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Abstract

Opioid users experience increased incidence of infection, which may be partially attributable to 

both direct opiate-immune interactions and conditioned immune responses. Previous studies have 

investigated the neural circuitry governing opioid conditioned immune responses, but work 

remains to elucidate the mechanisms mediating this effect. Our laboratory has previously shown 

that hippocampal IL-1 signaling, specifically, is required for the expression of heroin conditioned 

immunosuppression following learning. The current studies were designed to further characterize 

the role of hippocampal IL-1 in this phenomenon by manipulating IL-1 during learning. 

Experiment 1 tested whether hippocampal IL-1 is also required for the acquisition of heroin 

conditioned immunosuppression, while Experiment 2 tested whether hippocampal IL-1 is required 

for the expression of unconditioned heroin immunosuppression. We found that blocking IL-1 

signaling in the dorsal hippocampus with IL-1RA during each conditioning session, but not on 

interspersed non-conditioning days, significantly attenuated the acquisition of heroin conditioned 

immunosuppression. Strikingly, we found that the same IL-1RA treatment did not alter 

unconditioned immunosuppression to a single dose of heroin. Thus, IL-1 signaling is not a critical 

component of the response to heroin but rather may play a role in the formation of the association 

between heroin and the context. Collectively, these studies suggest that IL-1 signaling, in addition 

to being involved in the expression of a heroin conditioned immune response, is also involved in 

the acquisition of this effect. Importantly, this effect is likely not due to blocking the response to 

the unconditioned stimulus since IL-1RA did not affect heroin’s immunosuppressive effects.
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 1. Introduction

Opioid users show an increased incidence of infections (Govitrapong et al., 1998; Louria et 

al., 1967; Risdahl et al., 1998), the treatment of which imposes a large economic burden 

(Mark et al., 2001). These infections are not simply due to increased pathogen exposure 

from intravenous drug use, but may also be attributed to opiates’ interaction with the 

immune system (Horsburgh et al., 1989; Simonovska et al., 2011; Vallejo et al., 2004). 

Furthermore, while opioids on their own hinder the body’s ability to respond to disease and 

infection, these immunosuppressive properties can become conditioned. Repeated 

presentations of immune modulators, like opioids, with predictive stimuli can result in 

Pavlovian conditioning of immune system function, allowing for these stimuli to later affect 

the immune system in the same way as the modulators themselves [for review (Schedlowski 

and Pacheco-Lopez, 2010)]. Therefore, exposure to opioid-associated environments or 

stimuli might then lead to an exacerbation of immunological vulnerability in opioid users.

Conditioned immune responses have been demonstrated in rodent models using stimuli 

paired with distinct immunosuppressive agents such as cyclophosphamide (Ader, 1974; 

Ader and Cohen, 1975), cyclosporine A (Exton et al., 2001; Exton et al., 1998a; Exton et al., 

1998b; von Horsten et al., 1998), foot shock stress (Lysle et al., 1988; Perez and Lysle, 

1995), cocaine (Kubera et al., 2008), morphine (Coussons-Read et al., 1994a, b; Coussons et 

al., 1992; Luecken and Lysle, 1992), and heroin (Lysle and Ijames, 2002; Szczytkowski et 

al., 2011; Szczytkowski and Lysle, 2007, 2008, 2010). Heroin conditioned immune effects 

are of particular concern due to recent rises in heroin’s use (United States. Substance Abuse 

and Mental Health Services Administration, 2014). The NIH attributes this rise to the near 

tripling of opioid prescriptions in order to treat pain in the last decade that may have led 

many to turn to heroin as a cheaper alternative to costly pain medication (United States. 

National Institute on Drug Abuse, 2014). With opioid use, including heroin, on the rise, it 

becomes more important than ever to understand the immune consequences of their use and 

the neural mechanisms governing the classical conditioning that may increase the severity or 

duration of these consequences.

Like other forms of immune conditioning, which have been primarily studied within the 

context of placebo effects [for review (Schedlowski et al., 2015)], opioid immune 

conditioning is centrally mediated (Fecho et al., 1996; Lysle et al., 1996) and depends on 

learned associations between a conditioned stimulus (CS) and opioids, as unconditioned 

stimuli (US). After multiple pairings of the CS and the US, the CS itself becomes able to 

evoke a conditioned response (CR) similar to the effects of opioids themselves (Lysle and 

Ijames, 2002). For example, a single injection of heroin has been shown to suppress 

measures of nitric oxide (NO) (Lysle and How, 2000), an important part of the immune 

system released by multiple immune cells that conveys resistance to infection and serves as a 

regulator of immune function (Bogdan, 2001; Lewis et al., 2010; MacMicking et al., 1995; 

Nathan and Shiloh, 2000; Uehara et al., 2015). Its expression is potently and widely induced 

by lipopolysaccharide (LPS), a component of gram negative bacterial walls. NO production 

can be indirectly measured by levels of inducible nitric oxide (iNOS), the enzyme 

responsible for producing NO, and nitrate/nitrite, byproducts of NO degradation in the 

blood.
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Previous studies have taken advantage of LPS’s potent induction of NO to investigate 

heroin’s immune effects (Lysle and How, 2000). The effects of heroin on LPS-induced NO 

are also able to be conditioned to heroin-associated stimuli. Pairing heroin (US) with a 

distinct environmental context (CS) allows the heroin-paired context to evoke a CR in rats in 

that the exposure to the context alone will cause conditioned suppression of NO (Lysle and 

