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DNA methyltransferase 3A (DNMT3A) is frequently mutated in hematological cancers; however, 

the underlying oncogenic mechanism remains elusive. Here, we report that DNMT3A mutational 

hotspot at Arg882 (DNMT3AR882H) cooperates with NRAS mutation to transform hematopoietic 

stem/progenitor cells and induce acute leukemia development. Mechanistically, DNMT3AR882H 

directly binds to and potentiates transactivation of stemness genes critical for leukemogenicity 

including Meis1, Mn1 and Hoxa gene cluster. DNMT3AR882H induces focal epigenetic alterations, 

including CpG hypomethylation and concurrent gain of active histone modifications, at cis-

regulatory elements such as enhancers to facilitate gene transcription. CRISPR/Cas9-mediated 

ablation of a putative Meis1 enhancer carrying DNMT3AR882H-induced DNA hypomethylation 

impairs Meis1 expression. Importantly, DNMT3AR882H-induced gene expression programs can be 

repressed through Dot1l inhibition, providing an attractive therapeutic strategy for DNMT3A-

mutated leukemias.

Graphical Abstract

eTOC blurb/In Brief

Lu et al. establish that Arg882-mutated DNMT3A contributes to acute myeloid leukemia (AML) 

pathogenesis through epigenetic activation of leukemia-related genes. Inhibition of Dot1l reverses 

mutant DNMT3A-induced gene expression, indicating a potential therapeutic strategy for AMLs 

harboring this mutation.

 INTRODUCTION

DNA methylation provides a critical epigenetic means for defining cellular identity and 

regulating functional output of gene-regulatory elements such as promoters and enhancers 

(Jones, 2012; Schubeler, 2015). Recently, DNA methyltransferase 3A (DNMT3A), a de 

novo DNA methyltransferase gene, was found mutated in ~20–30% of human acute myeloid 
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leukemias (AMLs) and ~10–20% of various other hematological cancers (Cancer Genome 

Atlas Research, 2013; Ley et al., 2010; Patel et al., 2012; Yan et al., 2011; Yang et al., 2015). 

DNMT3A mutations also associate well with clonally derived hematopoiesis at 

premalignant stages (Genovese et al., 2014; Jaiswal et al., 2014; Shlush et al., 2014; Xie et 

al., 2014) and often coexist with a secondary lesion that ‘hits’ either the FLT3-RAS kinase 

pathway, an epigenetic regulator (IDH1/2, TET2) or NPM1 in AML patients (Cancer 

Genome Atlas Research, 2013; Ley et al., 2010; Patel et al., 2012; Yang et al., 2015). These 

clinical findings suggest that DNMT3A mutation acts as a founder lesion and requires 

additional genetic event to induce malignant development. Consistently, mice with Dnmt3a 
knockout in the bone marrow produced phenotypically normal hematopoietic stem cells 

(HSCs); only after rounds of transplantation did Dnmt3a-null HSCs display self-renewal 

advantages (Challen et al., 2012). Mice with Dnmt3a mutation alone did not develop frank 

AML but showed increased susceptibility to malignant development upon acquisition of 

additional mutations (Celik et al., 2015; Chang et al., 2015; Mayle et al., 2015; Xu et al., 

2014).

Mutational hotspot at Arg882 (R882), a residue located within the homodimerization 

interface of DNMT3A, accounts for the majority (~60%) of DNMT3A mutations found in 

AMLs (Ley et al., 2010; Yang et al., 2015). Due to a primarily heterozygous nature of 

DNMT3A R882 mutation, it was thought to act in a dominant-negative and/or 

haploinsufficient manner (Holz-Schietinger et al., 2012; Kim et al., 2013; Russler-Germain 

et al., 2014). Clinical evidence supports this notion as AML patients with DNMT3A R882 

mutation exhibited focal DNA hypomethylation (Russler-Germain et al., 2014). Despite 

these advances, there is a lack of relevant AML animal models for studying DNMT3A R882 

mutation. Molecular pathways and mechanisms by which DNMT3A mutation contributes to 

AML pathogenesis remain undefined. Targeted approaches for the treatment of DNMT3A-

mutated AMLs remain to be developed.

 RESULTS

 DNMT3A hotspot mutation enhances sensitivity of hematopoietic stem/progenitor cells 
(HSPCs) to transformation in vitro

Previous reports indicate that hotspot mutations of DNMT3A such as DNMT3AR882H act in 

a dominant-negative manner by disrupting formation of a DNMT3A-associated tetramer 

complex required for efficient DNA methylation (Holz-Schietinger et al., 2012; Kim et al., 

2013; Russler-Germain et al., 2014). These studies prompted us to ask whether ectopic 

expression of human DNMT3AR882H in murine HSPCs could establish a transformation 

phenotype in a colony-forming unit (CFU) and replating assay (Figure S1A). Initially, we 

found a lack of CFU-promoting effect by DNMT3AR882H alone (Figures 1A–C). We then 

asked if DNMT3AR882H could enhance sensitivity of HSPCs to transformation in the 

presence of a second oncogenic lesion. Toward this end, we used a bicistronic retroviral 

system to coexpress either wild-type (WT) or R882H-mutant (RH) DNMT3A, together with 

other mutations known to coexist with DNMT3A mutation in human AMLs: either NRAS 

(NRASG12D), NPM1 (NPM1c), or IDH1 (IDH1R132H) (Figure S1A) (Ley et al., 2010; Patel 

et al., 2012; Shih et al., 2012). Following viral transduction and drug selection, we obtained 
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highly pure HSPCs with comparable levels of oncogene expression for CFU assays (Figures 

1C and S1B–C). We did not observe CFU-promoting effect of DNMT3AR882H in the 

presence of NPM1c or IDH1R132H (Figure S1D). However, a significant increase of CFUs 

was seen post-replating of HSPCs coexpressing DNMT3AR882H and NRASG12D 

(hereinafter referred to as “RH-RAS”), relative to those with either oncogene alone (Figures 

1A–B). In contrast to DNMT3AR882H, DNMT3AWT did not promote colony formation 

(Figure 1A–B). Post-replating, HSPCs expressing NRASG12D alone produced tiny and 

diffuse colonies of differentiated cells whereas those with RH-RAS gave rise to large, 

compact colonies that mainly comprised undifferentiated progenitors (Figures 1A insert, 1B 

and S1E–F). Importantly, cells expressing RH-RAS as derived from serially replated 

colonies were able to propagate and maintain their immature progenitor status in long-term 

liquid culture (Figures 1D and S1G), suggesting acquisition of indefinite self-renewal 

capability by these cells. These data have shown that, in contrast to DNMT3AWT, R882-

mutated DNMT3A promotes aberrant self-renewal of HSPCs and enhances their sensitivity 

to transformation in vitro. In addition, NRASG12D genetic background provides a useful 

platform for dissecting the role of DNMT3A mutation in AML development.

 DNMT3AR882H acts in concert with activated RAS to induce murine AMLs in vivo

The observed in vitro effect of DNMT3AR882H on aberrant HSPC self-renewal and 

immortalization indicates that it could cooperate with NRASG12D to cause malignant 

transformation in vivo. Thus, we transplanted murine HSPCs freshly transduced with 

DNMT3A (either WT or RH) and/or NRASG12D to syngeneic mice. NRASG12D alone 

induced a myeloproliferative disease with incomplete penetrance (Figures 1E and S1H). 

