after 

48 h 10 nM trametinib and BRD4 siRNA. (F) Top: SUM-159PT RNAseq showing 
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percentage of genes induced (red) or suppressed (green) > 2 fold by 100 nM trametinib. 

Bottom: Percentage of trametinib-induced genes further induced (red) or suppressed (green) 

> 2 fold by co-treatment with 300 nM JQ1. (G) Long tail plot of trametinib mRNA 

induction or JQ1 mRNA suppression (100 nM trametinib : DMSO, or 100 nM trametinib 

+ 300 nM JQ1 : 100 nM trametinib) for enhancer-associated genes with > 2 fold trametinib-

induced expression change. (H) Four-week crystal violet assays in SUM-159PT parental 

cells (top) or SUM-159R (bottom) cells in the presence or absence of 30 nM trametinib or 

300 nM JQ1.
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Figure 6. 
MEK inhibition and BET bromodomain inhibition synergy in vivo. (A) Tumor volume in 

SUM-159PT xenografts: vehicle, 2 mg/kg daily trametinib, 30 mg/kg daily I-BET151, or 

combination treatment. Percent change in tumor volume from T11 (B) or 2225 (C) 
orthotopic serial transplant (OST) models following 2 week treatment of 1.0 mg/kg (chow) 

trametinib, 30 mg/kg (3X weekly, IP) I-BET151, or the combination. Error bars show +/− 

SEM. (D) Trametinib-induced mRNA upregulation and I-BET151-mediated suppression of 

DDR1 and PDGFRB as assayed from total RNA (left) or riboTRAP RNA (right) isolated 

from SUM-159PT xenografts (n=3). Error bars show SD from mean. (E) Top: SUM-159PT 

xenograft mean (n=3) transcriptome showing percentage of genes induced (red) or 

suppressed (green) > 1.5 fold by trametinib treatment. Bottom: Percentage of trametinib-

induced genes further induced (red) or suppressed (green) > 1.5 fold by co-treatment with 

300 nM JQ1. (F) mRNA fold change of SUM-159PT xenograft tyrosine kinases induced > 
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1.5 fold by trametinib treatment and corresponding JQ1-mediated suppression. Data are 

mean +/− SD, n=3 tumors.
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Figure 7. 
Attenuation of adaptive response to MEK inhibition by P-TEFb complex perturbation. (A) 
PDGFRB and DDR1 western blot of SUM-159PT cells treated with the indicated P-TEFb 

complex siRNAs for 48 h followed by 24 h 100 nM trametinib. (B) Western with the 

indicated antibodies of SUM-159PT cells treated with CDK9 siRNA for 48 h followed by 24 

h 100 nM trametinib. (C) Attenuation of 24 h 100 nM trametinib-induced PDGFRB and 

DDR1 upregulation by co-treatment with 100 nM HY-16462. (D) BRD4 (top) and p300 

(bottom) ChIPseq density tracks at the DDR1 enhancer upon 24 h 100 nM trametinib alone, 

or in combination with either 300 nM JIB-04 or 1 μM SGC-CBP30. (E) Dose-dependent 

blockade of PDGFRB, KDR, and DDR1 upregulation to 24 h 100 nM trametinib by SGC-

CBP30 co-treatment in SUM-159PT cells. (F) Loss of PDGFRB and DDR1 upregulation to 

100 nM 24 h trametinib by co-treatment with 300 nM JIB-04 in SUM-159PT cells. (G) 
Enhancement of SUM-159PT (left) or MDA-MB-231 (right) growth suppression with 10 
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nM trametinib treatment with 5 μM SGC-CBP30. (H) Enhancement of SUM-159PT growth 

suppression with 5 nM trametinib and 500 nM JIB-04. (I) Left: Percentage of SUM-159PT 

transcripts further upregulated > 2 fold (red) or downregulated > 2 fold (green) with either 

300 nM JQ1, 500 nM I-BET151, or 3 μM SGC-CBP30 in combination with 24 h 100 nM 

trametinib. Right: Trametinib-induced genes commonly suppressed by JQ1 and SGC-

CBP30. (J) Model of dynamic enhancer formation in the adaptive response to MEK 

inhibition (left) and targeting strategies for different P-TEFb complex members to attenuate 

the response (right).
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