Ijames, 2002; Szczytkowski et al., 2011; Szczytkowski et al., 2013; Szczytkowski and Lysle, 

2007, 2008, 2010). Research using this model has demonstrated that the basolateral 

amygdala, nucleus accumbens (Saurer et al., 2009; Szczytkowski and Lysle, 2008), and a 

circuit comprised of these regions and the ventral tegmental area is necessary for the 

expression of heroin conditioned immunosuppression (Szczytkowski et al., 2011). More 

recently, the hippocampus, a brain region heavily implicated in contextual learning (Maren 

and Holt, 1999; Phillips and Ledoux, 1994; Redish, 2001) has also been shown to be 

involved in the expression of heroin conditioned immunosuppression. Inactivation of the 

dorsal hippocampus (DH) using a GABA agonist cocktail, baclofen/muscimol, or 

knockdown of interleukin-1β (IL-1β) signaling within the DH just before testing prevented a 

heroin-paired context from suppressing the immune response to LPS (Szczytkowski et al., 

2013). This not only suggests the requirement of the DH for the expression of heroin 

conditioned immunosuppression, but also implicates a novel role for brain IL-1β in this 

effect.

IL-1β is a pro-inflammatory cytokine that has been linked to learning and memory. Studies 

suggest this cytokine is induced in the DH by Pavlovian conditioning (Goshen et al., 2007), 

is required for the maintenance of long-term potentiation (LTP) (Schneider et al., 1998), and 

causes disruption of normal memory at either supra- or sub-optimal expression levels (Avital 

et al., 2003; Ben Menachem-Zidon et al., 2011; Goshen et al., 2007; Griffin et al., 1989; 

Ross et al., 2003; Schmid et al., 2009; Schneider et al., 1998). Furthermore, IL-1 seems to 

play a key role in memory within the hippocampus as IL-1 manipulations specifically affect 

hippocampal-dependent memory but not hippocampal-independent memory [for review 

(Lynch, 2015)], and levels of IL-1 receptor in the hippocampus are particularly high [see 

(Schneider et al., 1998)].

Given that IL-1 in the hippocampus is important for the expression of heroin conditioned 

immunosuppression, it is yet to be determined if hippocampal IL-1 is also required for the 

encoding of immune associations during acquisition. Therefore, in the present studies, 

Experiment 1 sought to investigate whether hippocampal blockade of the most well-studied 

receptor for IL-1, IL-1 receptor 1 (IL-1R1), could interfere with the acquisition of heroin 

conditioned immunosuppression.

Many studies suggest that the CR is specific to and mimics the effects of the US [see 

(Schedlowski et al., 2015)], which may suggest that the neural pathways engaged during the 

expression of a CR recapitulate those engaged by the US. In the context of our model, it is 

unknown whether IL-1 signaling is required for heroin’s immunosuppressive effects. If IL-1 

in the dorsal hippocampus is specifically required for memory processes engaged in 

connecting the immune effects of the US to the CS, then blockade of IL-1 signaling in the 

dorsal hippocampus will not interfere with the immunosuppressive response to a heroin US. 

Experiment 2 investigated the possibility that IL-1 in the dorsal hippocampus has a 

Lebonville et al. Page 3

Brain Behav Immun. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



distinguishable role in associative learning and not in mediating the unconditioned response 

to the US.

The present studies will critically inform our understanding of how stimuli-drug associations 

engage memory and immune systems, possibly providing therapeutic targets to aid in the 

prevention of the negative health consequences associated with opioid use.

 2. Methods and Materials

 2.1 Animals

Adult, male Lewis rats (N = 55) weighing 225-250 g were purchased from Charles-River 

Laboratories (Raleigh, NC). Animals were housed individually in a colony room under a 

reversed 12-hour day-night cycle, with ad libitum access to food and water. Animals 

received at least 12 days of habituation before experimentation and were handled regularly 

during this time. All procedures were approved by the Institutional Animal Care and Use 

Committee (IACUC) of the University of North Carolina at Chapel Hill and conformed to 

the National Research Council’s Guide for the Care and Use of Laboratory Animals 

(Institute for Laboratory Animal Research Division of Earth and Life Studies).

 2.2 Drugs & Delivery

Heroin (diacetylmorphine) was obtained from NIDA’s Drug Supply System (Bethesda, MD) 

and was dissolved in 0.9 % sterile saline to a final concentration of 1.0 mg/mL. Throughout 

conditioning, heroin solutions were stored at 4°C. Heroin-filled syringes were allowed to 

come to room temperature prior to injections. Rats were injected subcutaneously with 1.0 

mg/kg heroin, a dose chosen based on prior experiments in our laboratory showing that this 

dosage alters LPS-induced iNOS mRNA expression in the spleen (Lysle and How, 2000, 

Lysle and Ijames, 2002, Szczytkowski and Lysle, 2007). Lipopolysaccharide (LPS) was 

injected subcutaneously at a concentration of 1 mg/kg (derived from E. coli, serotype 

055:B5, dissolved in sterile, pyrogen-free saline), a dose which induces sickness behavior 

and produces reliable induction of nitric oxide measures. This particular serotype has been 

used previously in our laboratory to investigate immune responses following heroin 

conditioning, an important verification due to the differing activity between LPS serotypes 

even from within the same species (Caroff et al., 2002). Human recombinant interleukin-1 

receptor antagonist (IL-1RA) (Genscript, Piscataway, NJ, Catalog No: Z00367) was 

reconstituted in 0.9% sterile saline to a final concentration of 2.5 μg/μL. Reconstituted 

IL-1RA was then aliquoted and stored at −20°C. Rats were intracranially infused with 1.25 

μg in 0.5 μL volume per hemisphere into the dorsal hippocampus (DH) over 2 minutes at a 

constant rate of 0.25 μL/min. Thereafter, the injectors were allowed to sit for 1 additional 

minute to allow for proper diffusion from the injection site. At least 48 hours prior to 

intracranial drug infusion into the DH, injectors were lowered into the cannulae and the rats 

were handled to habituate them to the infusion procedures. Just prior to infusion, frozen 

IL-1RA aliquots were thawed on ice, briefly centrifuged, and stored on ice throughout. 