DNMT3AR882H alone did not cause detectable diseases over a 12-month monitoring period; 

however, in the presence of NRASG12D, it significantly accelerated development of leukemia 

with a shorter latency phenotype and full penetrance (Figure 1E). RH-RAS-induced 

leukemia was also characterized by hepatosplenomegaly (Figures 1F–G and S1I), leukemic 

infiltration to bone marrow, spleen and liver (Figures 1H and S1J), and elevated counts of 

peripheral white blood cells and blasts (Figures 1I, S1K–O and Table S1). Leukemia 

induced by RH-RAS expressed virally transduced genes at a level comparable to progenitors 

immortalized by RH-RAS in vitro (Figure 1J) and displayed an immature myeloid (AML) 

immunophenotype (Mac-1+/c-Kitlow/Cd34low/Gr1−/Cd3e−/Cd19−/Ter119−; Figures 1K, 

S1P–Q and Table S1). Whole-exome sequencing of 3 independent murine AMLs identified 

no recurrent mutation of additional genes (Figure S1R), suggesting that DNMT3AR882H and 

NRASG12D are sufficient to drive AML development. Interestingly, unlike DNMT3AR882H, 

DNMT3AWT suppressed leukemogenesis in vivo (Figure 1E), suggesting that normal 

DNMT3A activities oppose AML pathogenesis.

 DNMT3A hotspot mutation produces leukemia-initiating stem cells (LSCs) ex vivo in the 
presence of NRASG12D

To further verify cell transformation effect of RH-RAS, we used a previously described 

liquid cultivation system (Wang et al., 2007; Wang et al., 2009) and were able to recapitulate 

HSPC immortalization with RH-RAS only, and not either oncogene alone or coexpression of 

DNMT3AWT with NRASG12D (Figure S2A). Similar to those derived from CFU assays, 

RH-RAS-immortalized progenitors stably maintained their progenitor identity in vitro in the 
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presence of SCF or Flt3 ligand, presented with expression of immature myeloid (c-Kit+/

Mac-1low/Gr1−) and stem cell antigens (Cd34low/Flt3+/Sca1low/−) as well as a lack of other 

lineage markers (Figures 2A–B and S2B–C). Exposure of these progenitors to myeloid-

promoting cytokines decreased cell proliferation (Figure S1G) and induced terminal myeloid 

differentiation (c-Kit−/Mac-1high/F4–80high; Figures 2B and S2D), demonstrating their 

myeloid differentiation capability. Engraftment with each of 3 independent RH-RAS-

immortalized progenitor lines induced murine AMLs (Figures S2E–H) that can be 

propagated in vivo with sequential transplantation (Figure 2C). Importantly, as few as 50–

500 of these cells were sufficient to cause AML (Figure 2D), illustrating their LSC 

characteristic (hereinafter called “LSCsRH-RAS”). To further characterize LSCsRH-RAS, we 

profiled their transcriptome and genome-wide occupancy of H3K4me1, a histone mark 

demarcating lineage-specific enhancers (Lara-Astiaso et al., 2014). Unsupervised clustering 

of H3K4me1 profiles of LSCsRH-RAS and various hematopoietic cell lineages revealed a 

similarity of LSCsRH-RAS to HSPCs such as HSC and myeloid progenitors, when compared 

to differentiated cell types (Figures 2E and S2I); similar results were found in their 

transcriptome comparison (Figures 2F and S2J). Notably, a closer similarity was seen when 

comparing LSCsRH-RAS to leukemic progenitors we and others previously produced using 

either HOXA9 plus MEIS1 (Wang et al., 2005), MLL translocation (Bernt et al., 2011), 
NUP98-NSD1 (Wang et al., 2007) or NUP98-JARID1A (Wang et al., 2009) (Figures 2E and 

S2I–J), implying a commonality of pathways underlying leukemogenicity by these 

oncogenes.

 R882-mutated DNMT3A potentiates abnormal transcription of stem cell genes including 
a Meis1-Mn1-Hoxa regulatory node

Next, we sought to understand the molecular basis underlying indefinite self-renewal shown 

by LSCsRH-RAS. First, we asked if they carry self-renewal or stemness gene expression 

programs, a known feature of LSCs (Abramovich et al., 2005; Eppert et al., 2011; Krivtsov 

et al., 2006). By transcriptome analysis, we identified 54 genes uniquely expressed in 

LSCsRH-RAS and primitive HSPCs with self-renewal capabilities, relative to differentiating 

and mature hematopoietic cell types (Figure 3A and Table S2). The stem cell signature 

genes expressed in LSCsRH-RAS are only part of HSC stemness gene programs (~10%, 

Figure S3A); we further verified enrichment of the LSCRH-RAS stemness signature in self-

renewing HSCs with independent datasets (Figures S3B–C). The top LSCRH-RAS stemness 

genes included Hoxa9, Mn1, Hoxa5 and Meis1 (Figure 3A), which encode a set of 

transcription factors (TFs) and cofactors crucial for sustaining self-renewal of normal HSCs 

and leukemic LSCs (Heuser et al., 2011; Huang et al., 2012; Wang et al., 2006; Wong et al., 

2007). Gene targets of Meis1-Mn1-Hoxa, Flt3 and Sox4 (Heuser et al., 2011; Huang et al., 

2012; Wang et al., 2005), were also among top stemness genes identified (Figure 3A), 

indicating activity of this TF regulatory circuitry in LSCsRH-RAS. Moreover, activation of 

Meis1 and Hoxa in LSCsRH-RAS was found comparable to that in LSCs defined by other 

deregulated chromatin factors such as MLL-AF9, NUP98-JARID1A or NUP98-NSD1, 
while Mn1 and Mycn showed unique expression in LSCsRH-RAS (Figures S3D–E).

As LSCsRH-RAS carry both DNMT3A and NRAS mutations, we next asked what stemness 

gene signatures are dependent on DNMT3AR882H. We performed microarray studies using 
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HSPCs post-transduction of NRASG12D alone or with coexpressed DNMT3A, either WT or 

R882H-mutant (hereinafter refer as EV-RAS, WT-RAS or RH-RAS). These HSPCs were 

collected 12 and 16 days after viral transduction when their proliferation rates were 

comparable (Figure S2A). Among the 54 LSCRH-RAS stemness genes, 9 were found 

upregulated by DNMT3AR882H at both time points, including Meis1, Mn1 and Hoxa 
(Figures 3B and S3F). Consistently, Gene Set Enrichment Analysis (GSEA) found that gene 

sets associated with AML development, undifferentiated myeloid cells, and NUP98-HOXA9 

targets were significantly enriched in HSPCs with RH-RAS (Figure 3C). Conversely, gene 

sets associated with myeloid differentiation showed reduced expression in HSPCs 

expressing RH-RAS, relative to EV-RAS (Figure 3D), whereas the same gene sets showed 

enhanced expression in HSPCs expressing WT-RAS (Figure 3D), thus suggesting opposite 

effects of WT and R882-mutated DNMT3A on regulating genes crucial for HSPC self-

renewal versus differentiation. We verified unique upregulation of Meis1, Hoxa and Mn1 in 

RH-RAS HSPCs (Figures 3E and S3G) and their induced AMLs (Figures 3F–G and S3H). 

To functionally assess whether the activated Meis1-Mn1-Hoxa circuitry is essential for RH-

RAS-induced AML development, we introduced independent small hairpin RNAs (shRNAs) 

of Meis1 or Mn1 into LSCsRH-RAS (Figure 3H) and found that knocking down either gene 

significantly impaired in vitro growth of LSCsRH-RAS (Figures 3I and S3I) as well as their in 

vivo leukemogenic function (Figures 3J and S3J–K).

