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Abstract. In this contribution, we summarize recent results [8, 9] on the stability anal-

ysis of periodic wavetrains for the sine-Gordon and general nonlinear Klein-Gordon equa-
tions. Stability is considered both from the point of view of spectral analysis of the lin-

earized problem and from the point of view of the formal modulation theory of Whitham

[12]. The connection between these two approaches is made through a modulational
instability index [9], which arises from a detailed analysis of the Floquet spectrum of

the linearized perturbation equation around the wave near the origin. We analyze waves

of both subluminal and superluminal propagation velocities, as well as waves of both
librational and rotational types. Our general results imply in particular that for the

sine-Gordon case only subluminal rotational waves are spectrally stable. Our proof of
this fact corrects a frequently cited one given by Scott [11].

1. Introduction

1.1. Periodic traveling waves. In this paper we consider nonlinear Klein-Gordon equa-
tions of the form

utt − uxx + V ′(u) = 0, (1.1)

where u is a scalar function of (x, t) ∈ R × [0,+∞) and the potential V is a real periodic
function. Such potentials generalize the case V (u) = − cos(u), for which equation (1.1)
becomes the well-known sine-Gordon equation [10] in laboratory coordinates,

utt − uxx + sin(u) = 0. (1.2)

To facilitate the exposition we shall assume that V : R → R is a periodic function of class
C2 and that V has exactly two non-degenerate critical points per period. Moreover, after an
appropriate scaling we can also assume, without loss of generality, that the potential V has
fundamental period 2π, and minu∈R V (u) = −1, while maxu∈R V (u) = 1. (The sine-Gordon
potential clearly satisfies these hypotheses.) While the above assumptions on V allow for an
easier exposition, many of our results also hold for more general periodic V , and even the
assumption of periodicity of V can be dropped in some cases (see [9] for further information).
Equation (1.1) has traveling wave solutions of the form

u(x, t) = f(z), z := x− ct (1.3)

where c ∈ R is the wave speed. In what follows we shall assume that c 6= ±1. Substituting
into (1.1) we readily see that the profile function f : R→ R satisfies the nonlinear ordinary
differential equation

(c2 − 1)fzz + V ′(f) = 0. (1.4)
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Equation (1.4) can be integrated once to obtain

1
2 (c2 − 1)f2z = E − V (f), (1.5)

where E is an integration constant with the interpretation of total (kinetic plus potential)
energy. Periodic traveling waves of (1.1) can be classified according to the values of E and c.
The first dichotomy concerns the wave speed: if c2 < 1 then f is called a subluminal periodic
traveling wave; if c2 > 1 then f is called a superluminal periodic traveling wave. The second
dichotomy involves parameter values of the energy E. We call solutions to the pendulum
equation (1.5) whose orbits in the phase plane lie outside the separatrix rotational waves.
Solutions whose orbits in the phase plane lie inside the separatrix are called librational
waves. It is easy to see that librational waves correspond to energies in the range |E| < 1,
for which f(z + T ) = f(z) for all z ∈ R and some fundamental period T > 0. On the other
hand, rotational waves correspond to energies with either E > 1 (in the superluminal case),
or E < −1 (in the subluminal case). Rotational waves satisfy f(z + T ) = f(z)± 2π for all
z ∈ R. These waves are also called kink trains (or antikink trains, depending on the sign of
fz) in the literature. See Figure 1.

Figure 1. Phase portraits of equation (1.4) for c = 2 (left) and c = 1/2
(right), where the potential is V (u) = −0.861[cos(u) + 1

3 sin(2u)], which
satisfies the basic assumptions under consideration. The separatrices are
the thicker red curves. (Color online.)

1.2. Monotonicity of the period map. Some of our results require that a non-degeneracy
condition is satisfied, namely, that the energy is not a critical point of the period. Although
this condition is always satisfied for rotational waves, further assumptions on the potential
need to be verified in the librational case. A sufficient condition was introduced by Chicone
[3]. The precise statement for the waves under consideration goes as follows (see Propositions
2.10 and 2.11 in [9] for the proof).