Vehicle infusions were of 0.9% sterile saline.

Lebonville et al. Page 4

Brain Behav Immun. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



 2.3 Surgical Procedure

Animals were anesthetized with 1.0 mL/kg intraperitoneally injected 9:1 (vol:vol) ketamine 

hydrochloride (100 mg/mL) and xylazine (100 mg/mL). Surgically prepared animals were 

placed into the stereotaxic apparatus where guide cannula (26-gauge, Plastics One, Roanoke, 

VA) were directed bilaterally toward the DH with coordinates AP −3.4 mm, ML ±3.1 mm, 

DV −2.2 mm, relative to bregma; 15° angle laterally (Paxinos and Watson, 1998). Animals 

were given at least 13 days for post-operative recovery during which they were handled and 

monitored regularly.

 2.4 Conditioning Procedure

Rats received five, 60-min conditioning sessions every other day as in prior studies, which 

has been shown to be sufficient to generate conditioned immunosuppression to the heroin-

paired context (Szczytkowski et al., 2011; Szczytkowski et al., 2013; Szczytkowski and 

Lysle, 2010). Each conditioning session involved heroin administration (US) immediately 

followed by placement into a conditioning chamber (BRS/LVE, Laurel, MD, USA; W 30.5 

cm × D 24.1 cm × H 26.7 cm) that served as the conditioned stimulus (CS). The 

conditioning chambers were contained within closable sound and light attenuating chambers 

(W 50.8 cm × D 34.3 cm × H 36.8 cm) with house fans, located in a room separate from the 

animal colony. The conditioning chambers contained a standard footshock metal bar floor, 

two clear plastic front and black walls, a clear plastic ceiling, and two metal side walls. 

Below the bar floor, a floor tray containing cedar bedding was inserted to enhance the 

distinction of the conditioning environment from the home cage. In between animals, 

chambers were thoroughly cleaned using Roccal-D Plus disinfectant (Zoetis, Kalamazoo, 

MI).

Prior work in our laboratory has shown that unmanipulated animals, saline conditioned 

animals, or animals that received the CS and US in an unpaired manner do not demonstrate 

context-induced immunosuppression. This indicates that immunosuppression is specifically 

due to re-exposure to a heroin-paired CS and not ancillary effects of conditioning, receiving 

heroin, or injections in general (Lysle and Ijames, 2002).

 2.5 Tissue Collection

Immediately after the 60-min test session (or home cage exposure for controls), rats were 

injected with LPS. Rats were sacrificed and tissue was collected 6 hours after LPS injection. 

The spleen was analyzed because immunohistochemical localization of iNOS in rats 

exposed to LPS shows the presence of the iNOS enzyme in a number of immune cells found 

in the spleen, including macrophages, lymphocytes, and neutrophils (Bandaletova et al., 

1993). Following sacrifice, spleen was dissected out and cut into approximately 100 mg 

sized pieces for RT-qPCR and ELISA. Tissue was placed in cOmplete Protease Inhibitor 

Cocktail (Roche Diagnostics, Indianapolis, IN) and stored at −80°C.

 2.6 RNA Extraction & RT-qPCR

To determine iNOS mRNA expression, reverse transcription quantitative real-time PCR (RT-

qPCR) was performed on spleen tissue samples. Collected tissue was processed by the UNC 

Animal Clinical Chemistry and Gene Expression Laboratories according to previous 
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protocols (Kim et al., 2002). Briefly, tissue was homogenized in RNA lysis buffer (PE 

Biosystems, Foster City, CA) with Ca2+ and Mg2- free PB using a Fast Prep 120 mixer 

(QBIOgene, Vista, CA). RNA was purified using an automated nucleic-acid workstation 

(ABI Prism 6700, PE Biosystems) according to the manufacturer’s protocol. The amount of 

RNA used in the RT-qPCR reaction (one-step) was equalized between samples. RT-qPCR 

reactions were performed in a sequence detector (ABI Prism 7700, PE Biosystems) in a total 

volume of 30 μL (10 μL RNA, 20 μL reaction cocktail). Each RT-qPCR amplification was 

performed in duplicate under the following reaction conditions: 30 min at 48°C for the RT 

reaction, 10 min at 94°C, and then 40 cycles of 15s at 94°C and 1 min at 60°C. Raw results 

were normalized to reference gene 18S to control for small variations in the amount of 

starting cDNA template. The stability of 18S as a reference gene was verified using a 2×2 

ANOVA to demonstrate that there were no significant group differences in 18S expression. 