Together, these data reveal a role of R882-mutated DNMT3A in potentiating abnormal 

activation of stemness genes such as Meis1, Mn1 and Hoxa, which are required for mutant 

DNMT3A-mediated AML progression.

 ChIP-Seq reveals context-dependent targeting of R882-mutated DNMT3A into the LSC 
genome

The LSCRH-RAS cellular model described above provides an ideal system for dissecting the 

molecular mechanism underlying DNMT3AR882H-mediated oncogenesis. Mutant DNMT3A 

proteins are exclusively nuclear (Figure S4A), thus, we first mapped their genome-wide 

occupancy in LSCsRH-RAS by ChIP-Seq using antibodies against the Myc tag fused to 

DNMT3AR882H (Figure S1A). Myc-DNMT3AR882H ChIP-Seq gave robust and specific 

signals (Figure 4A); as a negative control, Myc ChIP-Seq using cells without Myc-

DNMT3AR882H expression did not detect any peaks (Figure S4B). We identified 13,705 

genomic regions with significant DNMT3AR882H binding (i.e. DNMT3AR882H peaks, Table 

S3) in LSCsRH-RAS, which spread over promoter and inter- or intra-genic regions (Figure 

S4C). DNMT3AR882H exhibited a broad binding pattern with an average peak size of ~17 kb 

(Figures S4D and 4B, with an example peak at Lig1). Interestingly, DNMT3AR882H binding 

was stronger at intermediately transcribed genes, relative to low or highly expressed genes 

(Figure 4A), and positively correlated to CpG dinucleotide density except at CpG islands 

(CGIs) where DNMT3AR882H has a sharp drop in overall binding (Figure 4C). 

DNMT3AR882H binding regions also showed depletion of H3K4me3 (Figures 4D), a histone 

modification known to suppress DNMT3A binding due to an intrinsic histone H3-‘reader’ 

activity of DNMT3A’s ADD domain (Guo et al., 2015; Noh et al., 2015). Intriguingly, 

76.1% of DNMT3AR882H peaks were found in close proximity to and significantly 

overlapped with peaks of H3K4me1, a histone mark demarcating enhancer elements 
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(observed/expected = 10.2, p < 1e-300; Figure 4E), as exemplified by those identified in an 

intron region of Lig1 and an intergenic region of Vegfa (Figures 4B, insert, and S4E, boxed 

areas). Ontology analysis of DNMT3AR882H peaks revealed their significant enrichment at 

genes related to normal and malignant hematopoiesis, PML-RARα targets and MLL 
rearrangement-associated genes (Figures 4F and S4F). Notably, key AML-promoting or 

stemness genes upregulated by DNMT3AR882H such as Meis1, Mn1, Hoxa and Mycn were 

all found directly bound by DNMT3AR882H (Figures 4G–H and S4G–H). Collectively, our 

genome-wide profiling of DNMT3AR882H has revealed a CpG content and ‘histone code’-

dependent targeting of R882-mutated DNMT3A into cancer cell genomes; we have also 

identified a previously unappreciated overlap of DNMT3AR882H with putative enhancer and 

cis-regulatory sites (marked by H3K4me1) at numerous developmental genes including a 

Meis1-Mn1-Hoxa node.

 R882-mutated DNMT3A induces focal hypomethylation of CpG sites enriched with gene-
regulatory elements

We next aimed to delineate DNMT3AR882H-induced epigenetic perturbations during AML 

progression. By enhanced Reduced Representation Bisulfite Sequencing (eRRBS), we 

mapped global DNA methylation patterns of murine HSPCs 16 days post-transduction of 

EV-RAS, RH-RAS or WT-RAS. Analysis of eRRBS data, which had 11–12× coverage for 

6.5 million CpGs in all samples, revealed no significant changes in global CpG methylation 

(Figure S5A–C) except a moderate change at CpG shores (Figure S5C). By pairwise 

comparison of CpG methylation, we identified 12,889 differentially methylated CpG sites 

(DMCs) in HSPCs expressing RH-RAS relative to EV-RAS, with most of DMCs (80.8%) 

hypomethylated (Figure 5A, left; hereinafter called as “DNMT3AR882H-associated hypo-

DMCs”); in contrast, DMCs associated with DNMT3AWT are largely hypermethylated 

(hyper-DMCs, 80.6%; Figure 5A, right). DNMT3AR882H-associated hypo-DMCs were 

found mainly in intron, intragenic and promoter regions, while DNMT3AWT-induced hyper-

DMCs were enriched in promoters and CGIs (Figures S5D–E). Importantly, 

DNMT3AR882H-associated hypo-DMCs were significantly enriched at genomic regions with 

H3K4me1 (Figure 5B) or with DNMT3AR882H binding (Figure 5B–C). DNMT3AR882H-

associated hypo-DMCs were also found enriched with the binding site of the ETS family of 

TFs (Erg and Spi1/PU.1) and other hematopoietic TFs (Runx1 and Mycn; Figure 5D). In 

contrast, DNMT3AR882H-associated hyper-DMCs exhibited none of these features and, 

instead, correlated negatively to DNMT3AR882H binding (Figures 5B–5D), suggesting that 

creation of hyper-DMCs is due to indirect effect of DNMT3AR882H.

Consistent with DMCs, differentially methylated regions (DMRs) identified in HSPCs co-

transduced with DNMT3AR882H relative to control were mainly hypomethylated 

(hereinafter called “DNMT3AR882H-associated hypo-DMRs”; Table S4, n = 1,199) while 

DNMT3AWT-associated DMRs were mainly hypermethylated (hyper-DMRs) (Figures 5E 

and S5F). These two sets of DMRs showed a significant overlap, including those found at 

DNMT3AR882H-deregulated stemness genes (Meis1, Mn1, Hoxa7 and Mycn), further 

highlighting that WT and R882-mutated DNMT3A have opposing effects on DNA 

methylation of crucial AML-promoting genes (Figure 5F). In addition, DNMT3AR882H-

associated hypo-DMRs were enriched at genes related to transcriptional regulation, 
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hematopoietic development and cancer (Figures 5G and S5G). Consistent with results in 

DMCs, H3K4me1 and DNMT3AR882H binding were significantly enriched at 

DNMT3AR882H-associated hypo-DMRs (Figures 5H and S5H). Taken together, our results 

show that R882-mutated DNMT3A is sufficient to induce CpG hypomethylation at putative 

cis-regulatory sites of key stemness genes that we have functionally validated as essential for 

AML progression in murine models.

 DNMT3AR882H–induced DNA hypomethylation identified in murine models mirrors what 
was seen in human AMLs with DNMT3A R882 mutation

A focal CpG hypomethylation phenotype seen in the above murine model is reminiscent of 

what was observed in human AMLs with DNMT3A mutation (Russler-Germain et al., 

2014). To assess whether our murine model mimics human disease, we first identified 

regions in the human genome that are homologous (i.e., conserved) to DNMT3AR882H-

associated hypo-DMRs defined in the murine model. We then found that, relative to 

randomized control, CpGs located in such conserved human genomic sites showed a 

significant reduction in their methylation levels among human AML samples with 

DNMT3A R882 mutation, relative to those with normal DNMT3A (Figure 5I; p < 2.2e-16). 

