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Abstract

Studies on antisocial personality disorder (ASPD) subjects focus on brain functional alterations in 

relation to antisocial behaviors. Neuroimaging research has identified a number of focal brain 

regions with abnormal structures or functions in ASPD. However, little is known about the 

connections among brain regions in terms of inter-regional whole-brain networks in ASPD 

patients, as well as possible alterations of brain functional topological organization. In this study, 

we employ resting-state functional magnetic resonance imaging (R-fMRI) to examine functional 

connectome of 32 ASPD patients and 35 normal controls by using a variety of network properties, 

including small-worldness, modularity, and connectivity. The small-world analysis reveals that 

ASPD patients have increased path length and decreased network efficiency, which implies a 

reduced ability of global integration of whole-brain functions. Modularity analysis suggests ASPD 

patients have decreased overall modularity, merged network modules, and reduced intra- and inter-

module connectivities related to frontal regions. Also, network-based statistics show that an 

internal sub-network, composed of 16 nodes and 16 edges, is significantly affected in ASPD 

patients, where brain regions are mostly located in the fronto-parietal control network. These 

results suggest that ASPD is associated with both reduced brain integration and segregation in 
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topological organization of functional brain networks, particularly in the fronto-parietal control 

network. These disruptions may contribute to disturbances in behavior and cognition in patients 

with ASPD. Our findings may provide insights into a deeper understanding of functional brain 

networks of ASPD.
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Introduction

Antisocial personality disorder (ASPD) is one of the six personality disorders stated in the 

Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-V). The 

essential features of ASPD in dimensional model are antagonism and disinhibition, which 

are commonly linked to criminal behavior. It was reported that 47 % of male prisoners had 

been previously diagnosed with ASPD, according to a large-scale meta-analytic review in 

worldwide prison systems (Fazel and Danesh 2002). Moffitt et al. found most violent crimes 

were committed by a small number of men with ASPD (Moffitt et al. 2002). According to 

the criteria of DSM-V, men with ASPD display patterns of antisocial and aggressive 

behaviors that begin during childhood and remain stable throughout life. Lifelong patterns of 

poor self-control ability, impulsivity, and risk-taking behaviors are prevalent in those 

suffering from ASPD.

Morphological MRI studies found multiple brain structures that differed in ASPD groups. 

For example, Raine et al. found that the prefrontal gray matter volume in ASPD was reduced 

by about 11 %, as opposed to that of the control group (Raine et al. 2000). The reduced 

volume in the prefrontal cortex was replicated in many other studies of ASPD (Yang and 

Raine 2009). Violent individuals diagnosed with ASPD suffered from significant losses in 

anterior cingulate volume (Kumari et al. 2014). Sundram et al. showed that white matter 

fractional anisotropy (FA) decreased in the right frontal lobe in ASPD young males, 

indicating white matter microstructural abnormalities in the frontal lobe (Sundram et al. 

2012). Meanwhile, functional MRI studies also found abnormal brain regions in ASPD. For 

example, autonomic activity in prefrontal gray matter was reportedly reduced in the galvanic 

skin response, as opposed to that of the control group (Raine et al. 2000). Schneider et al. 

unexpectedly found increased emotional response of ASPD in the amygdala and dorsolateral 

prefrontal cortex (Schneider et al. 2000). By using amplitude of low-frequency fluctuations 

(ALFF) and regional homogeneity (ReHo), studies also found that ASPD patients showed 

decreased activities in the fronto-temporal brain regions during resting states (Liu et al. 

2014; Tang et al. 2013). However, previous studies on ASPD mainly focused on 

abnormalities of individual brain regions. As is known, the human brain is a complex 

interconnected network with powerful functionality of both functional segregation and 

functional integration.

Numerous research studies have suggested that human whole-brain networks, including 

structural and functional networks, can be characterized quantitatively using topological 
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properties based on the graph theory (Wee et al. 2014; Wang et al. 2013; Sporns 2011). 

Graph theory analyses can provide concise measures of the integration and segregation of 

interconnected networks (Rubinov and Sporns 2010). With topological metrics, many 

organizational principles, including small-worldness and modularity, have been observed in 

the human brain connectome. A small-world network can be characterized by high local 

specialization and high global integration between network nodes (Stam 2004; Latora and 

Marchiori 2003). Network modularity provides information about the extent of 

decomposability of a network by identifying modules of densely interconnected nodes, but 

sparsely connected across different modules (Newman 2006). Small-worldness and 

modularity provide rich quantitative insights into the organization of complex brain 

networks (Shi et al. 2012). In fact, these network properties have been found disrupted in 

patients with various neuropsychiatric disorders (Wee et al. 2014; Peng et al. 2014; Shi et al. 

2012; Zhang et al. 2011). Specially, psychopathy patients were lately found with reductions 

in small-world network properties, which indicate an integrative deficit (Philippi et al. 