Normalized values were then calibrated against either a global normalized average Ct value 

(Experiment 1) or a control group normalized average Ct (Experiment 2) for the gene of 

interest. For graphical representation, delta delta Ct values were linearly transformed. The 

nucleotide sequences of the qPCR primers and fluorogenic probes used for iNOS and 18S 

were as follows - iNOS forward: 5’-AGCGGCTCCATGACTCTCA-3’, reverse: 5’-

TGCCTGCACCCAAACACCAA-3’, probe: 5’-

FTCATGCGGCCTCCTTTGAGCCCTCQ-3’; 18S forward: 5’-

AGAAACGGCTACCACATCCA-3’, reverse: 5’-CTCGAAAGAGTCCTGTATTGT-3’, 

probe: 5’-FAGGCAGCAGGCGCGCAAATTACQ-3’ [F = 5’- Fluorescein (FAM); Q = 

Quencher (TAMRA)].

 2.7 Protein Extraction/Quantification & iNOS ELISA

Spleen tissue was homogenized on ice in sterile Dounce grinders. Protein was extracted 

from homogenized samples using cycles of freeze-thaw lysis, centrifugation, and collection 

of the supernatant. Total protein was quantified by Bradford Assay. Briefly, 10 μL of 1:200 

diluted protein, in triplicate, was incubated with 200 μL diluted and filtered Bradford Assay 

Dye (Bio-Rad Laboratories Inc., Hercules, CA, Catalog No. 500-0006) for 10 min. The 

absorbance of each sample triplicate was measured in a spectrophotometer (Epoch™, BioTek 

Instruments Inc., Winooski, VT) at 595 nm, averaged, and compared to a concurrently run 

BSA standard curve to determine μg/μL concentration. Splenic iNOS protein was quantified 

using a rat iNOS sandwich ELISA kit (LifeSpan BioSciences, Inc., Seattle, WA, Catalog No. 

LS-F4109). The user manual supplied with the kit was followed with the following 

parameters: 200 μg of total protein per sample was loaded in duplicate, plates were gently 

agitated at 45-55 rpm, and color was allowed to develop for 20-25 min. The ELISA plate 

was washed with an automatic plate washer (EL 403, BioTek Instruments Inc., Winooski, 

VT) as recommended by the kit manual. Each plate was read in a spectrophotometer at 450 

nm and compared to a concurrently run standard curve to determine pg iNOS protein per 

200 μg of total protein.

 2.8 Nitrate/Nitrite Assay

The nitrate/nitrite concentration in plasma samples was assessed using the Greiss reagent 

assay as described previously (Szczytkowski and Lysle, 2007). Briefly, 12 μL of plasma 

diluted in 38 μL of dH2O was incubated in the dark for 90 min with 10 μL of nitrate 
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reductase (1.0 U/mL), 20 μL of 0.31 M phosphate buffer (pH 7.5), 10 μL of 0.86 mM beta-

nicotinamide adenine dinucleotide phosphate reduced tetrasodium salt (NADPH, Sigma-

Aldrich Inc., Milwaukee, WI), and 10 μL of 0.11 mM flavin adenine dinucleotide in 

individual wells of a 96-well plate. Then, 200 mL of Greiss reagent, consisting of a 1:1 (v/v) 

solution 1% sulfanilamide in 5.0% phosphoric acid and 0.1% N-(1-

Naphthyl)ethylenediamine dihydrochloride (Kodak) in distilled water, was added to the 

samples. The color developed for 10 min at room temperature, after which, absorbance at 

550 nm was determined using a spectrophotometer. All reactions were carried out in 

triplicate. The total micromolar concentration of nitrite was determined for each sample 

based on a concurrently produced standard curve. Recovery of nitrate is greater than 95% 

using this assay.

 2.9 Histology

To confirm proper cannula placement, Alcian blue dye was infused via the cannulae 

following euthanasia. For Experiment 1, brains were extracted and immediately flash frozen 

in a low temperature freezing bath (Histobath NesLab, Portsmouth, NH; Shandon Lipshaw, 

Pittsburgh, PA) with freezing-cold isopentane, wrapped in aluminum foil, and stored at 

−80°C. For Experiment 2, brains were extracted and post-fixed at 4°C for 5 days in 4% 

paraformaldehyde. Following fixation, the brains were transferred to 30% sucrose solution 

for three days for cryoprotection. Brains were then frozen in a low temperature freezing bath 

(Histobath NesLab, Portsmouth, NH; Shandon Lipshaw, Pittsburgh, PA) with freezing-cold 

isopentane, wrapped in aluminum foil, and stored at −80°C. For both experiments, 40 μm 

coronal sections were collected using a freezing microtome (Leica CM 3050 S, Leica-

Microsystems, Germany) and allowed to dry on the slide for 30 min at room temperature 

before analysis. Cannula tracts were identified under a light microscope and the most ventral 

point of each tract was documented on rat brain atlas figures. Subjects with incorrect 

placement of cannula were removed from all analyses. Sections were stained with thionin 

and coverslipped for long-term storage.

 2.10 Statistical Analysis

A 2×2 analysis of variance (ANOVA) was performed on data sets using SPSS Statistics 

(IBM, Armonk, NY), after verifying that the underlying assumptions of the test were met. 

Homogeneity of variance was tested using Levene’s Test and normality using Shapiro-Wilk 

Test. For all tests, the significance level was set at 0.05. Tukey’s Honestly Significant 

Difference (HSD) post-hoc test was then used to detect either differences between CS-

exposed and corresponding home cage control groups (Experiment 1) or differences between 

heroin-injected vs. saline-injected groups and the effect of pre-treatment with IL-1RA vs. 

saline within heroin-injected groups (Experiment 2). For RT-qPCR, statistics were run on 

delta delta Ct values and not the linear transform because the former demonstrated 

normality.

