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Abstract

Purpose—Burn injury is associated with severe immune dysfunction, including an anti-

inflammatory state that occurs late after burn injury. While increased nitric oxide (NO) production 

is associated with severe infection and sepsis, the effect of burn trauma on these levels during a 

non-lethal infection remains unknown. We hypothesized that in a mouse model, 1) NO levels 

would be increased after infection without trauma and 2) burn injury would lead to decreased NO 

production even during infection.

Methods—Mice were infected via intra-tracheal inoculation with Pseudomonas aeruginosa 14 d 

following a 20% total body surface area contact burn. At 48 h following infection, blood was 

drawn to quantify NO concentrations using a microfluidic electrochemical sensor.

Significant findings—In uninjured mice, infection caused a significant increase in blood NO 

levels. Increases in NO occurred in a dose-dependent response to the bacterial inoculum. 

Following burn injury, an identical infection did not elicit increases in NO.

Conclusions—While increases in NO are expected over the course of an infection without prior 

trauma, burn injury and subsequent immune suppression decreases NO levels even in the presence 

of infection.
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Introduction

Physical trauma such as burn injury causes severe immune dysfunction, often resulting in 

infection, sepsis, multiple organ dysfunction, and death [1]. Historically, this immune 

response has been characterized by an initial pro-inflammatory period and a subsequent anti-

inflammatory phase [1, 2]. These periods have been referred to as the systemic inflammatory 

response syndrome (SIRS), during which pro-inflammatory mediators (e.g., tumor necrosis 

factor, interleukin-6, interleukin-1β) are released [3], and a compensatory anti-inflammatory 

response syndrome (CARS) thought to limit damage due to chronic inflammation [1–6]. 

More recent studies have illustrated a more complex scenario, wherein pro- and anti-

inflammatory cytokines may be secreted simultaneously, suggesting that the SIRS/CARS 

paradigm may be insufficient to characterize the immune response to trauma [4–6]. Despite 

this paradigm shift, it remains true that late after trauma patients exhibit elevated 

susceptibility to nosocomial infection [7–9]. Burn patients are especially prone to ventilator-

associated pneumonia and wound infections [7, 10], and the leading cause of death 

following burn injury is related to infection and sepsis [7, 11]. In particular, pulmonary 

infections by Gram-negative Pseudomonas aeruginosa are quite common [8]. Novel methods 

are needed that will enable healthcare providers and researchers to monitor the immune 

response during trauma and infection.

Nitric oxide (NO) is a free radical species that is intricately involved with the innate immune 

response [12–27], and as such, in vivo levels will likely reflect the immune status of an 

individual. Indeed, the up-regulation of inducible nitric oxide synthase (iNOS) during SIRS 

has been observed, in addition to accumulation of NO byproducts in blood and tissue [8, 13, 

18, 28–32]. Until recently, direct detection of NO in whole blood was not feasible, requiring 

either the measurement of its byproducts (i.e., nitrate and nitrate) or the use of complex 

instrumentation (i.e., electron paramagnetic resonance spectroscopy) [33]. Studies 

measuring NO byproducts in sheep have found that serum NO is increased in sheep after 

burn and smoke inhibition, and that this increase can be blocked with iNOS inhibitors [34].

Direct measurement of NO is likely to sensitively detect changes in patient status; therefore, 

such measurements should be incorporated into clinically relevant models. Because of the 

availability of genetically modified mice, confirming the usefulness of NO as a readout in 

mouse models of trauma will enable elucication of disease mechanisms that impact NO 

production among other phenotypes. Recently, a microfluidic amperometric sensor was 

developed and used to directly measure increases in NO levels during a lethal murine model 

of sepsis[29].

We expect that NO levels may be decreased during an infection following burn injury. 

Because patients demonstrate susceptibility to infection late after trauma, we focused on NO 

levels in a nonlethal infection model at 14 days after burn injury. Quantifying changes in NO 
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concentration may allow for the elucidation of immune dysfunction, indicated by either 

elevated levels during systemic infection or decreased levels during immune suppression.

Materials and Methods

Murine model of burn injury and infection

Nine week-old female C57BL/6 mice weighing ~18 g underwent a 20% total body surface 

area (TBSA) burn injury as previously described [35]. Briefly, mice were anesthetized with 

gaseous isofluorane, their dorsal flanks were shaved, and they received a subcutaneous 

injection of morphine sulphate prior to receiving a full-thickness burn with 4 applications of 

a copper rod heated in boiling water. Following burn injury, mice were resuscitated via an 

intraperitoneal injection of lactated Ringer’s solution. Throughout the experiment, mice 

were monitored and received morphine in their drinking water (0.02 mg mL−1; 4 mg kg−1 

body weight per day) ad libitum. Sham (0% TBSA) mice also underwent these treatments as 

described, except the application of the copper rod.