Proposition 1.1 ([9]). For rotational waves, the period T is a strictly monotone function
of the energy, and (c2 − 1)TE < 0. If also V is of class C3 and the functions

N± : R→ R, N±(f) := 6[V (f)± 1]V ′′(f)2 − 3V ′(f)2V ′′(f)− 2[V (f)± 1]V ′(f)V ′′′(f),



ON SPECTRAL AND MODULATIONAL STABILITY OF KLEIN-GORDON WAVETRAINS 3

are both not identically zero and semidefinite (Chicone’s criterion [3]), then TE 6= 0 holds
for all librational waves, and the sign of TE coincides with that of N+ (resp., N−) for
superluminal (resp., subluminal) waves.

Finally, it is to be observed that with a particular choice of origin for z, the periodic
wavetrain f = f(z;E, c) is uniquely determined and for each z is a C2 function of (E, c) in
a four-component, non-connected, open set (see Lemma 2.8 in [9] for further details).

2. The stability problem. Floquet spectrum

2.1. Perturbation equations. Let us now consider a perturbation of the periodic traveling
wave f = f(z). Substituting u = f + v into the Klein-Gordon equation (1.1) written
in the galilean frame associated with the independent variables (z = x − ct, t) and using
the equation (1.4) satisfied by f , one finds that the perturbation v necessarily satisfies the
nonlinear equation

vtt − 2cvzt + (c2 − 1)vzz + V ′(f(z) + v)− V ′(f(z)) = 0. (2.1)

Specializing to perturbations of the form v(z, t) = w(z)eλt, where λ ∈ C, and after linearizing
around v = 0 we obtain the linear ODE

(c2 − 1)wzz − 2cλwz + (λ2 + V ′′(f(z)))w = 0, (2.2)

in which the complex growth rate λ appears as a (spectral) parameter. Roughly speaking,
a necessary condition for the stability of f is that there are no points of spectrum with
Reλ > 0 (which would imply the existence of a solution w of (2.2) that lies in a Banach
space X as a function of z, and grows exponentially in time). Following Alexander, Gardner
and Jones [1], the spectral problem (2.2) with w ∈ X can be equivalently regarded as a first
order system of the form

wz = A(z, λ)w, (2.3)

where w := (w,wz)
> ∈ Y (Y is a Banach space related to X), and

A(z, λ) :=

 0 1

− (λ2 + V ′′(f(z)))

c2 − 1

2cλ

c2 − 1

 . (2.4)

Note that the coefficient matrix A is periodic in z with period T . Clearly, the definition of
the spectrum depends upon the choice of the space X. If X = L2(R;C) then the analysis
corresponds to stability under localized perturbations. It is well-known [4] that the L2(R)
spectrum of a differential operator with periodic coefficients is purely “continuous” (there
are not isolated eigenvalues).

2.2. Floquet characterization of the spectrum. The periodic Evans function. Let
F(z, λ) denote the 2×2 identity-normalized fundamental solution matrix for the differential
equation (2.3), i.e., the unique solution of

Fz(z, λ) = A(z, λ)F(z, λ), with initial condition F(0, λ) = I, ∀λ ∈ C. (2.5)

The T -periodicity in z of the coefficient matrix A then implies that

F(z + T, λ) = F(z, λ)M(λ), ∀z ∈ R, where M(λ) := F(T, λ). (2.6)

The matrix M(λ) is called the monodromy matrix for the first-order system (2.3), and its
elements are entire functions of λ ∈ C (due to analyticity of A in λ ∈ C and uniform
convergence of Picard iterates for bounded z). Let µ(λ) denote an eigenvalue of M(λ), and
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let w0(λ) ∈ C2 denote a corresponding (nonzero) eigenvector. Then w(z, λ) := F(z, λ)w0(λ)
is a nontrivial solution of the first-order system (2.3) that satisfies

w(z + T, λ) = F(z + T, λ)w0(λ) = F(z, λ)M(λ)w0(λ) (by (2.6))

= µ(λ)F(z, λ)w0(λ) = µ(λ)w(z, λ), ∀z ∈ R.
(2.7)

Such solutions are called Floquet solutions, and the eigenvalue µ(λ) of the monodromy matrix
M(λ) is called a Floquet multiplier. If R(λ) denotes any number (modulo 2πi) for which
eR(λ) = µ(λ), then e−R(λ)z/Tw(z, λ) is a T -periodic function of z, or, equivalently (Bloch’s
Theorem) w(z, λ) can be written in the form

w(z, λ) = eR(λ)z/T z(z, λ), where z(z + T, λ) = z(z, λ), ∀z ∈ R. (2.8)