 2.11 Experiment Specific Procedures

 2.11.1 Experiment 1: IL-1RA Antagonism During Acquisition of Heroin 
Conditioned Immunosuppression—For Experiment 1, animals (N = 31) were 
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repeatedly microinjected with IL-1RA into the DH at two time points relative to 

conditioning. One group (IL-1RA With Cond; n = 16) received IL-1RA 30 minutes prior to 

receiving heroin and being placed into the conditioning chamber to test whether DH IL-1 

signaling during conditioning is required for acquisition of heroin conditioned 

immunosuppression. Another group (IL-1RA 24 h After Cond; n = 15) received IL-1RA 24 

hours after conditioning, on the days in between conditioning sessions (non-conditioning 

days), to test whether IL-1 signaling is specifically required during conditioning sessions for 

acquisition. For both groups, infusions were given on both conditioning and non-

conditioning days and vehicle infusions were given at times when animals were not 

administered IL-1RA (Figure 1). This design ensured that all animals received injections 

before conditioning and that all animals received the same total number of IL-1RA 

infusions. This meant that differences between groups would not reflect ancillary effects of 

infusion timing relative to conditioning nor possible non-specific compensatory effects from 

receiving multiple IL-1RA injections. IL-1RA has a short half-life when injected 

systemically (21-108 minutes) (Granowitz et al., 1992). Unfortunately there is no data 

confirming the timeline of IL-1RA clearance from brain tissue. However, studies 

investigating effects of intracerebroventricular or hippocampal infusion of IL-1RA have 

shown that IL-1RA effects may last on the order of hours (Schmid et al., 2009; Schneider et 

al., 1998). This evidence suggests that separating IL-1RA treatment regimens by a full day, 

as in the current study, will likely limit temporal overlap of IL-1RA action between groups.

Six days after the last infusion (seven from the last conditioning session), half of the rats 

from each group were tested for expression of conditioned immunosuppression by being re-

exposed to the conditioning chamber (CS) for a single 60-min session, while the other half 

were not re-exposed and instead remained in their home cages (HC) for 60 min. Thus, 

conditioning in the latter group of home-cage controls was not evoked and this group was 

used for baseline comparison within each treatment regimen. Immediately thereafter, all rats 

received a single subcutaneous injection of LPS to induce in vivo production of nitric oxide. 

Rats were sacrificed 6 hours after LPS injection by cervical dislocation and a sample of 

spleen and blood were obtained for the analysis of iNOS mRNA, iNOS protein, and nitrate/

nitrite.

 2.11.2 Experiment 2: IL-1RA Antagonism During Heroin Unconditioned 
Immunosuppression—For Experiment 2, animals (N = 24) received a DH infusion of 

either IL-1RA or vehicle 30 min before a single subcutaneous heroin or saline injection 

(Figure 3). In order to mirror the time point of Experiment 1, animals were returned to their 

home cage for an hour, the length of Experiment 1 conditioning sessions, and were then 

injected a single time subcutaneously with LPS to induce in vivo production of nitric oxide. 

Six hours after LPS injection, rats were sacrificed by cervical dislocation and a sample of 

spleen and blood were obtained for the analysis of iNOS mRNA, iNOS protein, and nitrate/

nitrite.

 3. Results

Experiment 1 investigated the effects of DH IL-1 signaling blockade on the acquisition of 

heroin conditioned immunosuppression by injecting IL-1RA into the DH either during each 
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conditioning session or 24 hours after each conditioning session, on non-conditioning days. 

In the final analyses, group sizes were n = 8 for IL-1RA With Cond - HC, IL-1RA With 

Cond - CS, and IL-1RA 24 h After Cond - CS groups. For the IL-1RA 24 h After Cond - HC 

group, n = 7 for nitrate/nitrate and iNOS protein analyses and n = 6 for iNOS mRNA 

analyses. One subject was removed from iNOS mRNA analysis due to outlying 

housekeeping data that signified a problem with RNA extraction/cDNA synthesis.

A 2×2 ANOVA revealed significant differences between groups for splenic iNOS mRNA 

(F(3,26) = 13.857, p < 0.001, Figure 2A). There were significant main effects of drug timing 

(F(1,26) = 11.387, p < 0.01) and exposure treatment (F(1,26) = 23.836, p < 0.001) on iNOS 

mRNA. Post-hoc analysis, using Tukey’s HSD, revealed that iNOS mRNA was statistically 

significantly reduced in animals that were re-exposed to the CS and received IL-1RA 24 h 

after conditioning (IL-1RA 24 h After Cond – CS), compared to the corresponding home 

cage control group that was not re-exposed but received the same treatment regimen 

(IL-1RA 24 h After Cond – HC, p < 0.001). No statistically significant suppression of iNOS 

mRNA was seen in animals re-exposed to the CS that received IL-1RA treatment just before 

each conditioning session (IL-1RA With Cond – CS), compared to the corresponding home 

cage control group that was not re-exposed (IL-1RA With Cond – HC, p > 0.17), indicating 

that DH IL-1RA blocked the acquisition of heroin conditioned suppression of iNOS mRNA 

when administered just before, but not 24 h after, conditioning sessions.