2015). As generally known, psychopathy has multiple overlaps with ASPD in diagnostic 

criteria. Recent researches have also observed changes to modular structure of functional 

networks in diverse pathological conditions (Gamboa et al. 2014; Arnemann et al. 2015; 

Vaessen et al. 2013). For psychopathy, the network modularity seems less coordinated due to 

the lack of connections between distant hubs (Philippi et al. 2015). Graph theoretical 

approaches have been shown as a promising tool to characterize pathological conditions; 

however, to our knowledge, there is no report of the graph theory study of ASPD. Thus, the 

topological organization of whole-brain functional networks in ASPD still remains poorly 

understood.

In this study, we utilized resting-state functional magnetic resonance imaging (R-fMRI) to 

investigate the topological architecture of intrinsic brain networks in patients with ASPD. R-

fMRI has been extensively used to reveal functional abnormalities of the brain (Peng et al. 

2014; Shi et al. 2012; Wang et al. 2013). We hypothesize that ASPD disrupts the topological 

organization of intrinsic functional connectome, and thus leads to reduced functional 

integration. To test this hypothesis, we collected R-fMRI data from 32 ASPD patients and 35 

healthy control subjects, and analyzed their between-group differences of intrinsic functional 

connectome using graph theoretical approaches. We also determined the possible functional 

connectivity changes by using network-based statistics (NBS).

Methods and materials

Participants

All volunteers were recruited from the School for Youth Offender of Hunan Province, where 

they received reformatory education as a result of certain crimes, e.g., robbery and violent 

attacks. “Enclosed-style” management and regular school hours were implemented daily in 

this school. All young offenders were of legal age (age > 18 years) to give consents to 

participate in the experiments, but were under the legal age when they had originally entered 

the school. All volunteers were first tested in groups at the school using the Personality 

Diagnostic Questionaire-4+ (PDQ-4+) by a professional with experience in psychological 

testing. The subjects with ASPD scores equal to or above 4 score were continuously tested 
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by two senior psychiatrists to determine whether they had Axis 1 disorders of major mental 

illness. Those with Axis 1 disorder were excluded. The rest subjects were tested using the 

Personality Disorder Interview (PDI-IV) for personality disorders. Note that PDI-IV is a 

semi-structured interview that yields a rating for each of the DSM-IV personality disorders 

(Widiger and Costa 1994). In this step, subjects were excluded if they were accompanied 

with any other personality disorders. Finally, 32 subjects diagnosed only with ASPD were 

found to comply with criteria and included in this study. All ASPD disorders met both 

PDQ-4 criteria and PDI-IV criteria for ASPD. In the meantime, we also chose 35 controls 

subjects who neither met PDQ-4 criteria nor met PDI-IV criteria for ASPD. All the controls 

were tested using the same above methods. All subjects had normal IQ when tested using the 

Wechsler Adult Intelligence Scale. The control subjects without ASPD were matched to the 

ASPD subjects in age, education, and IQ using One-way ANOVAs (Table 1).

All subjects were right-handed, native Chinese speakers. They had no access to alcohol for 

at least 6 months prior to the brain scan. They had no history of substance abuse or any 

major head trauma, as well as history or current diagnosis of serious mental disorders, e.g., 

anxiety neurosis, depression or schizophrenia. Three teachers accompanied each participant 

while undergoing the fMRI scans.

Data acquisition and preprocessing

All subjects underwent a resting-state fMRI using a 1.5 T Siemens Trio scanner, with an 8-

channel phased array head coil, at the Third Xiangya Hospital of Central South University. 

During the scan, subjects were instructed to relax, close their eyes, remain awake, and 

perform no specific cognitive exercise. These conditions were later confirmed with a survey 

that included whether they fell asleep and what they were thinking during the scanning 

process. Magnetic resonance imaging (MRI) scans were performed using a gradient-echo 

EPI sequence, and the imaging parameters were as follows: TR = 2000 ms, TE = 50 ms, FA 

= 90°, matrix = 64 × 64, slices = 23, FOV = 240 mm ×240 mm, and resolution = 3.75 × 3.75 

× 5 mm3. Every resting-state functional session lasted 5 min, and totally 150 volumes were 

obtained.

The R-fMRI images were processed using DPARSF (Yan and Zang 2010). Specifically, for 

each subject, the first 5 volumes of the scanned data were removed due to magnetic 

saturation. The remaining 145 volumes were corrected through registering and re-slicing to 

control for head motion. All subjects in this study had no more than 1 mm translation in the 

x, y, or z-axes and less than 1 degree of rotation in each axis. Next, the volumes were 

normalized to the standard EPI template in the Montreal Neurological Institute (MNI) space 

and resampled into 3 mm isotropic voxels. Then, smoothing and filtering were performed 

using a Gaussian filter of 8 mm full-width half-maximum kernel and a Chebyshev band-pass 

filter (0.01–0.08 Hz), respectively. Finally, several nuisance covariates, including head 

motion parameter, white matter signals, and cerebrospinal fluid signals, were regressed from 

the image to remove some potential sources of physiological noise in functional connectivity 

analysis (Biswal et al. 2010; Dosenbach et al. 2010). Considering the controversy of 

removing the global signal when preprocessing RS-fMRI data (Fox et al. 2009; Murphy et 
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al. 2009), we did not include the global signal in our regression process (Lynall et al. 2010; 

Wang et al. 2013; Supekar et al. 2008).

