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Abstract

Recently, multi-task based feature selection methods have been used in multi-modality based 

classification of Alzheimer’s disease (AD) and its prodromal stage, i.e., mild cognitive impairment 

(MCI). However, in traditional multi-task feature selection methods, some useful discriminative 

information among subjects is usually not well mined for further improving the subsequent 

classification performance. Accordingly, in this paper, we propose a discriminative multitask 

feature selection method to select the most discriminative features for multi-modality based 

classification of AD/MCI. Specifically, for each modality, we train a linear regression model using 

the corresponding modality of data, and further enforce the group-sparsity regularization on 

weights of those regression models for joint selection of common features across multiple 

modalities. Furthermore, we propose a discriminative regularization term based on the intra-class 

and inter-class Laplacian matrices to better use the discriminative information among subjects. To 

evaluate our proposed method, we perform extensive experiments on 202 subjects, including 51 

AD patients, 99 MCI patients, and 52 healthy controls (HC), from the baseline MRI and FDG-

PET image data of the Alzheimer’s Disease Neuroimaging Initiative (ADNI). The experimental 

results show that our proposed method not only improves the classification performance, but also 
has potential to discover the disease-related biomarkers useful for diagnosis of disease, along with 

the comparison to several state-of-the-art methods for multi-modality based AD/MCI 

classification.
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Introduction

As the common form of dementia worldwide, Alzheimer’s disease (AD) is a primary 

neurodegenerative brain disease occurring in elderly people. It was first described by a 

German psychiatrist and neuropathologist Alois Alzheimer in 1906 and was named after 

him (Berchtold and Cotman 1998). It was reported that there were 26.6 million AD patients 

in the world in 2006 (Berchtold and Cotman 1998). Also, it is predicted that 1 in 85 people 

will be affected by AD by 2050 (Brookmeyer et al. 2007). There is a prodromal state 

between normal aging and AD, called mild cognitive impairment (MCI). Most individuals 

with MCI will eventually progress to dementia within 5 years (Gauthier et al. 2006). There 

is no cure for AD and no treatment to reverse or halt its progression. Therefore, accurate 

diagnosis of AD and MCI is very important to delay the disease progression. However, since 

the change of AD-related brain is prior to the symptom of AD, it is critical to detect those 

changes for early diagnosis of AD. Recently, neuroimaging technology is increasingly used 

to identify such abnormal changes in the early stage of AD (Cheng et al. 2012; Petersen et 

al. 1999; Sui et al. 2012; Ye et al. 2011; Zhang et al. 2011).

Early studies on AD/MCI classification mainly focus on using a single modality of 

biomarker, such as magnetic resonance imaging (MRI) (De Leon et al. 2007; Fan et al. 

2008; McEvoy et al. 2009), fluorodeoxyglucose positron emission tomography (FDG-PET) 

(Higdon et al. 2004; Morris et al. 2001; De Santi et al. 2001), cerebrospinal fluid (CSF) 

(Mattsson et al. 2009; Shaw et al. 2009), etc. However, in those studies, some useful 

complementary information across different modalities of biomarkers is ignored, which is 

helpful for further improving the accuracy of classification. Recently, several researchers 

have explored to combine multiple modalities of biomarkers (Apostolova et al. 2010; Fjell et 

al. 2010; Landau et al. 2010; Walhovd et al. 2010; Jie et al. 2013). For instance, Hinrichs et 

al. (Hinrichs et al. 2009) combined two modalities, i.e., MRI and PET, for classification of 

AD. Bouwman et al. (Bouwman et al. 2007) proposed to combine two modalities of MRI 

and CSF to identify MCI patients from healthy controls (HC). Fellgiebel et al. (Fellgiebel et 

al. 2007) used PET and CSF to predict cognitive deterioration in MCI. Zhang et al. (Zhang 

et al. 2011) combined three modalities, i.e., MRI, FDG-PET and CSF, to classify AD/MCI 

from HC. Gray et al. (Gray et al. 2013) used four modalities, i.e., MRI, FDG-PET, CSF and 

genetic information, for AD classification. These existing studies have suggested that 

different modalities of biomarkers can provide the inherently complementary information 

that can improve accuracy in disease diagnosis when used together (Apostolova et al. 2010; 

Fjell et al. 2010; Landau et al. 2010; Walhovd et al. 2010; Foster et al. 2007).