At 14 d following burn injury, pneumonia was induced via the intratracheal administration 

of 50 μL Pseudomonas aeruginosa (PAK strain) following sedation with Avertin. Uninfected 

groups were administered 50 μL PBS with 1% protease peptone in the same manner. At 48 h 

following infection, ~300 μL blood was drawn into EDTA-coated microcentrifuge tubes via 

submandibular puncture. This blood was immediately injected into the microfluidic device 

and analyzed amperometrically to determine NO concentrations.

Microfluidic amperometric sensor for nitric oxide measurement

Devices were fabricated as previously described [29]. Working electrodes were 100 μm wide 

and consisted of 150 nm thick platinum with a 10 nm titanium seed layer, coated with a 

selective film (adhesion layer of 1% v/v (3-aminopropyl)triethoxysilane and a 

fluoroalkoxysilane xerogel) to impart selectivity to NO. The fluoroalkoxysilane membrane 

solution was prepared via the acid catalyzed hydrolysis and condensation of (heptadeca 

uoro-1,1,2,2-tetrahydrodecyl)trimethoxysilane and methyltrimethoxysilane as reported 

previously [36, 37]. Reference electrodes consisted of a 10 nm titanium adhesion layer 

followed by a ~1 μm silver layer, chemically oxidized by reaction with 50 mM ferric 

chloride for 10 s to create a silver/silver chloride pseudo-reference/counter electrode. The 

~90 μm microfluidic channel was formed using Kapton® tape.

The working and reference/counter electrodes of the microfluidic device were connected to a 

CH Instruments 1030A 8-channel potentiostat (Austin, TX). Prior to sample analysis, the 

device was polarized at +800 mV vs. the Ag/AgCl pseudo-reference/counter electrode for at 

least to 1 h in PBS. To calibrate the device, a saturated NO standard solution (prepared by 

purging deaerated PBS with NO gas for ~10 min to yield a 1.9 mM solution of NO) was 

diluted with PBS and introduced into the inlet reservoir.
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Statistical analysis

Where appropriate, either an unpaired, two-sided Student’s t-test or two-way ANOVA with 

Bonfennori post-test was used to determine statistical significance between groups, with p 
<0.05 considered to be significant.

Results

Nitric oxide levels are increased during pneumonia without prior burn injury

Blood samples were drawn 48 h following infection with 1 × 106 CFU of P. aeruginosa and 

immediately analyzed using the microfluidic sensor. As shown in Figure 1A, blood NO 

levels were significantly increased in the infected versus uninfected mice at this time point 

(810 ± 180 nM and 370 ± 40 nM, respectively). As expected, these data suggest that 

activation of the immune response following infection leads to increased production of NO.

Increased infectious dose corresponds with elevated serum NO

Blood samples were drawn 24 h and 72 h following infection with either 5 × 105 or 5 × 106 

CFU of P. aeruginosa. As indicated in Figure 1B, blood NO levels were higher in uninjured 

mice exposed to a higher infectious dose at 24 h (3.0 ± 0.2 μM vs. 6.2 ± 0.7 μM) and 72 h 

(7.0 ± 1.4 μM vs. 15.2 ± 4.7 μM) following infection. At both high- and low-dose inocula, 

blood NO concentrations were higher at 72 vs. 24 h. We also harvested lungs and quantified 

bacterial load in these mice at 72 h after infection. A significant difference in bacterial load 

was observed between mice with high and low dose bacterial inoculum, with a 

corresponding difference in plasma NO levels (Figure 1B).

Burn injury inhibits nitric oxide release following infection

Blood samples from infected (1 × 106 CFU) and uninfected mice 14 d after burn injury were 

analyzed using the electrochemical sensor. Concentrations of NO in blood of infected 

burned mice were not significantly elevated compared to uninfected burn mice (290 ± 80 nM 

vs. 410 ± 110 nM). We also harvested lungs and quantified bacterial load in these mice at 72 

h post infection, and observed both reduced NO and pulmonary bacterial clearance in burn 

versus sham mice (Figure 2). These data indicate a late-stage effect of burn injury on 

immune function and NO production during an infection. Also of note, the NO 

concentrations observed in uninfected burn mice were equivalent to those in the uninfected 

sham mice.

Blood NO levels were measured at 24 and 72 h following a low-dose (5 × 105 CFU) 

infection with P. aeruginosa. We observed that the NO measured was lower in burn infected 

mice compared to unburned infected mice at both 24 h (1.1 ± 0.4 vs. 3.0 ± 0.2 μM) and 72 h 

(6.0 ± 0.6 vs. 7.0 ± 1.4 μM) following the infection (Figure 3A). In contrast, we observed 

elevated blood NO following inoculation with a high-dose (5 × 106 CFU) of P. aeruginosa in 

burned mice compared to unburned mice at 24 h (7.5 ± 0.7 μM vs. 6.2 ± 0.7 μM). However, 

the measured NO was not increased in burned mice at 72 h (4.2 ± 2.0 μM vs. 15.2 ± 4.7 μM) 

post infection (Figure 3B) while blood NO continued to rise in unburned mice.
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Discussion