Construction of brain functional network

Brain networks were constructed at macro-scale, where nodes represented brain regions and 

edges represented interregional functional connectivity. In order to define the nodes, we 

parcellated the entire brain into 90 brain regions of interest (ROIs) (45 ROIs per hemisphere) 

according to the anatomical automatic labeling atlas (AAL) (Tzourio-Mazoyer et al. 2002). 

Regional mean time series were obtained for each subject by averaging the fMRI time series 

over all the voxels in each of the 90 regions. Then, the network edges were defined as 

interregional resting-state functional connectivity, obtained by computing Pearson’s linear 

correlation coefficient between the mean time series of each pair of the regions. For each 

subject, we obtained a resting-state functional network that was expressed as a 90 × 90 

symmetrical matrix.

As of now, most brain network studies used binarized graphs to investigate the brain’s 

topological properties (Zhang et al. 2011; Peng et al. 2014; Shi et al. 2012). These methods 

require thresholds for each correlation matrix repeatedly over a wide range of sparse levels, 

and obtain different results for different thresholds. In this study, we used weighted network, 

i.e., the raw correlation coefficient matrix, to study network attributes that take into account 

the network edge strength in terms of functional connectivity. Thus, the weighted network 

may be able to demonstrate more natural representations of the brain organization. We 

employed network analysis for ASPD at three levels, i.e., global small-worldness, 

modularity, and connectivity.

Global small-world measure

Small-world properties for a weighted network were characterized by the clustering 

coefficient Cw and the shortest path length Lw (Watts and Strogatz 1998; Wang et al. 2013), 

which quantify efficiency of information transfer of a network at both local and global 

levels. Their normalized versions  were obtained using random networks. A small-

world network typically shows  and  (Watts and Strogatz 1998). Details of 

mathematical definitions could be found in Appendix.

Besides the conventional small-world parameters , network efficiency metrics 

were also used to provide more biologically sensible properties for brain networks. 

Specifically, the global efficiency  and local efficiency  quantify the extent of 

information transmission at the global network and the individual node levels, respectively 

(Latora and Marchiori 2001). Details of their mathematical calculations can be found in 

Appendix.

Modular analysis

Modularity is an important organizational principle for brain networks (Meunier et al. 2010). 

Brain network is comprised of multiple modules by functional specialization and integration 

(Rubinov et al. 2009). A complex network can be partitioned into modules using a modified 
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greedy optimization algorithm by searching for the partition that maximizes the number of 

connections within modules, and also minimizes the number of connections between 

modules (Newman and Girvan 2004; Reichardt and Bornholdt 2006). To assess the extent of 

modular organization, i.e., the degree to which a graph can be divided into non-overlapping 

modules, weighted modularity metric Qw was calculated for the individual network (Shi et 

al. 2013). To assess the inter- and intra-modular connectivities, the sum of all connectional 

weights within one module was defined as an index of intra-module connectivity, and the 

total connectional weights between two modules can be used as an index of inter-module 

connectivity (Guimera and Amaral 2005).

Based on the modules identified by Newman’s algorithm (Newman and Girvan 2004), we 

also calculated the participation coefficient (PC) and intra-module degree (MD) for each 

node. Participation coefficient was a measure of a node’s importance in inter-modular 

communication, while intra-module degree was a measure of a node’s importance in intra-

modular communication. Details of mathematical definitions were listed in Appendix. The 

Brain Connectivity Toolbox (http://www.brainconnectivity-toolbox.net) was used in this 

paper for the network measure computation.

Functional connectivity analysis

To identify the functional connectivity that was altered in ASPD patients, a network-based 

statistic (NBS) approach was used (Zalesky and Fornito 2010). In brief, a primary cluster-

defining threshold (t = 3, p = 0.05) was first used in the t-statistic (two-sample one-tailed t-

tests) that was computed for each connection, so as to identify supra-threshold connections 

within which any connected components and their number were then determined. Next, the 

null distribution of connected component size was empirically derived using a 

nonparametric permutation approach (5000 permutations) to estimate the significance for 

each component. A corrected p value was determined for each component using the null 

distribution of maximal connected component size. The same primary threshold (t = 3) was 

used to generate supra-threshold links, among which the maximal connected component size 

was recorded. Finally, a connected component of size M can be found between controls and 

patients, i.e., those components show significant changes in ASPD patients in comparison to 

that of controls. Notably, the effects of age, education, and IQ were removed by a regression 

analysis prior to the statistical analysis of functional connections. The details of network-

based statistical analyses can be found in (Zalesky and Fornito 2010).