Despite a relatively limited coverage of CpGs by the 450K-array platform used in the human 

AML study (Russler-Germain et al., 2014), genes with hypo-DMRs identified in AML 

patients carrying DNMT3A R882 mutation also had significant overlap with those that gain 

DNMT3AR882H-associated hypo-DMRs in our murine model (Table S5; p < 0.05). We 

identified 119 genes showing CpG hypomethylation in both human AMLs and murine LSC 

models, which again include stemness and AML-promoting genes MEIS1, HOXA7 and 

MN1 (Figures 5J and S5I). We subsequently verified differential CpG methylation of DMRs 

at these genes in murine cells by direct bisulfite sequencing (Figures 5K and S5J), and 

further showed that a consistent hypomethylation pattern exists at conserved DMRs in 

human AMLs with DNMT3A R882 mutation, relative to those with non-R882 mutated or 

normal DNMT3A (Figures 5L and S5K).

 Hypo-DMRs induced by DNMT3AR882H facilitate gain of histone acetylation at gene-
regulatory sites

Because DNMT3AR882H binding and induced hypo-DMRs showed significant overlap with 

H3K4me1, a histone mark demarcating gene-regulatory regions such as enhancers and 

proximal elements close to promoters (Rada-Iglesias et al., 2011), we performed ChIP-Seq 

profiling of H3K27ac, a histone modification correlating to enhancer/promoter activity, with 

the samples we used for eRRBS. Intriguingly, we found that introducing DNMT3AR882H to 

HSPCs caused an overall gain of H3K27ac at DNMT3AR882H-associated hypo-DMRs 

(Figure 6A, left) whereas no overall change in H3K4me1 was seen for these hypo-DMRs 

(Figure 6B, left); in contrast, expression of DNMT3AWT decreased overall H3K27ac and 

H3K4me1 at these hypo-DMRs (Figures 6A and 6B, left). As a control, DNMT3AR882H-

associated hyper-DMRs did not show such changes (Figures 6A and 6B, right). Consistently, 

similar histone modification changes were seen at regions in close proximity to DNMT3A-

associated DMCs (Figures S6A and S6B). Importantly, DMRs at key stemness or AML 

genes such as Meis1, Mn1, Hoxa and Mycn all exhibited significant gain of H3K27ac in 

DNMT3AR882H-expressing HSPCs as well as loss of H3K27ac in DNMT3AWT-expressing 
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HSPCs at their putative cis-regulatory sites (Figures 6C and S6C–S6H). By ChIP-qPCR, we 

verified the observed changes of H3K27ac and H3K4me1 at a panel of DMRs post-

transduction of DNMT3AR882H versus DNMT3AWT into HSPCs (Figures 6D and S6I). 

Furthermore, expression of DNMT3AR882H enhanced binding of the H3K27 

acetyltransferase p300 to hypo-DMRs at stemness genes (Figure 6E), suggesting that CpG 

hypomethylation facilitates recruitment of H3K27ac ‘writers’. In addition, overall gain of 

H3K27ac at hypo-DMRs was found significant regardless of expression changes of their 

associated genes (Figure S6J), indicating that H3K27ac gain at hypo-DMRs is not merely a 

consequence of gene activation, as exemplified by that found at hypo-DMRs of Kdm2b, 
Sirt4 and Pax5 (Figures S6K–S6M).

Because DNMT3AR882H-induced hypo-DMRs can be found outside of gene-regulatory 

regions, we have focused on those overlapping with a peak of H3K4me1 (a total of 777 

DMRs) or H3K27ac (333 DMRs) in at least one cell condition and found that, in either case, 

9 to 11-fold more of DMRs showed enhanced H3K27ac levels than those with decreased 

H3K27ac (Figure 6F). These results indicate that DNA hypomethylation facilitates H3K27ac 

gain at gene-regulatory sites but also acts in a context-dependent manner. Consistently, more 

hypo-DMRs with gained H3K27ac were observed at regions showing a greater loss of CpG 

methylation (Figure 6G), supporting degree of DNA hypomethylation as a contributing 

factor that fine-tunes functional output of gene-regulatory sites. Moreover, genes with 

increased H3K27ac at their hypo-DMRs were found enriched in HSPCs expressing RH-

RAS relative to EV-RAS (Figures 6H), from which we identified 57 genes as both 

epigenetically altered and transcriptionally activated by DNMT3AR882H (thus hereafter 

called as “DNMT3AR882H signature genes”, Figure 6I and Table S6). Notably, these 

DNMT3AR882H signature genes included DNMT3AR882-associated stemness genes we have 

studied above (a Meis1-Mn1-Hoxa node and Mycn) as well as other putative AML-

promoting genes such as Id2, Bcl2 and Runx3 (Figure 6I).

 The Meis1 intron 6 enhancer carrying DNMT3AR882H-induced CpG hypomethylation is 
crucial for Meis1 gene activation in LSCs

To demonstrate a causal role of DNMT3AR882H-induced focal DNA hypomethylation in 

gene expression regulation, we cloned sequences from a panel of hypo-DMRs into a CpG-

free reporter system designed to assess putative gene-regulatory activity and its relationship 

to CpG methylation (Schmidl et al., 2009). We found all tested hypo-DMRs possess strong 

expression-enhancing activity in the absence of their CpG methylation (Figure 6J). CpG 

methylation of these hypo-DMRs completely abolished their expression-enhancing activities 

(Figure 6J), demonstrating a hypomethylation-dependent activation of cis-regulatory 

elements harbored within hypo-DMRs. To further verify DMR-associated enhancer activity 

in LSCsRH-RAS, we closely examined a hypo-DMR located in the intron 6 of Meis1 (Figure 

6C, green bar) because Meis1 is a critical effector gene for DNMT3AR882H-associated AML 

progression (Figures 3H–3J) and this hypo-DMR is also found conserved in human AMLs 

with DNMT3A R882 mutation (Figures 5J–5L). Notably, this hypo-DMR is positive for 

H3K4me1 (Figure 6C) and has a significant overlap with a previously reported MEIS1 
enhancer in human cells (Xiang et al., 2014). First, we carried out Chromosome 

Conformation Capture (3C), a surrogate assay for scoring enhancer usage and promoter 
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association, and indeed detected a long-range looping interaction of the intron 6 hypo-DMR 

with the Meis1 promoter in LSCsRH-RAS (Figure 6K). To further determine the role of this 

putative intron 6 enhancer in DNMT3AR882H-induced Meis1 gene activation, we employed 

the CRISPR/Cas9-based genomic editing technology. Cas9 and a pair of single guide RNAs 

(sgRNA) targeting boundaries of the Meis1 hypo-DMR were transduced into LSCsRH-RAS 

(Figure 6L). PCR and direct sequencing confirmed sgRNA-mediated specific deletion of the 

hypo-DMR in five independent LSCRH-RAS lines (Figures 6M–6N and S6N). In all cases, 

ablation of this putative enhancer significantly reduced Meis1 expression (Figure 6O). 

Consistently, among human AMLs with DNMT3A R882 mutation, lower DNA methylation 

at the MEIS1 intron 6 correlated with higher expression of MEIS1 (Figure 6P). It is also 

worth noting that 54.5% (6/11) of DNMT3A WT AMLs display significant DNA 

methylation of MEIS1 intron 6 and yet express MEIS1 at high levels (Figure 6P), indicating 

different gene activation mechanisms exist in these AML cases. Together, using Meis1 as a 

paradigm example, we show that focal CpG hypomethylation induced by DNMT3A R882 

mutation promotes enhancer activation and expression of key AML genes.