The quantity R(λ) is sometimes called a Floquet exponent. A further consequence of Floquet
theory is that if the first-order system (2.3) has a nontrivial solution in L∞(R,C2), it is
necessarily a linear superposition of Floquet solutions corresponding to Floquet multipliers
µ(λ) with |µ(λ)| = 1. Thus, one can parametrize the spectrum according to values of
µ = eiθ ∈ S1, or equivalently θ ∈ R (mod 2π), by introducing the set σθ of complex
numbers λ for which there exists a nontrivial solution of the boundary-value problem (2.2)
with the condition (

w(T )
wz(T )

)
= eiθ

(
w(0)
wz(0)

)
, θ ∈ R. (2.9)

Obviously the sets σθ and σθ+2πn coincide for all n ∈ Z. The spectrum σ may be defined as
the union of these partial spectra as follows:

σ =
⋃

−π<θ≤π

σθ, (2.10)

and it is characterized in terms of the monodromy matrix through its determinant (see [9],
Proposition 3.4):

Proposition 2.1. λ ∈ σ if and only if there exists µ ∈ C with |µ| = 1 such that

D(λ, µ) := det(M(λ)− µI) = 0, (2.11)

that is, at least one of the Floquet multipliers lies on the unit circle.

Definition 2.2 (periodic Evans function; Gardner [4]). The periodic Evans function is the
restriction of D(λ, µ) to the unit circle S1 ⊂ C in the second argument, which is to be
regarded as a unitary parameter in this context. Thus, for each θ ∈ R (mod 2π), D(λ, eiθ)
is an entire function of λ ∈ C whose (isolated) zeros are particular points of the spectrum
σ.

Each set σθ is characterized as the zero set of the (entire in λ) periodic Evans function
D(λ, eiθ) and hence is purely discrete. The discrete partial spectrum σθ can therefore be
detected for fixed θ ∈ R by standard techniques based on the use of the Argument Principle.
However, the study of localized perturbations requires considering all of the partial spectra
σθ at once. The real angle parameter θ is typically a local coordinate for the spectrum σ as
a real subvariety of the complex λ-plane. This explains the intuition that the L2 spectrum
is purely “continuous”, and gives rise to the notion of curves of spectrum (see Proposition
3.7 in [9]).

We say that the periodic wave f is spectrally stable if there are no curves of spectrum
with Reλ > 0. Since equation (1.1) is a real Hamiltonian system, this implies that σ is
symmetric with respect to reflection in the real and imaginary axes, i.e., if λ ∈ σ, then also
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λ∗ ∈ σ and −λ ∈ σ (and hence also −λ∗ ∈ σ). Thus, spectral stability reduces to the curve
σ being confined to the imaginary axis.

3. Analysis of the monodromy matrix

3.1. Series expansions. To study the behavior of the monodromy matrix near the origin
we start with the solutions at λ = 0. It can be proved (see Lemma 5.1 in [9]) that the
two-dimensional complex vector space of solutions to the first-order system (2.3) at λ = 0
is spanned by

wz(z) :=

(
fz
fzz

)
and wE(z) :=

(
fE
fEz

)
. (3.1)

We use this information in a key way to prove the following:

Proposition 3.1 ([9]). The monodromy matrix M(0) is given by

M(0) =

(
1 −(c2 − 1)TEv

2
0

0 1

)
. (3.2)

Here, v20 = fz(z0)2 where z0 is such that V ′(f(z0)) = 0. In particular, M(0) is not diago-
nalizable unless TE = 0.

The fundamental solution matrix F(z, λ) has a convergent Taylor expansion about every
point of the complex λ-plane. In particular, the series about the origin has the form F(z, λ) =∑∞
n=0 λ

nFn(z), z ∈ [0, T ], for some coefficient matrices {Fn(z)}∞n=0, and this series has an
infinite radius of convergence. Setting λ = 0 gives F0(z) = F(z, 0). By the method of
variation of parameters, one arrives at a hierarchy of ODEs for the elements of the expansion,
and it is possible to explicitly compute F1(z) and F2(z):

F1(z) =
czF0(z)

c2 − 1
+
c[σ−,F0(z)]

c2 − 1
, σ− :=

(
0 0
1 0

)
F2(z) = 1

2

c2z2F0(z)