Statistical analysis

To determine group differences in small-world and modular measures, nonparametric 

permutation tests were performed on each metric, and corresponding p values were then 

reported (Bullmore et al. 1999; Zhang et al. 2011). In brief, we initially calculated the 

between-group difference of the mean values for each small-world or modular metric. To 

test the null hypothesis that the observed group differences only occurred by chance, each 

small-world or modular metric value was randomly reallocated into two groups (10,000 

permutations), and then the mean difference between two randomized groups was 

recomputed. The 95th percentile points of each distribution were used as critical values for a 

one-tailed test to determine whether the observed group differences could occur by chance. 
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Before the permutation tests, multiple linear regression analyses were applied to remove 

confounding effects of age, education, and IQ for each network metric. Note that gender was 

not included, as all participants were males.

Results

Abnormalities of small-world properties in ASPD patients

The weighted network of both ASPD and HC groups exhibited typical features of small-

world topology, i.e., higher clustering coefficients but almost identical characteristic path 

lengths, compared to matched random networks.

Nevertheless, quantitative statistical analyses revealed significant differences in both small-

world parameters and network efficiency between ASPD patients and control subjects (Fig. 

1). The ASPD group showed significantly higher values in both characteristic path length (p 
= 0.0204) and normalized characteristic path length (p = 0.0204), compared to the values of 

normal control subjects. No significant differences were found in clustering coefficients (p = 

0.1146). As for network efficiency, comparisons revealed both decreased global efficiency (p 
= 0.0385) and local efficiency (p = 0.0299) in the ASPD group.

Modularity differences in ASPD patients

Modular organizations—Four functionally oriented modules were detected in the HC 

group, but only three modules in the ASPD group. The surface representations for functional 

modules are shown in Fig. 2. Below are the four modules in the HC group.

• Posterior (Module I): Comprising occipital regions in the primary visual cortex 

and their adjacent areas. ASPD patients were almost the same as the control 

subjects in this module, except one additional brain region, i.e., right inferior 

temporal gyrus (ITG).

• Central (Module II): Including motor, somatosensory, and superior temporal 

regions (auditory system), as well as the bilateral insula. ASPD patents were also 

similar to the control subjects in this module, except for four additional brain 

regions, i.e., bilateral hippocampus (HIP) and parahippocampal gyrus (PHG).

• Frontal-Subcortical (Module III): Mostly involved in apathy and disinhibition 

(Bonelli and Cummings 2007), including medial frontal cortex, part of the 

orbitofrontal cortex, subcortical structures, and middle temporal gyrus. For the 

ASPD group, this module did not appear independently.

• Frontoparietal (Module IV): Including frontal, inferior parietal, angular, and 

inferior temporal regions in the healthy group, which are mainly associated with 

cognition control function (Cole et al. 2014). In ASPD group, this module also 

did not appear independently.

Modules I and II in the HC group are mostly similar to those in the ASPD group. 

Interestingly, Modules III and IV in the HC group are merged into a single Module III in the 

ASPD group.
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Quantitative statistical analyses revealed significant difference in the global brain modularity 

between ASPD patients and control subjects (p = 0.0268).

Alterations in the intra- and inter-module connectivity—To compare functional 

modules between the groups, the mean modular organization in healthy controls was used as 

a more optimized functional organization. The mean functional modules in healthy controls 

were then applied to all subjects’ brain networks to evaluate the intra-module connectivity 

and inter-module connectivity. Our results found that ASPD patients showed significantly 

reduced modularity in frontal-subcortical module (p = 0.0268) and frontoparietal module (p 
= 0.001), compared to the healthy controls (Fig. 3a).

We then examined inter-module connectivity between groups using the four functional 

modules obtained from healthy controls. Compared with healthy controls, ASPD patients 

showed significantly decreased inter-module connectivity between frontal-subcortical and 

frontoparietal modules (p = 0.0121) (Fig. 3b).

Regional roles of module connectivity—Participation coefficient measures a node’s 

importance in inter-modular communication. For the participation coefficient of each node, 

nonparametric permutation tests revealed significant differences mainly in the prefrontal and 

parietal regions, as well as left posterior cingulate gyrus and superior temporal gyrus (Table 

2). Aside from the left posterior cingulate gyrus, the participation coefficient values of the 

above brain regions all decreased.

Intra-module degree measures a node’s importance in intra-modular communication. For the 

intra-module degree of each node, nonparametric permutation tests revealed significant 

differences mainly in the prefrontal and temporal regions with decreased intra-module 

degree, and the posterior cingulate gyrus, but with increased intra-module degree (Table 2).

Functional connectivity alterations in ASPD patients

We utilized the NBS method and identified a single connected sub-network with 16 nodes 

and 16 connections that showed significant differences between ASPD patients and control 

subjects (Fig. 4). Within this sub-network, all connections exhibited decreased values in 

ASPD patients, compared to those of control subjects. Among the 16 connections, 6 

connections were located between frontal and parietal gyri, and 8 connections located 

between frontal or parietal gyrus and other gyrus, including 3 connections between fusiform 

and supramarginal gyri (a portion of the parietal lobe). We can observe that the disturbed 

connections are mostly related to fronto-parietal control network.