 Dot1l inactivation suppresses DNMT3AR882H-associated LSC properties and aberrant 
activation of stemness gene programs

To explore the potential strategy for reversing DNMT3AR882H-induced gene deregulation 

and thus treating DNMT3A-mutated leukemia, we conducted compound treatment studies 

with a collection of epigenetic regulator inhibitors and identified that LSCsRH-RAS showed a 

significantly higher sensitivity to a Dot1l inhibitor, SGC0946, relative to control cells 

without DNMT3A mutation, i.e. LSCs expressing NRASG12D plus oncogenic TFs (Figure 

S7A). Dot1l, a histone H3 lysine 79 (H3K79) methyltransferase, belongs to a transcription 

elongation regulatory complex that engages acetylated histones at cis-regulatory sites (Li et 

al., 2014). Genomic profiling of H3K79 dimethylation (H3K79me2) detected its overall 

elevation at DNMT3AR882H-associated hypo-DMRs in HSPCs (Figure 7A), as exemplified 

by those at Meis1, Hoxa, Mn1 and Mycn (Figures 7B and S7B). We confirmed H3K79me2 

gain at these genes by ChIP-qPCR (Figure S7C). Next, we asked if pharmacological 

inhibition of Dot1l could reverse DNMT3AR882H-induced gene activation. We first 

confirmed SGC0946-mediated suppression of H3K79me2 in LSCsRH-RAS (Figure S7D), 

followed by microarray profiling. Notably, after SGC0946 treatment, we detected significant 

downregulation of DNMT3AR882H signature genes (Figures 7C and 7D) and concurrent 

upregulation of myeloid differentiation genes in LSCsRH-RAS (Figures 7D and S7E). 

Although Hoxa and Meis1 were shown as part of MLL-AF9 target genes that are dependent 

on Dot1l (Chen et al., 2015), the DNMT3AR882H signature genes displayed a greater 

sensitivity to Dot1l inhibitors than MLL-AF9 targets in LSCsRH-RAS (Figure 7E); 

conversely, the DNMT3AR882H signature genes do not show overall response to Dot1l 

inhibitors in MLL-AF9-transformed AML cells (Figure S7F). These analyses indicate that 

DNMT3A R882 mutation confers a unique dependency on the Dot1l enzymatic activity in 

AML. We further verified downregulation of DNMT3AR882H-associated stemness genes 

Hoxa, Meis1, Mn1 and Mycn after treatment with SGC0946 (Figures 7F and 7G and S7G) 

or knockdown of Dot1l (Figures 7H and S7H and S7I). In response to Dot1l inactivation, 

multiple murine and human AML lines bearing DNMT3A mutation showed suppressed in 

vitro growth (Figures 7I and S7J and S7K) and concurrent cell differentiation (Figures 7J 
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and 7K and S7L–S7N). DNMT3A-mutated human AML lines also had decreased HOXA or 

MEIS1 expression upon DOT1L blockade (Figures S7O and S7P). In contrast, various 

murine and human leukemia lines established by oncogenic TFs were all insensitive to Dot1l 

inhibition (Figures 7I and S7K). Also, enforced expression of HOXA9 plus MEIS1 reversed 

sensitivity of LSCsRH-RAS to Dot1l inhibition (Figure 7L), demonstrating a crucial role of 

these TFs in DNMT3AR882H-mediated oncogenic effects. Importantly, knockdown of Dot1l 

in LSCsRH-RAS or their pre-treatment with Dot1l inhibitors significantly delayed in vivo 

AML progression and prolonged survival of engrafted mice (Figure 7M). Collectively, we 

show that expression of DNMT3AR882H confers Dot1l dependency in AML and that 

reversing DNMT3AR882H-induced gene activation by Dot1l inhibition may provide a 

potential therapeutic means for the treatment of AMLs with DNMT3A mutation.

 DISCUSSION

In this study, we report a set of ex vivo LSC and in vivo murine AML model systems for 

studying functionality of DNMT3A R882 mutation in AML pathogenesis. Using these 

human disease-mimicking models, we have (1) defined a causal role of DNMT3AR882H in 

promoting AML transformation in vitro and in vivo; (2) identified DNMT3AR882H-

deregulated gene pathways, including a Meis1-Mn1-Hoxa TF node that we functionally 

validated as essential for DNMT3AR882H-mediated AML progression; (3) shown that 

DNMT3AR882H directly binds to gene-regulatory sites, notably enhancers, inducing focal 

DNA hypomethylation and concurrent gain of histone acetylation; (4) determined a critical 

role of the epigenetically altered enhancer and cis-regulatory elements for DNMT3AR882H-

associated gene activation; and (5) importantly, we have also demonstrated that 

pharmacological inhibition of Dot1l reverses the mutant DNMT3A-associated gene 

activation, thus providing a potential therapeutic avenue for the affected AMLs.

The molecular pathways identified in this study help explain several important biological 

phenomena related to DNMT3A mutation and hematological disease. First, as the Meis1-

Mn1-Hoxa circuitry is crucial for both normal expansion of HSCs and malignant 

transformation of LSCs (Argiropoulos and Humphries, 2007; Heuser et al., 2011), 

deregulation of this TF node by R882-mutated DNMT3A provides a molecular explanation 

not only for malignant hematopoiesis but also for clonal hematopoiesis, a phenotype 

strongly associated with DNMT3A mutation (Genovese et al., 2014; Jaiswal et al., 2014; 

Xie et al., 2014). In addition, these findings help explain a mutually exclusive pattern for 

DNMT3A mutation and MLL rearrangement in AMLs (Cancer Genome Atlas Research, 

2013; Patel et al., 2012) because the latter itself is a strong inducer of Meis1 and Hoxa 
activation (Chi et al., 2010).

Our results also demonstrate requirement of cooperation between DNMT3A mutation and 

the activated kinase such as RAS for AML induction. RAS mutation alone induces an hyper-

proliferative phenotype but does not support self-renewal, which is in agreement with 

previous studies (Zhang et al., 2009); RAS activation was also known to induce cell 

senescence, a barrier of cancer development (Campisi and d’Adda di Fagagna, 2007). On the 

other hand, DNMT3A mutation confers aberrant HSPC self-renewal, blocks differentiation 

programs and yet lacks pro-proliferation effect; besides a Meis1-Mn1-Hoxa node we have 
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functionally confirmed as essential for DNMT3AR882H-associated AML, other downstream 

targets of DNMT3AR882H, such as pro-survival (Bcl2), anti-differentiation (Id2) and 

stemness (Mycn) genes, might be equally crucial for AML progression. These findings 

suggest that synergy between DNMT3A and kinase mutations is likely due to their 

differential effects on pathways relating to AML development. However, it is also possible 

that the two mutations may affect distinctive sets as well as same sets of downstream 

effectors via genetic or epigenetic mechanisms. A similar synergy is most likely to exist 

between DNMT3A mutation and the activated FLT3, which acts upstream of RAS and 

coexists with the former in human AMLs as well.

Our studies clearly show that DNMT3A mutation-induced CpG hypomethylations are not 

random: they are significantly enriched at gene-regulatory sites, notably, putative enhancers 

marked by H3K4me1 as well as the binding sites of master hematopoietic TFs. Precise 

mechanisms by which CpG methylation of these cis-regulatory sites regulates gene 

expression remain to be fully studied. For example, despite a large number of DMCs found 

associated with either DNMT3A or TET2 mutation in AML, a relatively small number of 

genes show changes in their expression (Russler-Germain et al., 2014; Shih et al., 2015). A 

possible explanation is that effect of CpG methylation on gene expression is context 

dependent (Baubec and Schubeler, 2014): degree of CpG methylation change, density or 

genomic location of CpG, methyl-CpG “readers” and TF binding are all possible factors 

affecting the ultimate effect of DNA methylation on gene expression. Unlike histone 

(de)acetylation, CpG (de)methylation at distal cis-regulatory sites such as enhancers may act 

as a permissive mechanism influencing gene expression, rather than a strong and instructive 

one controlling levels of gene activation and transcription. Nevertheless, using reporter 

assays and CRISPR/Cas9-mediated enhancer editing, we have determined the role of select 

hypo-DMRs in activation of associated target genes such as Meis1.