A 2×2 ANOVA revealed significant differences between groups for splenic iNOS protein as 

well (F(3,27) = 6.073, p < 0.01, Figure 2B). There were significant main effects of drug 

timing (F(1,27) = 5.244, p < 0.04) and exposure treatment (F(1,27) = 8.83, p < 0.01) on iNOS 

protein. Post-hoc analysis, using Tukey’s HSD, revealed that, like with iNOS mRNA, iNOS 

protein was statistically significantly reduced in animals that received DH IL-1RA 24 h after 

conditioning, on non-conditioning days, and were re-exposed to the CS (IL-1RA 24 h After 

Cond – CS) compared to the corresponding home cage control group that was not re-

exposed but received the same treatment regimen (IL-1RA 24 h After Cond – HC, p < 0.02). 

No statistically significant suppression of iNOS protein was seen in animals that received 

IL-1RA treatment just before each conditioning session (IL-1RA With Cond – CS) 

compared to the corresponding home cage control group that was not re-exposed (IL-1RA 

With Cond – HC, p > 0.87). These results demonstrate that IL-1RA administration into the 

DH during conditioning, but not 24 h later, disrupts the acquisition of heroin conditioned 

suppression of iNOS protein.

A 2×2 ANOVA revealed significant differences between groups for plasma nitrate/nitrite as 

well (F(3,27) = 7.518, p < 0.01, Figure 2C). There were significant main effects of drug 

timing (F(1,27) = 6.810, p < 0.02) and exposure treatment (F(1,27) = 14.387, p < 0.01) on 

plasma nitrate/nitrite. Post-hoc analysis, using Tukey’s HSD, revealed that nitrate/nitrite was 

statistically significantly reduced in animals that received IL-1RA 24 h later on non-

conditioning days when re-exposed to the CS (IL-1RA 24 h After Cond - CS) in comparison 

to the corresponding home cage control group that was not re-exposed (IL-1RA 24 h After 

Cond - HC, p < 0.02). No statistically significant suppression of nitrate/nitrite upon re-

exposure to the CS was seen in animals that received IL-1RA treatment just before each 
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conditioning session (IL-1RA With Cond - CS) compared to the corresponding home cage 

control group that was not re-exposed (IL-1RA With Cond - HC, p > 0.17).

Thus, we observed significant attenuation of heroin conditioned immunosuppression when 

IL-1RA was infused into the DH just before, but not 24 h after, each conditioning session in 

both iNOS mRNA and protein and in plasma nitrate/nitrite. This indicates that IL-1 

signaling blockade in the DH during conditioning sessions blocks acquisition of heroin 

conditioned immunosuppression.

Experiment 2 investigated the effects of DH IL-1 signaling blockade on heroin 

unconditioned immunosuppression. In the final analyses, group sizes were n = 6 for the 

Sal/Sal group, n = 7 for Sal/Her and IL-1RA/Sal groups, and n = 4 for the IL-1RA/Sal 

group. Three subjects were removed from analysis due to incorrect cannula placement.

A 2×2 ANOVA revealed a significant difference between treatment groups (iNOS mRNA: 

F(3,20) = 9.604, p < 0.001, Figure 4A; iNOS protein: F(3,20) = 16.007, p < 0.001, Figure 4B; 

nitrate/nitrite: F(3,20) = 13.934, p < 0.001, Figure 4C). There was a significant main effect of 

heroin treatment for iNOS mRNA (F(1,20) = 26.050, p < 0.001), iNOS protein (F(1,20) = 

46.741, p < 0.001), and plasma nitrate/nitrite (F(1,20) = 40.728, p < 0.001). There was no 

main effect of IL-1RA treatment for iNOS mRNA, iNOS protein, or nitrate/nitrite (p > 0.4 

for all measures). Post-hoc analysis, using Tukey’s HSD, revealed that heroin-injected 

groups showed significantly decreased immune activation compared to saline-injected 

control groups (iNOS mRNA: p < 0.05; iNOS protein: p < 0.006; nitrate/nitrite: p < 0.01), 

but there was no effect of IL-1RA treatment on heroin suppression of these measures to 

immune challenge (iNOS mRNA: p > 0.38; iNOS protein: p > 0.68; nitrate/nitrite: p > 0.74). 

This indicates that IL-1RA in the DH does not block unconditioned immunosuppression by 

a single heroin injection. It is possible, however, that over repeated treatments of heroin and 

IL-1RA, as in the dosing regimen used in Experiment 1, that effects of IL-1RA on heroin 

immunosuppression would begin to arise.

 4. Discussion

Heroin-paired contexts gain the ability to suppress the immune system, like heroin itself, 

through conditioning. This effect could contribute to the increased risk of infection seen in 

heroin users. Evidence suggests that the cytokine interleukin-1β (IL-1β) is required at 

physiological levels to support learning and memory. We demonstrate here that preventing 

IL-1 signaling centrally in the dorsal hippocampus (DH) during each conditioning session in 

the acquisition phase, a time when heroin and a context can become associated, prevents the 

heroin-paired context from suppressing the immune system during a subsequent expression 

test. This effect was not seen if IL-1 signaling was blocked in the DH between conditioning 

sessions on non-conditioning days. Subsequently, we tested whether blocking IL-1 signaling 

in the DH would attenuate heroin immunosuppression in order to address whether the effect 

seen in acquisition is due to the interruption of learning and memory or, alternatively, due to 

blocking the immune effects of heroin. Our results suggest that blocking IL-1 signaling in 

the DH does not interfere with acquisition of heroin conditioned immunosuppression by 

attenuating the immunosuppressive effects of heroin, but rather that IL-1 signaling may be 
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specifically involved in associative memory formation. However, this conclusion must be 

tempered with the fact that this experiment used a single injection of heroin and a single 

infusion of IL-1RA. It is unclear whether effects would be seen with multiple heroin and/or 

IL-1RA injections, as used in Experiment 1. This possibility will need to be investigated.