Discussion

The present study examined functional brain networks in ASPD patients for small-world, 

modularity, and connectivity properties. The small-world analysis reveals that ASPD 

patients have increased path length and decreased network efficiency, implying a reduction 

of normal global integration of whole-brain networks. Modularity analysis suggests that 

ASPD patients have decreased modularity and different network modular organizations from 

control group. NBS analysis shows that an internal sub-network, composed of 16 nodes and 
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16 edges, is significantly affected in ASPD patients, where the brain regions are located 

mostly in the fronto-parietal control network. All results suggest that ASPD is associated 

with disruptions in topological organization of functional brain networks.

Abnormalities of small-world property in ASPD patients

Small-worldness enables high efficiency of both specialized and integrated processing 

within a network (Watts and Strogatz 1998; Latora and Marchiori 2003; Wang et al. 2013). 

In this study, small-worldness was found in both ASPD and control groups, suggesting an 

optimal organization of the human brain to support efficient information communication. 

However, quantitative analysis revealed significant group differences in both characteristic 

path length and network efficiency. Specifically, the ASPD patients showed increased path 

length and decreased local efficiency and global efficiency, compared to the control subjects, 

which indicates a disturbance of global integration of whole-brain networks in ASPD 

patients. In parallel to the increase in characteristic path length, the average physical 

connection distance also decreased in ASPD, which suggests a loss of connections between 

certain remote brain regions. Long-range connections are believed to underlie cognitive 

processing through effective integrity and rapid information propagation between and across 

remote regions of the brain (Sporns and Zwi 2004), as increased path length in ASPD 

suggests difficulty in certain cognitive processing. Network efficiency describes brain 

networks from parallel information flow, which is a more biologically relevant measure 

(Latora and Marchiori 2001). On the other hand, global efficiency measures the ability of 

parallel information transmission throughout the brain network. Local efficiency measures 

the fault tolerance of the network, indicating the capability of information communication 

for each subgraph when the central node is eliminated. Both global and local efficiencies 

decreased in ASPD, implying disruption of brain network in ASPD patients. The changes in 

these global network metrics may be attributed to decreased functional connections in ASPD 

patients, mainly those related to fronto-parietal control network. The decreased small-world 

properties have been found in a number of brain disorders, e.g., depressive disorder (Zhang 

et al. 2011), Alzheimer’s disease (Wang et al. 2013), and schizophrenia (Shi et al. 2012).

Modular organization differences in ASPD patients

Modularity enables faster adaptation by changing functionality of one module without losing 

functionality in other modules. Random networks have less modularized information 

processing or fault tolerance, compared with small-world networks (Latora and Marchiori 

2001). In this study, small-worldness and modularity were found in both ASPD and control 

groups. This suggests the optimal organization of the human brain to support efficient 

information transfer of both modular and distributed processing (Wang et al. 2013). Our 

results on modular architecture of the resting-state functional networks of the control groups 

are generally in accordance to previously reported modular decompositions of the resting-

state correlation networks (Balenzuela et al. 2010; Tagliazucchi et al. 2013; Gamboa et al. 

2014), with modules parallel with well-defined brain systems (i.e., visual areas, 

frontoparietal network, central sensory-motor module, etc.). These results provide 

confidence on the modularity decomposition as a method to quantify global brain 

interactions. Quantitative statistical analyses revealed decreased modularity in ASPD 

patients. Furthermore, ASPD patients showed decreases in intra-modularity for both frontal-
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subcortical and fronto-parietal modules. They also showed decreased inter-module 

connectivity between frontal-subcortical and fronto-parietal modules, compared to healthy 

controls. A decrease in the local/global efficiency in small-worldness was a reflection of the 

intra−/inter-module connectivity. Based on these outcomes, there is an obvious ASPD 

abnormality present. In our study, regions in frontal-subcortical module were mostly 

involved in apathy and disinhibition (Bonelli and Cummings 2007). The anterior cingulate 

circuit, including the medial frontal cortex, anterior cingulate, and pallidus, is related to 

emotional information integration; and the orbitofrontal circuit, including the orbitofrontal 

cortex and caudate, allowed the inhibition of behavioral responses. Fronto-parietal module is 

mainly associated with cognition control function (Cole et al. 2014). The decrease of 

connectivity in and between these modules may result in deficits in cognitive, behavioral 

control, and mood processing; thus, leading to poor self-control ability, apathy, impulsivity 

and risk-taking behaviors.

Less small-world characteristics and less modularity in ASPD patients may reflect a less 

optimal topological organization in brain connectome, which provides evidence that ASPD 

is a disorder with disrupted neuronal network organization.