This study also provides useful information on how to treat DNMT3A-mutated AMLs. 

Pharmacological blockade of Dot1l reversed DNMT3A mutation-induced gene activation 

resulting in an impaired AML pathogenesis. In the future, examination of other ‘druggable’ 

factors would likely identify additional therapeutic strategies for the treatment of DNMT3A-

mutated AMLs. Therefore, in addition to elucidating the underlying oncogenic mechanisms, 

the ex vivo and in vivo model systems presented herein should be useful for exploring AML 

therapeutics.

 EXPERIMENTAL PROCEDURES

 In vitro colony-forming unit (CFU) assay with serial replating

Following lineage-negative (Lin−) enrichment and retroviral transduction, 30,000 of infected 

HSPCs were plated in the semi-solid methylcellulose cultivation system (Methocult, Stem 

Cell Technologies), followed by CFU counting and replating for every 10–14 days according 

to manufacturer’s protocol.
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 Animal studies and In vivo leukemogenic assay

All animal experiments were approved by and performed in accord with the guidelines of 

the Institutional Animal Care and Use Committee at the University of North Carolina 

(Chapel Hill, NC). Leukemogenic potentials of transduced HSPCs were evaluated by BMT 

into sublethally irradiated syngeneic mice. Briefly, 200,000 of bone marrow-derived Lin− 

HSCPs following procedures of cytokine stimulation, retroviral transduction and drug 

selection were injected via tail veil to recipient mice as described before (Wang et al., 2009).

 Statistical Analysis

Data are presented as the mean ± SD for 3 independent experiments unless otherwise noted. 

Statistical analysis was performed with Student’s t-test for comparing two sets of data with 

assumed normal distribution. We used Mann-Whitney U test for data not showing a normal 

distribution, chi-square test for categorical variables, and log-rank test for Kaplan-Meier 

survival curves to determine statistical significance. A p value < 0.05 was considered 

significant.

The detailed procedures of plasmid construction, cell culture, antibody and immunoblot, 

flow cytometry, microarray analysis, ChIP-Seq, eRRBS, Exome-Seq, RT-qPCR, ChIP-

qPCR, 3C-qPCR, shRNA-mediated knockdown, luciferase reporter assay, CRISPR/Cas9-

mediated genomic editing, as well as the detailed information for computational and 

statistical analysis of deep sequencing data, are described in Supplemental Experimental 

Procedures.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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SIGNIFICANCE

Recurrent DNMT3A mutations at Arg882 are found in hematological malignancies and 

disorders; however, due to a lack of relevant disease models, molecular mechanisms by 

which DNMT3A mutations influence leukemogenesis remain largely undefined. Through 

establishment and characterization of murine leukemia and leukemia stem cell models, 

we show that DNMT3AR882H mutation potentiates transactivation of stemness genes 

required for acute leukemogenicity. Integrated epigenomic profiling of murine models 

further reveals the underlying epigenetic alterations induced by DNMT3AR882H, which 

are enriched at gene-regulatory sites and resemble those seen in human patients. 

Pharmacological inhibition of Dot1l suppresses DNMT3AR882H-associated gene 

activation and acute leukemogenesis. Our findings not only promote mechanistic 

understandings of DNMT3A mutation-associated clonal and malignant hematopoiesis but 

also provide a therapeutic avenue for DNMT3A-mutated leukemias.
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Highlights

• DNMT3AR882H promotes acute leukemogenicity in the presence of 

mutant NRAS

• DNMT3AR882H induces focal DNA hypomethylation at cis-elements of 

key stemness genes

• DNMT3AR882H potentiates stemness gene expression via enhancer/

promoter activation

• DNMT3AR882H-induced gene activation programs are sensitive to 

Dot1l blockade
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Figure 1. DNMT3AR882H acts in concert with mutant RAS to transform murine HSPCs ex vivo 
and induce AMLs in vivo
(A) Colony-forming unit (CFU) assay using murine HSPCs expressing empty control (EV), 

wild-type (WT) or R882H mutant (RH) DNMT3A in combination with GFP or NRASG12D 

(RAS) Insert, a typical colony expressing RH-RAS at the 4th replating. Scale bar, 1 mm.

(B) Images of CFU assay at the 4th replating.

(C) Immunoblot of DNMT3A (Myc-tagged) and NRAS (Flag-tagged) in HSPCs post-

infection.

(D) Microscopic image and Wright-Giemsa staining of RH-RAS-coexpressing cells derived 

from the 4th replating after long-term culture with the SCF cytokine in vitro. Scale bar, 10 

μm.

(E) Kaplan-Meier survival curve of mice after bone marrow transplantation (BMT) of 

HSPCs freshly transduced with indicated genes. The p values were calculated by log-rank 

test.

(F–G) Spleen size (panel F, n = 3) and weight (panel G, n = 4–7) of indicated cohorts 3–4 

weeks post-BMT. The p values were calculated by Student’s t-test.

(H) Wright–Giemsa staining of bone marrow (upper) and H&E staining of spleen (bottom) 

of indicated cohorts 4 weeks post-BMT. Scale bar, 10 μm (upper) and 200 μm (bottom).
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(I) White blood cell (WBC) counts in peripheral blood of indicated cohorts (n = 6–13) 4 

weeks post-BMT. The p values were calculated by Student’s t-test.

(J) Immunoblot of DNMT3A (Myc) and NRAS (Flag) proteins in bone marrow (BM) and 

spleen (SP) cells from mice with leukemia induced by RH-RAS coexpression. The first 2 

lanes were loaded with samples of in vitro infected HSPCs.

(K) FACS analysis of Mac-1 and c-Kit with bone marrow and spleen cells of indicated 

cohorts 4 weeks post-BMT.

Error bar, +/− SD; ***, p < 0.001; ****, p < 0.0001.

See also Figure S1 and Table S1.
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Figure 2. R882-mutated DNMT3A establishes leukemia-initiating stem cells (LSCs) ex vivo in the 
presence of activated RAS
(A) FACS analysis of in vitro immortalized progenitors by RH-RAS using a liquid culture 

system.

(B) Wright–Giemsa staining (upper) and FACS analysis of RH-RAS-immortalized 

progenitors 14 days post-cultivation with indicated cytokines. FACS control, non-specific 

IgG (grey, open); Scale bar, 10 μm.

(C) Kaplan-Meier curve of mice receiving primary or secondary BMT with RH-RAS 

induced leukemia.

(D) Kaplan-Meier curve of mice (n = 5–6) receiving BMT of the indicated numbers of RH-

RAS immortalized cells.

(E) Hierarchical clustering of genome-wide H3K4me1 profiles of LSCsRH-RAS, AML-

causing LSC lines produced by overexpressed HOXA9 plus MEIS1 (HOXA9-MEIS1), and 

various normal blood cell types. LT-HSC, long-term HSC; ST-HSC, short-term HSC; MPP, 
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multipotent progenitor; CMP, common myeloid progenitor; CLP, common lymphoid 

progenitor; GMP, granulocyte-monocyte progenitor; MEP, megakaryocyte-erythroid 

progenitor; Mac, macrophage; Mono, monocyte; GN, granulocyte; B, B220+/CD19+ B-cell; 

CD4/8, CD4/8+ T-cell; NK, natural killer cell; EryA and EryB, Ter119+/CD71+ erythroid 

cell with high and low forward scatter, respectively.