These results suggest that hippocampal IL-1 signaling is required for the acquisition of 

heroin conditioned immunosuppression, which is in agreement with previous reports 

demonstrating the importance of IL-1 signaling in other hippocampal-dependent forms of 

memory. However, results from the current study contrast with those of other studies 

investigating conditioned immunosuppression. In particular, Pacheco-López and colleagues 

(2007) showed that intracerebroventricular infusion of IL-1RA had no effect on the 

acquisition of taste-LPS associative memory (Pacheco-Lopez et al., 2007). We propose that 

this incongruence may be due to differences in the neural circuitry involved in the 

acquisition and expression of conditioned taste-immune vs. conditioned opiate-immune 

effects. It is unclear whether conditioned taste effects require the hippocampus in paradigms 

not employing a contextual component (Molero-Chamizo and Moron, 2015). In addition, 

prior studies demonstrated that the amygdala was important for the expression of heroin 

conditioned immunosuppression (Szczytkowski et al., 2011; Szczytkowski and Lysle, 2008, 

2010). Immune conditioning studies using cyclosporine A paired with a tastant, in contrast, 

have shown that this area was only required during acquisition of conditioned 

immunosuppression and not during expression (Pacheco-Lopez et al., 2005). These 

differences may be due to the use of different unconditioned and conditioned stimuli 

between taste and opiate conditioned immune effects, differential reliance on contextual 

memory, or differences in experimental design (e.g. targeting the basolateral aspect of the 

amygdala specifically versus the whole amygdalar complex). It was also demonstrated that 

the insular cortex and ventromedial hypothalamus were required throughout taste 

conditioned immmunosuppression or only during expression, respectively (Pacheco-Lopez 

et al., 2005), but it is unknown whether these regions are also required for contextual 

immune conditioning using heroin. Future studies should investigate these potential valuable 

distinctions.

Though it might be argued that repeated suppression of IL-1 signaling could disrupt heroin 

conditioned immunosuppression through non-specific compensatory mechanisms, the 

disruption of acquisition of this learned effect only when IL-1RA was administered into the 

DH before conditioning and not on days when conditioning did not take place, argues 

against this notion.

From the current results, it is still unclear whether hippocampal IL-1 signaling increases 

during the acquisition phase of heroin conditioned immunosuppression, or whether only 

basal levels are required for heroin context-immune associations to form. There is a plethora 

of experimental evidence that opioids can increase the activation of microglia and astrocytes 

through either glial μ-opioid receptor or toll-like receptor 4 (TLR4) activation, leading to the 

release of proinflammatory cytokines, including IL-1β (Coller and Hutchinson, 2012; 

Hutchinson et al., 2011; Motaghinejad et al., 2015; Wang et al., 2012). However, most of 

these studies were conducted in the spinal cord or under longer-term treatment with opioids 

than what was used in the present studies. Chronic morphine has been shown to elevate 
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astrocyte activation in the hippocampus (Song and Zhao, 2001), but again, it is unclear 

whether this would occur following five doses of heroin or whether this would lead to 

increased release of IL-1β. Stress-induced IL-1β expression was reduced in the dentate gyrus 

by morphine (Jones et al., 2015), indicating that opioids may have differential effects in 

different subregions of the hippocampus or that opioid action might depend on prior 

inflammatory states.

Neurons might also contribute to the release of IL-1β since both glia and neurons have been 

shown to release IL-1β in the brain (Goshen et al., 2007). TLR4 activation, being upstream 

of IL-1β release from glia, might also lead to opioid-mediated release of cytokines from 

neurons. Additionally, if heroin activates microglia in our paradigm, this may lead to 

potentiated release of IL-1β from neurons. Microglial activation following brain injury has 

been shown to upregulate TLR4 expression on hippocampal neurons (Li et al., 2015). 

Interestingly, this neuronal change in TLR4 expression was coupled with increased 

hippocampal excitability, especially in the dentate gyrus, and was increased or decreased by 

TLR4 agonists or antagonists, respectively. While this effect was not linked to the release of 

IL-1β directly, there is additional evidence indicating that a functional consequence of IL-1β 

release in the hippocampus could be modulation of neuronal excitability. IL-1β has been 

shown to cause changes in NMDA and AMPA receptor dynamics in the hippocampus, 

inhibit voltage dependent calcium channels in CA1, cause permanent inhibition of 

GABAergic signaling in dentate gyrus and CA3 neurons, and yet increase GABAergic 

signaling in CA1 [see (Schafers and Sorkin, 2008; Vezzani and Viviani, 2015)].

Also of note is the possibility of CB1-dependent regulation of opioid immune signaling. 

Heroin has been shown to produce CB1 signaling adaptations in the hippocampus following 

acquisition of self-administration (Fattore et al., 2007), indicating that opioids may modulate 

tonic expression of endocannabinoid signaling the hippocampus. There is evidence that 

basal expression of IL-1β in the hippocampus requires cannabinoid receptor, CB1 (Csolle 

and Sperlagh, 2011) therefore, there are multiple ways that opiates might modulate 

expression of IL-1β in the hippocampus so that IL-1β can contribute to heroin learning. The 

functional consequence of this IL-1β regulation may be subregion specific changes in 

neuronal excitability in the hippocampus. Future experiments should aim to explore IL-1β 

expression, glial activation, and the neuromodulatory functions of IL-1β in each of the 

subregions of the hippocampus within our heroin conditioning regimen.