Functional connectivity alterations in ASPD patients

Using network-based statistics, we identified a single network with weaker connections in 

the ASPD patients. These fewer connections during resting states may reflect essential 

disconnections of spontaneous neural activity. Disconnected connectivities were located 

mostly between frontal and parietal gyri, or between these two gyri and other brain regions, 

which indicates disturbances in the fronto-parietal control network in ASPD patients. These 

connections were directly related to whole-brain network topology, suggesting their 

contribution to observed global topological abnormalities. It is reasonable to speculate that 

these disconnections had led to decreased functional integration throughout the brain, which 

may further account for cognitive deficits in ASPD patients. The fronto-parietal control 

system plays an important role in maintenance and improvement of mental health, as an 

intact control system is protective against a variety of mental illnesses (Cole et al. 2014). 

Fewer connections of the control system in ASPD may disturb its ability to regulate 

symptoms. The cortical regions in the fronto-parietal control system are highly 

interconnected (Power et al. 2011; Vincent et al. 2008), and have extensive brain-wide 

connectivity that allows for communicate with various systems throughout the brain (Power 

et al. 2011). Executive function reflects the higher order cognitive control of thought, action, 

and emotions. A study looking at damages to the prefrontal cortex in rhesus monkeys 

showed impairments in executive function, i.e. they had difficulties in establishing certain 

specific response pattern and then maintaining or shifting response patterns to other tasks 

(Moore et al. 2009). Neuropsychological deficits in executive function were thought to 

contribute to severe antisocial and aggressive behavior (Ogilvie et al. 2011; Raine et al. 

2005; Seguin et al. 2007). Our finding about fewer connections in ASPD patients could 

further support this hypothesis and explain the cause for severe antisocial and aggressive 

behaviors from brain networks.
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Brain region disruptions in ASPD patients

Combining modularity analysis and NBS analysis, we easily found consistent disruptions in 

brain regions, such as in the superior frontal gyrus (medial) (SFGmed), orbitofrontal cortex 

(OFC), posterior cingulate gyrus (PCG), superior parietal gyrus (SPG), inferior parietal 

lobule (IPL), and temporal pole (TPO). Many previous studies also found that individuals 

with antisocial personality disorder had reduced functioning in the prefrontal cortex (Yang 

and Raine 2009). Note that the medial frontal gyrus is closely related with high-level 

executive functions and decision-related processes (Talati and Hirsch 2005), and is also 

associated with a number of cognitive functions, which prevents specific performances, such 

as sustained attention (Demeter et al. 2011), and uncertainty (Volz et al. 2004a, 2004b). 

Risk-taking and impulsivity in ASPD may be related to poor decision-making caused by 

disruptions to the medial frontal gyrus.

Orbitofrontal cortex (OFC) is widely believed to be critical for flexible decision-making 

when the established choice values change. The medial OFC is involved in making stimulus-

reward associations and in reinforcement of behavior, while the lateral OFC is involved in 

stimulus-outcome associations and in evaluation of behavior (Walton et al. 2010). Encoding 

new expectations about punishment and social reprisal is related to lateral OFC (Campbell-

Meiklejohn et al. 2012; Meshi et al. 2012). The lateral OFC plays an important role in 

conflict resolution, and damages to this area can result in both inappropriate displays of 

anger and inappropriate responses to the anger of others (Meyers et al. 1992). Disruption of 

activity in this area, using transcranial magnetic stimulation or direct current stimulation, 

leads to changes in risk attitudes (Fecteau et al. 2007). Destruction of the OFC, through 

acquired brain injury, typically leads to patterns of disinhibited behavior-impulsivity, which 

is a core characteristic of ASPD. These converging lines of evidence suggest that, if the OFC 

cannot function properly, a person may act impulsively and inappropriately, and then 

produce antisocial emotions. The associated inability to act in a “civilized” manner often 

results in criminality.

The posterior cingulate is reported to be essential for conscious awareness (Vogt and 

Laureys 2005), and be involved in a range of cognitive tasks about self-processing (Cavanna 

and Trimble 2006; Buckner and Carroll 2007). The superior parietal cortex is critically 

important for manipulation of information in working memory (Koenigs et al. 2009), and in 

rule-based visual-motor transformations (Hawkins et al. 2012). The inferior parietal lobule is 

involved in perception of emotions in facial stimuli (Radua et al. 2010) and plays a key role 

in various cognitive functions, including attention, language, and action processing (Caspers 

et al. 2012). The right functions of the above regions are important for selection and control 

of socially relevant behavior.

The temporal lobe is involved in language comprehension and emotion association (Arfken 

2009), whereas the temporal pole is associated with cognitive perspective taking (Meyer et 

al. 2013). Prior studies revealed that the right temporal pole plays a critical role in emotional 

empathy, both in emotional contagion and affective perspective-taking (Rascovsky et al. 

2011; Zahn et al. 2009). The impairment in emotional comprehension and contagion may 

introduce changes in conduct and social behavior (Rascovsky et al. 2011; Zahn et al. 2009). 

Jastorff et al. found that the main cognitive component underlying middle temporal gyrus 
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activation in their study was the evaluation of action rationality (Jastorff et al. 2011). The 

temporal lobes take part in sensory, affective, and higher cognitive processing (Kolb and 

Whishaw 1990). The disruption of these areas found in these studies may be related with 

changes in conduct and social behavior in those with ASPD, thus resulting in violent, 

aggressive behaviors, or in development of affective instability, which are both core 

diagnostic criteria for ASPD.