(F) Principal component (PC) analysis of transcriptome profiles of LSCsRH-RAS and various 

normal blood cell types. Besides what is described in panel E, CD34−KLS, Cd34−/c-

Kit+/Lin−/ScaI+ HSC; MPP1, Flk2− multipotent progenitor; MPP2, Flk2+ multipotent 

progenitor; NKT, natural killer T-cell; Ery, erythroid cell.

See also Figure S2.

Lu et al. Page 22

Cancer Cell. Author manuscript; available in PMC 2017 July 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. DNMT3AR882H potentiates aberrant activation of stemness genes including a critical 
Meis1-Mn1-Hoxa regulatory node
(A) Heatmap of 61 probes (54 genes) showing unique expression in both self-renewing 

HSPCs (HSC, Cd34−KLS and MPP) and LSCsRH-RAS but not in differentiating (purple) or 

mature (green) blood cell types. Probes are ranked by higher expression in LSCsRH-RAS 

relative to differentiating and mature cells. Example genes are highlighted along with their 

respective rankings.

(B) Of the 54 self-renewal genes, genes showing consistently higher expression in HSPCs 12 

and 16 days post-transduction of RH-RAS relative to EV-RAS.

(C) GSEA shows enrichment of AML-associated genes (left), genes downregulated upon 

myeloid differentiation (middle) and NUP98-HOXA9 targets (right) in HSPCs with RH-

RAS versus EV-RAS.

(D) GSEA shows enrichment of differentiation gene sets in WT-RAS or RH-RAS HSPCs 

relative to EV-RAS. Left, myeloid differentiation genes; right, genes downregulated upon 

activation of HOXA9 and MEIS1.

(E) RT-qPCR of indicated genes in murine HSPCs post-transduction of EV-RAS, WT-RAS 

or RH-RAS.

(F) RT-qPCR of indicated genes in mouse bone marrow 21 days post-BMT of HSPCs with 

EV-RAS (n = 6) or RH-RAS (n = 8).

(G) Immunoblot of Meis1 and Hoxa9 in bone marrow of mice 21 days post-BMT of HSPCs 

with EV-RAS or RH-RAS. The last lane was loaded with LSCRH-RAS samples.

(H) RT-qPCR showing shRNA-mediated Meis1 or Mn1 knockdown in LSCsRH-RAS.
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(I) Relative proliferation of indicated shRNA-expressing LSCsRH-RAS (GFP+) versus 

parental cells (GFP−). These GFP− and GFP+ cells were mixed in a 1:1 ratio at day 0, 

followed by measurement of % of GFP+ cells.

(J) Kaplan-Meier curve of mice engrafted with indicated shRNA-expressing LSCsRH-RAS. 

The p values were calculated by log-rank test.

Error bar, +/− SD.

See also Figure S3 and Table S2.
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Figure 4. ChIP-Seq reveals chromatin context-dependent binding of R882-mutated DNMT3A to 
genomic regions, including stemness genes such as a Meis1-Mn1-Hoxa node
(A) DNMT3AR882H ChIP-Seq profiles across transcription start site (TSS) of genes with 

different expression levels in LSCsRH-RAS.

(B) Example ChIP-Seq profiles for DNMT3AR882H, H3K4me1 and H3K4me3 at the Lig1 
gene. Box, a zoomed-in view of dashed box region showing overlap of DNMT3AR882H and 

H3K4me1 peaks.

(C) Correlation of DNMT3AR882H binding and CpG density. Shown is % of CpG density 

(grey) and DNMT3AR882H ChIP-Seq reads (red) at 1-kb windows of the entire genome 

ranked by CpG density. Green square, CpG island (CGI).

(D) Plot of averaged DNMT3AR882H (red) and H3K4me3 (black) ChIP-Seq signals at 

DNMT3AR882H peaks (labeled in bold on x-axis) and surrounding regions (+/−2 kb).
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(E) Venn diagram shows significant overlap of DNMT3AR882H and H3K4me1 peaks in 

LSCsRH-RAS.

(F) Genomic Regions Enrichment of Annotations Tool (GREAT) analysis shows enrichment 

of indicated gene signatures among DNMT3AR882H peaks.

(G–H) ChIP-Seq profiles of DNMT3AR882H, H3K4me1 and H3K4me3 at Meis1 (panel G) 

and Mn1 (panel H). Purple bars, DNMT3AR882H peak calls.

See also Figure S4 and Table S3.
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Figure 5. DNMT3AR882H induces focal CpG hypomethylations enriched at H3K4me1-
demarcated, gene-regulatory sites in HSPCs
(A) Distribution of DMCs in the genome of murine HSPCs transduced with RH-RAS or 

WT-RAS, relative to EV-RAS.

(B) Heatmap showing enrichment of DNMT3AR882H-associated DMCs at indicated 

genomic regions or ChIP-Seq peaks in comparison to genome average. The enrichment 

value was calculated as log2(observed/expected) of the DMC numbers. CGI, CpG island; 

CGS, CpG shore.

(C) Distribution of DNMT3AR882H-associated DMCs across DNMT3AR882H ChIP-Seq 

peaks (shown in a bold bar on x-axis). Y-axis shows % of DMCs located at 100-bp window 

of genomic regions centered on DNMT3AR882H peaks.

(D) Enrichment of indicated TF binding motifs in DNMT3AR882H-associated hypo-DMCs 

and hyper-DMCs.
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(E) Summary of DMRs identified in the HSPCs with RH-RAS or WT-RAS, relative to EV-

RAS.

(F) Venn diagram showing overlap of DNMT3AR882H and DNMT3AWT-associated DMRs.

(G) GREAT annotation of DNMT3AR882H-associated hypo-DMRs.

(H) H3K4me1 profiles at DNMT3AR882H-associated hypo-DMRs, hyper-DMRs, and 

random control regions. Plotted across DMRs (labeled in a bold line on x-axis) were 

averaged H3K4me1 ChIP-Seq read densities in EV-RAS cells.

(I) Scatter plots showing methylation changes of selected CpGs in human AMLs with 

DNMT3A R882 mutation relative to DNMT3A WT AMLs. Mean methylation differences 

(y-axis) and p value (x-axis) for each CpG between two AML patient groups were plotted. 

Left, CpGs in the human genome homologous to DNMT3AR882H-associated hypo-DMRs 

identified in murine HSPCs; right, randomly picked CpG controls.

(J) DNA methylation profiles of Meis1 in indicated murine HSPCs and MEIS1 in human 

AMLs with WT (n = 50) or R882-mutated (n = 20) DNMT3A. Faded points show individual 

CpG methylation beta values and connected lines indicate the mean methylation levels at 

each CpG site. Grey box, a hypo-DMR in intron 6.

(K) Bisulfite sequencing of the Meis1 intron 6 DMR in indicated murine HSPC samples.

(L) Box plots of methylation beta values of all CpGs (shown as dots in boxplot) at MEIS1 
intron 6 in human AMLs with R882-mutated DNMT3A (n = 20) relative to AMLs with 

either non-R882 mutated (n = 15) or WT (n = 50) DNMT3A. Horizontal line, median; box, 

interquartile range; whiskers extend to 1.5× the interquartile range. The p values were 

calculated by Mann-Whitney U test.