(c2 − 1)2
+
c2z[σ−,F0(z)]

(c2 − 1)2
− c2σ−F0(z)σ−

(c2 − 1)2

+
F0(z)

(c2 − 1)2

∫ z

0

F0(y)−1σ−F0(y) dy,

(3.3)

where [A,B] := AB − BA denotes the matrix commutator. Setting z = T in the series
formula for F(z, λ) gives the series for the monodromy matrix M(λ), also an entire function
of λ: M(λ) =

∑∞
n=0 λ

nMn, with Mn := Fn(T ). From (3.3) we then obtain

M1 = qM(0) +
c[σ−,M(0)]

c2 − 1

M2 = 1
2q

2M(0) +
cq[σ−,M(0)]

c2 − 1
− c2σ−M(0)σ−

(c2 − 1)2

+
M(0)

(c2 − 1)2

∫ T

0

F0(y)−1σ−F0(y) dy,

(3.4)

where q := cT/(c2 − 1) ∈ R. (See [9], Section 5, for details.) With the information at hand,
taking the trace in the series and using Abel’s identity one can obtain the expansions

det(M(λ)) = 1 + 2qλ+ 2q2λ2 +O(λ3), (3.5)

tr (M(λ)) = 2 + 2qλ+
(
q2 + κ

)
λ2 +O(λ3), (3.6)
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as λ→ 0, where

κ :=
M12(0)

(c2 − 1)2

∫ T

0

F11(y, 0)2 dy. (3.7)

3.2. The modulational stability index. Now we extract information about the behavior
of the spectrum σ in a complex neighborhood of the origin in the complex plane. We also
compute expansions of the Floquet multipliers near the origin, and of the function D(λ, µ) in
a full complex neighborhood of (λ, µ) = (0, 1). (For related constructions in other problems,
see [2, 7] for the generalized KdV equation, and [5] for the BBM equation.) The Floquet
multipliers are roots of D(λ, µ) = 0, that is

µ = µ±(λ) =
1

2

(
tr (M(λ))±

(
(tr (M(λ)))2 − 4 det(M(λ))

)1/2)
. (3.8)

To analyze the multipliers near λ = 0, we first calculate the quadratic discriminant with the
help of the expansions (3.5) and (3.6). We obtain:

(tr (M(λ)))2 − 4 det(M(λ)) = 4κλ2 +O(λ3), λ→ 0. (3.9)

Using (3.6), the first few terms in the Taylor series about λ = 0 of the (analytic) Floquet
multipliers are:

µ±(λ) = 1 +
(
q ± κ1/2

)
λ+O(λ2), λ→ 0. (3.10)

Noting that κ is proportional to the monodromy matrix element M12(0) by strictly positive
factors because F11(z, 0) is a differentiable function satisfying F11(0, 0) = 1, this formula
motivates the definition of the “modulational” instability index:

Definition 3.2. The modulational instability index is given by

γM := sgn (M12(0)) = sgn (−(c2 − 1)TE), (3.11)

with the understanding that γM := 0 if M12(0) = 0 (or equivalently, if TE = 0). In particular,
γM = 1 for rotational waves of any speed.

Lemma 3.3. The periodic Evans function D(λ, eiθ) is analytic in the variables (λ, θ) ∈ C2

and has the following expansion in a neighborhood of (λ, θ) = (0, 0):

D(λ, eiθ) = −κλ2 + (iθ − qλ)
2

+O(3), (3.12)

where O(3) denotes terms of order three or higher in (λ, θ).

Proof. This follows from the formula D(λ, eiθ) = e2iθ − tr (M(λ))eiθ + det(M(λ)) upon
expanding the exponentials in power series about θ = 0, substituting the expansions (3.5)
and (3.6), and using the definition (3.7). �

The index γM determines the behavior of the spectrum near the origin (see Lemma 6.12
in [9]).

Lemma 3.4. If γM = 1 but κ 6= q2 > 0, then the equation D(λ, eiθ) = 0 parametrically
describes (for small real θ) two smooth curves passing through the origin tangent to the
imaginary axis in a neighborhood of the origin the complex λ-plane. If γM = −1 then the
equation D(λ, eiθ) = 0 instead parametrically describes two distinct smooth curves that cross
at the origin with tangent lines making acute non-zero angles with the imaginary axis.