In this study, the brain abnormality of ASPD appear in both temporal and frontal lobes, 

which is consistent with prior studies in aggression-prone individuals (Sundram et al. 2012; 

Wolf et al. 2015; Hoppenbrouwers et al. 2013). Certain types of antisocial activities are 

closely linked with frontal-temporal dysfunction, with joint abnormalities of the two regions 

predisposing some patients to antisocial behaviors (Miller et al. 1997). Compared to either 

area, independently, temporal and frontal lobe neuropathology co-occurring may increase 

the risk of anger and aggression (Potegal 2012). Neuropathology occurring in both areas has 

also been found in psychopathy, which is a similar disorder to ASPD and has many overlaps 

in diagnostic criteria. Psychopaths illustrate reduced gray matter volume both in the frontal 

and temporal regions, compared to gray matter volumes in the controls (de Oliveira-Souza et 

al. 2008; Muller et al. 2008a). Furthermore, an impaired emotion-cognition interaction in 

psychopaths is involved in changed prefrontal and temporal brain activation (Muller et al. 

2008b). As a result of these findings, some studies have put forward theories that fronto-

temporal brain abnormalities are associated with antisocial behavior disorders (Blair and 

Mitchell 2009), which were verified continuously (Sundram et al. 2012; Wolf et al. 2015; 

Hoppenbrouwers et al. 2013).

Conclusion

Overall, our results provide empirical evidence for disrupted network organization in ASPD 

patients at three (global, modularity, and connectional) levels for the very first time. These 

results suggest that ASPD is associated with disruptions in topological organization of 

functional brain networks, wherein these disruptions may contribute to behavioral and 

cognitive disturbances in ASPD patients. Our results provide insights for understanding the 

functional brain networks of ASPD. As of now, some researchers have already started 

examining ways to reduce the clinical severity of ASPD through medicinal interventions and 

selective treatment (Brown et al. 2014). Our results may provide some useful information for 

their further consideration.
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Appendix

Small-world Analysis

The small-world architectures of a network could be obtained by calculating clustering 

coefficient and characteristic path length (Watts and Strogatz 1998). For a weighted network 

N the clustering coefficient Cw is the average of all nodal clustering coefficients, where 

nodal clustering coefficient  for a given node i is defined as (Onnela et al. 2005):

(1)

Where n is the number of nodes, ki is the degree of node i, i.e., the number of non-zero 

connections, wij is connection weights between node i and node j. The clustering coefficient 

quantifies the extent of local interconnectivity or cliquishness of a network. The 

characteristic path length Lw of a weighted network N with n nodes is defined as:

(2)

where  is the weighted shortest path length between node I and node j and is computed as 

the smallest sum of the edge lengths throughout all of the possible paths in the network from 

node i and node j. The characteristic path length reflects the mean distance or routing 

efficiency between any given pair of nodes.

Their normalized versions  were obtained using random networks, i.e., dividing 

the real values Cw and LW by the corresponding mean derived from 100 random networks 

that preserved the same number of nodes, edges and degree distributions as the real brain 

networks (Maslov and Sneppen 2002; Sporns and Zwi 2004). During the random rewiring 

procedure, we specially retained the weight of each edge. A small-world network typically 

shows  and  (Watts and Strogatz 1998).

Network Efficiency

Network efficiency metrics can be used to provide more biologically sensible properties for 

brain networks. The global efficiency  and local efficiency  quantify the extent 

of information transmission at the global network and the individual node levels, 

respectively (Latora and Marchiori 2001). For a network N with n nodes and k edges, the 

global efficiency of N can be computed as:
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(3)

where  is the shortest path length between node i and node j in N. Global efficiency 

measures the extent of parallel information transmission at the global network. The local 

efficiency of G is measured as:

(4)

where  is the global efficiency of Ni, the subgraph composed of the neighbors of 

node i. Local efficiency quantifies the fault tolerance of the network.

Modularity

Modularity is an important organizational principle for brain networks (Meunier et al. 2010). 

According to Newman’s algorithm (Newman 2004), the modularity index Qw of a weighted 

network is defined as

(5)

Where 푙w is the sum of all weights in the network, wij is connection weights between node 

i and node j, ki is the degree of node i, i.e., the number of non-zero connections, mi is the 

module containing node 푖, and δmi,mj = 1 if mi = mj, and 0 otherwise. Modularity 

quantifies the extent of modular organization. The aim of the module identification process 

is to find a specific partition that yields the largest network modularity, .