It must be noted that our manipulation used the IL-1R1 endogenous receptor antagonist, 

IL-1RA. This receptor also binds to IL-1 alpha (IL-1α) and mediates its action, so the 

specificity of IL-1β in mediating the effects seen cannot be concluded definitively. Previous 

studies have shown that IL-1β signaling is required for the expression of heroin conditioned 

immunosuppression to a context through knockdown of IL-1β expression using IL-1β siRNA 

(Szczytkowski et al., 2013). For the current experiment, IL-1β siRNA was not temporally 

specific enough to target processes only during or shortly after each conditioning session. It 

has been shown in our experience to knockdown expression in vivo for at least 48 hours 

(Szczytkowski et al., 2013), and it has the potential to knockdown gene expression for up to 

four days (Dr. H. Y. Eminy Lee, Personal communication, 2010). IL-1RA, on the other hand, 

could have a much more acute effect, which is why it was used in the present study. Our 
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results seem to confirm that the effects of administering IL-1RA 24 hours apart were 

distinguishable.

To our knowledge, despite the fact that a preponderance of evidence suggests that opioid use 

can suppress the immune system in animal models, primates, and humans along with 

concerning evidence that this extends to clinical use, there has been no investigation as to the 

prevalence of opioid conditioned immunosuppression in therapeutic opioid use (Al-Hashimi 

et al., 2013; Brown et al., 2012; Sacerdote, 2006; Sacerdote et al., 2012; Santamaria et al., 

2010; Vallejo et al., 2004; Wu et al., 2015). Conditioned immunosuppression using other 

immunosuppressive drugs has been demonstrated in humans in the placebo literature 

(Albring et al., 2014; Albring et al., 2012; Goebel et al., 2002), so it is reasonable to 

hypothesize that opioid immune effects would be able to be conditioned in humans as well. 

This possibility should be explored in the future as it has the potential to greatly impact the 

clinical use of opioids in pain and cancer management. The current results suggest that 

therapeutic inhibition of IL-1 during the acquisition phase of associations between the 

immune system with opioids may help prevent usually benign stimuli from suppressing the 

immune system and may block increased infection risk. While more difficult to make use of 

this treatment in the case of heroin users, IL-1 inhibition could potentially alleviate 

immunosuppressive consequences of clinical opioid use. Further studies should be 

conducted to relate the current results to clinical application. The direct impact of 

hippocampal IL-1 blockade on pathogen resistance outcomes should be empirically tested. 

This study provides valuable insight into the neural mechanisms that contribute to heroin 

conditioned immunosuppression and characterizes IL-1 effects on an important measure of 

conditioned immunity.
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Highlights

• Acquisition of heroin conditioned immunosuppression requires 

hippocampal IL-1.

• IL-1 blockade did not affect immunosuppressive effects of a single dose of 

heroin.

• Hippocampal IL-1 signaling is likely involved in memory formation in this 

model.
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Figure 1. 
Experimental Design of Experiment 1. Following a surgery recovery period, rats were 

conditioned to associate a heroin injection with a distinct context. Rats in one group received 

an infusion of IL-1 receptor antagonist (IL-1RA) into the dorsal hippocampus (DH) 30 min 

before each of the five conditioning sessions (IL-1RA With Cond). Rats in another group 

received an IL-1RA infusion into the DH 24 h after the previous conditioning session, on 

non-conditioning days (IL-1RA 24 h After Cond). Number of injections and injection 

manipulations were balanced between each group using saline infusions. Six days after the 

last infusion, half of the animals from each group were either re-exposed to the heroin-

paired context (CS) to test for conditioned immunosuppression or remained in the home-

cage for an equivalent period of time (HC). Immediately following, all animals were given a 

single injection of LPS and were sacrificed 6 hours later.
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Figure 2. 
Immune suppression to CS is attenuated by IL-1 signaling blockade before conditioning 

with heroin. IL-1 receptor antagonist (IL-1RA) administered just before each context-heroin 

pairing (left two bars), but not 24 h after on non-conditioning days (right two bars), 

attenuated suppression of splenic iNOS mRNA (A), splenic iNOS protein (B), and plasma 

nitrate/nitrite (C) upon re-exposure to the context (CS, light grey) compared to respective 

home cage controls receiving the same timing of IL-1RA treatment where conditioning was 

not evoked (HC, dark grey). Conditioned immune suppression to the CS was seen only in 
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groups that received IL-1RA on non-conditioning days. (*, significantly different relative to 

respective control group; Tukey’s HSD, p < 0.05).
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Figure 3. 
Experimental Design of Experiment 2. Following a surgery recovery period, rats received an 

infusion of IL-1 receptor antagonist (IL-1RA) or saline (Sal) into the dorsal hippocampus 

(DH) 30 min before a single subcutaneous injection of saline (Sal) or heroin (Her). One hour 

later, all animals were given a single injection of LPS and were sacrificed 6 hours later.
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Figure 4. 
Immune suppression to heroin is not attenuated by IL-1 signaling blockade. IL-1 receptor 

antagonist (IL-1RA) administered 30 min before (light grey bars) an injection of heroin did 

not attenuate suppression of splenic iNOS mRNA (A), splenic iNOS protein (B) and plasma 

nitrate/nitrite (C). (*, significantly different; Tukey’s HSD, p < 0.05).
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