The presence of any spectrum σ that is not purely imaginary implies spectral instability.
The particular type of instability detected by the condition γM = −1 is called a strong
modulational instability, for which we give the following formal definition.
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Definition 3.5. A periodic traveling wave solution f of the Klein-Gordon equation (1.1)
is said to be modulationally unstable (or, to have a modulational instability) if for every
neighborhood U of the origin λ = 0, (σ\iR)∩U 6= ∅. Otherwise, f is said to be modulationally
stable. The modulational instability is strong if near the origin there is spectrum σ in the
cone (Reλ)2 > δ(Imλ)2 for some δ > 0.

3.3. Relation to Whitham’s modulation theory. There is an important relationship
between the modulational instability index γM and the ellipticity/hyperbolicity of Whitham’s
system of equations in formal modulation theory (justifying, in this fashion, its name). Let
us define the classical action as

W (E, c) := (c2 − 1)

∫ T

0

fz(z;E, c)
2 dz.

Theorem 3.6 ([9]). Suppose c2W 2
E +WWEE 6= 0. Whitham’s system of modulation equa-

tions (cf. [12]) is hyperbolic (resp., elliptic) if and only if γM = 1 (resp., γM = −1), where
γM is the modulational instability index.

If TE = 0, then simultaneously γM = 0 and the Whitham system is on the borderline
between the hyperbolic and elliptic cases with a double real characteristic velocity. Theo-
rem 3.6 analytically confirms, in the case of the Klein-Gordon equation (1.1), the following
well-accepted fact: if the Whitham modulation system is elliptic, then the underlying pe-
riodic traveling wave is spectrally unstable. This relationship has been explored in other
contexts as well (cf. [2, 6]).

4. Stability and instability results

4.1. Modulational instability. The first applications of the modulational instability index
concern instability results for librational waves.

Theorem 4.1 ([9]). Let V be a potential satisfying the assumptions above. A librational
periodic traveling wave solution of the Klein-Gordon equation (1.1) for which (c2−1)TE > 0
holds is strongly modulationally unstable.

Since modulational instability implies spectral instability, we have the following:

Corollary 4.2 ([9]). All librational waves satisfying (c2 − 1)TE > 0 are spectrally unstable.
In particular, all librational traveling wave solutions of the sine-Gordon equation (1.2) are
strongly modulationally unstable and hence spectrally unstable.

4.2. (In)stability results for rotational waves. Since γM = 1 for rotational waves (see
Proposition 1.1), the former are modulationally stable. This is inconclusive, however, for
spectral stability. In the generic case of κ 6= q2 > 0, the spectrum σ is locally tangent to
the imaginary axis at the origin λ = 0, but these curves could fail to be confined to the
imaginary axis, or because there could be other parts of the spectrum σ with nonzero real
parts far from the origin. In other words, there could be other instabilities which cannot be
detected by γM. To conclude the spectral stability analysis we proved the following result.

Theorem 4.3 ([9]). Under the assumptions on V above we have the following: (i) all
periodic traveling waves of the Klein-Gordon equation (1.1) of superluminal rotational type
are spectrally unstable; and, (ii) all periodic traveling waves of the Klein-Gordon equation
(1.1) of subluminal rotational type are spectrally stable.
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The proofs of statements (i) and (ii) are quite different. The proof of (i) is based on the
introduction of a spectrum-detecting function G : C → R defined in terms of the Floquet
multipliers: G(λ) := log |µ+(λ)| log |µ−(λ)|. The proof of (ii) involves a direct calculation
of σ using energy estimates. For details, see Section 7 in [9]. Theorem 4.3 generalizes the
spectral stability results for the sine-Gordon equation obtained in [8]:

Corollary 4.4 ([11, 8]). Periodic wavetrains for the sine-Gordon equation (1.2) of libra-
tional type, as well as superluminal rotational waves, are spectrally unstable. Subluminal
rotational sine-Gordon periodic waves are spectrally stable.

It was Scott [11] who first analyzed the spectral stability of sine-Gordon wavetrains.
Although Scott’s conclusion turned out to be correct, his proof was not. The results in [8]
provided the first completely rigorous proof of Scott’s observations, which have been long
accepted as fact in the nonlinear wave propagation literature. For extensions of these and
other stability results to more complicated potentials, the reader is referred to [9].
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