To assess the inter- and intra-modular connectivities, we calculated the participation 

coefficient (PC) and intra-module degree (MD) for each node to detect the inter- and intra-

module connection density (Guimera and Amaral 2005). For a weighted network, 

participation coefficient is defined as:

(6)

where 푀 is the set of modules and  is the weight of links between i and all nodes in 

module m. For a weighted network, weighted within-module degree z-score is define
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(7)

where mi is the module containing node i,  is the within-module degree of i (the 

number of links between i and all other nodes in mi), and  and  are the 

respective mean and standard deviation of the within-module mi degree distribution.
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Fig. 1. 
Difference of small-world parameters of functional brain networks between ASPD and 

controls using non-parametric permutation test: (a) Functional brain networks exhibited 

increased characteristic path length. (b) Functional brain networks exhibited decreased 

global network efficiency (Eglob). (c) Functional brain networks exhibited decreased local 

network efficiency (Eloc)
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Fig. 2. 
Modularity of group-averaged functional connectivity networks: (a) Modular membership of 

healthy controls. Module I: Posterior; Module II: Central; Module III: Frontal-Subcortical; 

Module IV: Frontoparietal. (b) Modular membership of ASPD patients. Module I: Posterior; 

Module II: Central; Module III: Frontal-Subcortical; Module IV: Fronto-Parietal-Subcortical
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Fig. 3. 
Module connectivity analysis using non-parametric permutation test: (a) Between-group 

difference in the intra-module connectivity. (b) Between-group difference in the inter-

module connectivity. Module I: Posterior; Module II: Central module; Module III: Frontal-

Subcortical; Module IV: Frontoparietal. Red represents HC, blue represents ASPD
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Fig. 4. 
The altered functional connectivities in ASPD patients in comparison to normal controls, 

based on network statistics. (a) Decreased functional connectivities within left or right 

hemisphere. (b) Decreased functional connectivities between left and right hemispheres. L: 

left, R: right
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Table 1

Characteristics of the participants in this study

ASPD
(Mean ± SD)

Controls
(Mean ± SD)

P value

Number 32 35 –

Gender 32 males 35 males –

Age (Years) 20.5 ± 1.37 21.67 ± 2.54 0.8551

Education(Years) 8.32 ± 1.54 9.73 ± 0.82 0.7526

IQ 106.66 ± 12.90 106.84 ± 16.6 0.7733

ASPD: Offenders with antisocial personality disorder
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Table 2

Altered brain regions in modularity analysis of antisocial personality disorder using nonparametric 

permutation test

Brain Region Abbreviation t-value p-value

Participation coefficient

 Orbitofrontal cortex (middle) right ORBmid-R −2.7050 0.0090

 Orbitofrontal cortex (inferior) left ORBinf-L −2.1805 0.0334

 Supplementary motor area left SMA-L −2.2997 0.0252

 Rolandic operculum right ROL-R −2.1114 0.0391

 Superior frontal gyrus (medial) left SFGmed-L −2.7502 0.0080

 Superior frontal gyrus (medial) right SFGmed-R −2.2472 0.0285

 Insula right INS-R −2.3877 0.0203

 Posterior cingulate gyrus left PCG-L   2.1525 0.0356

 Superior occipital gyrus left SOG-L −2.7428 0.0081

 Superior occipital gyrus right SOG-R −2.1902 0.0326

 Postcentral gyrus right PoCG-R −2.4306 0.0182

 Superior parietal gyrus left SPG-L −3.0220 0.0038

 Superior parietal gyrus right SPG-R −3.6426 0.0006

 Inferior parietal lobule left IPL-L −3.8170 0.0003

 Inferior parietal lobule right IPL-R −2.2846 0.0261

 Supramarginal gyrus left SMG-L −2.7190 0.0087

 Supramarginal gyrus right SMG-R −3.0413 0.0036

 Heschl gyrus left HES-L −2.1870 0.0329

 Heschl gyrus right HES-R −2.3587 0.0218

 Superior temporal gyrus left STG-L −2.1230 0.0381

Module degree

 Inferior frontal gyrus (opercular) right IFGoperc-R −3.1126 0.0029

 Rolandic operculum right ROL-R −2.4765 0.0163

 Superior frontal gyrus (medial) left SFGmed-L   2.8059 0.0069

 Superior frontal gyrus (medial) right SFGmed-R   2.1954 0.0322

 Posterior cingulate gyrus left PCG-L −3.3318 0.0015

 Posterior cingulate gyrus right PCG-R −3.3661 0.0014

 Hippocampus right HIP-R −2.0638 0.0436

 Lingual gyrus right LING-R −2.7971 0.0070

 Superior occipital gyrus left SOG-L   2.2815 0.0263

 nferior occipital gyrus right IOG-R −2.0928 0.0408

 Superior parietal gyrus left SPG-L   2.8189 0.0066

 Temporal pole (superior) left TPOsup-L   3.9701 0.0002

 Middle temporal gyrus left MTG-L   2.8894 0.0054

 Inferior temporal gyrus left ITG-L   3.2007 0.0022

 Inferior temporal gyrus right ITG-R   2.2912 0.0257

Participation coefficient: PC, a measure of diversity of intermodular connections of individual nodes;
Module degree: MD, a within-module version of degree centrality
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