See also Figure S5 and Table S4 and S5.
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Figure 6. DNMT3AR882H-associated hypo-DMRs gain epigenetic alterations associated with 
gene activation
(A–B) H3K27ac (panel A) and H3K4me1 (panel B) profiles at DNMT3AR882H-associated 

DMRs (bold on x-axis) and the surrounding regions. Averaged ChIP-Seq read densities in 

HSPCs with EV-RAS, RH-RAS or WT-RAS were plotted.

(C) H3K27ac and H3K4me1 profiles at Meis1 intron 6 in indicated HSPCs. Green bar, 

hypo-DMR.

(D–E) ChIP-qPCR of H3K27ac (panel D) and p300 binding (panel E) at hypo-DMRs in 

indicated HSPCs.

(F) Percentage of DNMT3AR882H-associated hypo-DMRs showing indicated H3K27ac 

changes in HSPCs with RH-RAS versus EV-RAS. Gain, increased H3K27ac; Loss, reduced 

H3K27ac; NC, no significant H3K27ac change. The total DMRs used for calculation were 

hypo-DMRs carrying H3K27ac (left) or H3K4me1 (right) in at least one cell condition.

(G) Percentage of DNMT3AR882H-associated hypo-DMRs (n = 1,199) showing H3K27ac 

gain in HSPCs with RH-RAS versus EV-RAS, when these hypo-DMRs are divided based on 

degree of DNA methylation reduction (x-axis) shown in the same samples.

(H) GSEA shows that genes with gain of H3K27ac at hypo-DMRs are enriched in HSPCs 

16 days post-transduction of RH-RAS, relative to EV-RAS.

(I) Heatmap shows expression of genes in panel H ranked by higher expression in HSPCs 

with RH-RAS, relative to EV-RAS. The significantly upregulated genes in RH-RAS HSPCs 

are defined as “DNMT3AR882H signature genes” (n = 57), with selected ones listed along 

with their respective rankings (bottom).
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(J) Quantification of expression-enhancing activity of DNMT3AR882H-associated hypo-

DMRs with the embedded CpGs either non-methylated (CpG) or methylated (mCpG) using 

a CpG-free luciferase reporter system. The reporter without any DMR insertion was used as 

control. The p values were calculated by Student’s t-test.

(K) 3C assay shows looping interaction of the Meis1 intron 6 hypo-DMR (P4) to gene 

promoter (P0), relative to other tested sites.

(L–M) Scheme (panel L) and PCR validation (panel M) of CRISPR/Cas9-mediated deletion 

of the Meis1 intron 6 DMR. MOCK, parental LSCRH-RAS; Control, no sgRNA; sgMeis1, a 

pair of sgRNAs that target the DMR boundaries.

(N) Sequencing of the genomic PCR products from F2/R2 primers shows CRISPR/Cas9-

induced deletion of the Meis1 intron 6 DMR.

(O) Expression levels of Meis1 in LSCRH-RAS lines shown in panel M. The p values were 

calculated by Student’s t-test by comparing to MOCK.

(P) Impact of DNA methylation levels in MEIS1 intron 6 in cytogenetically normal human 

AMLs grouped by DNMT3A WT (n = 45), non-R882 (n = 13) and R882 mutations (n =16). 

Plotted were mean methylation beta values of CpGs at MEIS1 intron 6 and log2-transformed 

expression values of RNA-Seq by Expectation-Maximization (RSEM). R2 and p values 

shown were determined with data of R882-mutant AMLs.

Error bar, +/− SD; **, p < 0.01; ***, p < 0.001; NS, not significant.

See also Figure S6 and Table S4 and S6.
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Figure 7. Dot1l inhibition reverses DNMT3AR882H-mediated aberrant transactivation of stem 
cell genes, thereby suppressing acute leukemogenicity
(A) Averaged H3K79me2 ChIP-Seq signals at DNMT3AR882H-associated hypo-DMRs and 

hyper-DMRs in HSPCs with RH-RAS or EV-RAS.

(B) H3K79me2 profiles at Meis1 and Hoxa in indicated HSPCs.

(C) GSEA shows downregulation of DNMT3AR882H signature genes in LSCsRH-RAS post-

treatment with 1 μM SGC0946 for 4 days.

(D) Heatmap shows downregulation of DNMT3AR882H signature genes and upregulation of 

myeloid differentiation genes in SGC0946-treated LSCsRH-RAS versus mock-treated.

(E) Boxplots show relative expression of DNMT3A signature genes (n = 54), MLL-AF9 

gene targets (n = 129) and all genes in the genome in SGC0946-treated LSCsRH-RAS, 
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relative to mock-treated. Horizontal line, median; box, interquartile range; whiskers, 10 to 

90 percentiles. The p values were calculated by Mann-Whitney U test.

(F–G) RT-qPCR (panel F) and immunoblot (panel G) of indicated genes and proteins in 

LSCsRH-RAS 6 days post-treatment with SGC0946.

(H) Expression of indicated genes in LSCsRH-RAS transduced with Dot1l shRNAs or vector 

control.

(I) Relative growth of LSCsRH-RAS and other AML lines established by MLL-AF9, Hoxa9 

plus Meis1 (A9M), A9M plus NRASG12D (A9M-RAS), and Hoxb8 plus Meis2 (WEHI3B) 

after a 12-day treatment with SGC0946 versus DMSO.

(J–K) Wright–Giemsa staining (panel J) and FACS analysis (panel K) of LSCsRH-RAS 6 

days post-treatment with DMSO or 1 μM SGC0946. Scale bar, 10 μm.

(L) Effect of SGC0946 on growth of LSCsRH-RAS transduced with vector or Hoxa9 plus 

Meis1 (A9M). Relative proliferation was normalized to DMSO-treated cells.

(M) Survival of mice engrafted with LSCsRH-RAS, either mock-treated, stably transduced 

with a Dot1l shRNA, or pre-treated with 1 μM SGC0946 ex vivo for 6 days. The p values 

were calculated by log-rank test.

Error bar, +/− SD.

See also Figure S7 and Table S6.

Lu et al. Page 32

Cancer Cell. Author manuscript; available in PMC 2017 July 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	SUMMARY
	Graphical Abstract
	eTOC blurb/In Brief
	INTRODUCTION
	RESULTS
	DNMT3A hotspot mutation enhances sensitivity of hematopoietic stem/progenitor cells (HSPCs) to transformation in vitro
	DNMT3AR882H acts in concert with activated RAS to induce murine AMLs in vivo
	DNMT3A hotspot mutation produces leukemia-initiating stem cells (LSCs) ex vivo in the presence of NRASG12D
	R882-mutated DNMT3A potentiates abnormal transcription of stem cell genes including a Meis1-Mn1-Hoxa regulatory node
	ChIP-Seq reveals context-dependent targeting of R882-mutated DNMT3A into the LSC genome
	R882-mutated DNMT3A induces focal hypomethylation of CpG sites enriched with gene-regulatory elements
	DNMT3AR882H–induced DNA hypomethylation identified in murine models mirrors what was seen in human AMLs with DNMT3A R882 mutation
	Hypo-DMRs induced by DNMT3AR882H facilitate gain of histone acetylation at gene-regulatory sites
	The Meis1 intron 6 enhancer carrying DNMT3AR882H-induced CpG hypomethylation is crucial for Meis1 gene activation in LSCs
	Dot1l inactivation suppresses DNMT3AR882H-associated LSC properties and aberrant activation of stemness gene programs

	DISCUSSION
	EXPERIMENTAL PROCEDURES
	In vitro colony-forming unit (CFU) assay with serial replating
	Animal studies and In vivo leukemogenic assay
	Statistical Analysis

	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7