In this study, we evaluated the effect of infection and burn injury on endogenous NO levels 

in a murine model. While it is well understood that NO, along with other reactive oxygen 

and nitrogen species (ROS and RNS), are produced at higher levels during infection, direct 

detection of NO has not been possible and analysis of its byproducts (nitrate and nitrite) has 

been required to estimate NO production. The microfluidic electrochemical sensor utilized 

herein allowed for the immediate and direct detection of NO in a small (~250 μL) volume of 

whole blood, without the addition of external reagents. As hypothesized, during an infection 

with no previous trauma, NO levels were increased relative to control mice. This result is not 

surprising, as NO is known for its antibacterial activity [38] and has been previously 

demonstrated to increase during systemic infection [29]. We therefore conclude that our 

novel monitor sensitively detects changes in endogenous NO during nonlethal infection in 

mice.

However, this trend was not observed or was attenuated during infection that occurred 14 d 

following burn injury. Indeed, NO concentrations in infected burn mice were equivalent to 

those of uninfected burn and sham mice, indicating immune suppression as a result of the 

burn injury. Even following high dose infection, when at 24 h NO concentrations were 

higher in burn than unburned mice, the injured mice were unable to sustain a robust response 

and NO concentrations diminished by 72 h compared with unburned mice.

The dysfunctional immune response following burn injury has been well documented [2]. 

Cairns et al. demonstrated that while expression of TLR2 and TLR4 by macrophages is 

increased early (3 d) following burn injury, these levels are significantly decreased at 14 d 

[39]. Numerous immune defense systems are linked to TLR, including the induction of 

iNOS [40]. Other studies have linked TLR with the induction of iNOS and concomitant 

release of NO by innate immune cells (e.g., macrophages) [41–43]. For example, TLR is 

directly involved in microbe recognition by innate immune cells (TLR2 for Gram-positive 

peptidoglycan and TLR4 for Gram-negative lipopolysaccharide) and thus mediates 

subsequent inflammatory signals, including NO [40]. Future studies should determine 

whether TLR signaling is directly linked to endogenous NO following infection.

While increased levels of endogenous NO may indicate development of a severe infection in 

otherwise healthy animals, the immune dysfunction that occurs late after trauma (e.g., burn 

injury) significantly alters NO production. As such, monitoring in vivo NO production in 

real time may provide insight into emerging infection as well as immune dysfunction. 

Reduction in NO production by innate immune cells, along with other aspects of immune 

suppression (e.g., shifts in T cell phenotype [44], altered cytokine profiles[45]), contribute to 

the increased infection susceptibility of burn patients. The clinical utility of NO 

measurement can be further evaluated by monitoring concentration changes throughout the 

course of infection/sepsis and throughout the dynamic immune response following trauma. 

In murine models, differences in NO concentration caused by infection with more virulent 

strains and during antibiotic treatment must also be evaluated.
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Highlights

• Microfluidic nitric oxide sensor is used to directly measure nitric oxide 

levels in fresh whole blood

• Increased nitric oxide production measured in mice infected with 

Pseudomonas aeruginosa

• Significantly diminished nitric oxide levels observed in infected 

animals that had suffered a burn 14 d prior
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Figure 1. Nitric Oxide (NO) levels are elevated following infection without prior injury in a dose-
dependent fashion
Mice (n=4) were infected with of P. aeruginosa and blood NO analyzed. A) NO levels were 

significantly increased 48 h following infection with1 × 106 CFU compared to uninfected 

counterparts. Statistical significance is indicated by *, p < 0.05 by a Student’s t test. B) NO 

levels in blood and bacterial recovery from lungs were higher in mice inoculated with 5 × 

105 CFU vs. 5 × 106 CFU at 72 hours post infection. Statistical significance is indicated by 

*, p<0.05 and ***, p < 0.001 by Two-way ANOVA with Bonfennori post-test. Data are 

given as mean ± standard deviation.
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Figure 2. Relative to sham mice, burn injury causes decreased blood NO concentrations and 
increased pulmonary bacterial load following a 14 d post-burn infection
Mice (n=4) were infected with 1 × 106 CFU of P. aeruginosa 14 d after injury and blood NO 

analyzed 48 h after infection. Statistical significance is indicated by *, p<0.05 and ***, p < 

0.001 by a Two-way ANOVA followed by Bonfennori post-test. Data are given as mean ± 

standard deviation.
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Figure 3. Inoculation dose impacts blood NO concentration in burn mice following infection
Mice (n=3–4) were infected with A) 5 × 105 or B) 5 × 106 CFU of P. aeruginosa and blood 

NO analyzed after 24 h or 72 h. Statistical significance is indicated by ***, p < 0.001 by a 

Two-way ANOVA followed by Bonfennori post-test. Data are given as mean ± standard 

deviation.
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