In multi-modality based classification methods, traditional feature selection approaches, 

such as the least absolute shrinkage and selection operator (Lasso) and t-test, are often 

performed to help select the disease-related brain features for training a good learning model 
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(Tibshirani 1996; Wee et al. 2012). However, one main disadvantage of those feature 

selection methods is that they usually ignore the inherent relatedness among features from 

different modalities. Recently, multi-modality based feature selection methods have been 

proposed to overcome this problem. For example, Huang et al. (Huang et al. 2011) presented 

a sparse composite linear discrimination analysis to recognized AD-related ROIs from 

multi-modality data. Liu et al. (Liu et al. 2014) proposed a multi-task based feature selection 

with each task corresponding to a learning model using individual modality of data and 

embedding inter-modality information into multitask learning model for AD classification. 

Gray et al. (Gray et al. 2013) constructed a multi-modality classification framework based 

on pairwise similarity measures which come from random forest classifiers for the 

classification between AD/MCI and HC. However, in those methods, some useful 

discriminative information, such as the distribution information of intra-class and inter-class 

subjects, is not well mined, which may affect the final classification performance.

To address that problem, in this paper, we propose a new discriminative multi-task feature 

selection (DMTFS) model, which considers both the inherent relations among multimodality 

data and the distribution information of intra-class subjects (i.e., subjects from the same 

class) and inter-class subjects (i.e., subjects from different classes) from each modality. 

Specifically, we first formulate feature selection on multi-modality data as multi-task 

learning problem with each task corresponding to a learning problem on individual modality. 

Then, two regularized terms are included into the proposed DMTFS model. Specifically, the 

first term is the group-sparsity regularizer (Ng and Abugharbieh 2011; Yuan and Lin 2006), 

which ensures only a small number of common brain region-specific features to be jointly 

selected from multimodality data. Furthermore, we introduce a new Laplacian regularization 

term into the proposed objective function, which preserves the compactness of intra-class 

subjects and the separability of inter-class subjects, and hence induces the more 

discriminative features. Finally, we adopt the multi-kernel support vector machine (SVM) 

technique to fuse multi-modality data for performing classification of AD/MCI. To evaluate 

the proposed method, a series of experiments are performed on the baseline MRI and FDG-

PET image data of 202 subjects from the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI), which includes 51 AD patients, 99 MCI patients, and 52 HC. The experimental 

results show the superiority of our proposed method, in comparison with the existing multi-

modality based methods.

Methods

Figure 1 shows the overview of our proposed framework, which contains three major steps, 

i.e., image pre-processing and feature extraction, discriminative multi-task feature selection, 

and multi-kernel SVM classification. In this section, before giving the detailed descriptions 

of these steps, we will first introduce the subjects used in this study.

Subjects

The dataset we used in this study is obtained from the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) database (www.adni-info.org). ADNI is a non-profit organization which 

was founded in 2003 by the National Institute of Biomedical Imaging and Bioengineering. 
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Many researchers of institutions work together to achieve this organization. The ADNI is 

committed to evaluate the progression of early Alzheimer’s disease, i.e., MCI, by combining 

some technology such as magnetic resonance imaging (MRI), fluorodeoxyglucose positron 

emission tomography (FDG-PET), Cerebrospinal fluid (CSF) and other clinical diagnosis, 

which greatly improve the efficiency of diagnosis, and save the time of treatment and the 

cost to the patients.

Following our previous works (Zhang et al. 2011, 2012), we evaluate the proposed method 

on the baseline MRI and FDG-PET data of 202 ADNI subjects, which contain 51 AD 

patients, 99 MCI patients (including 43 MCI converters (MCI-C) and 56 MCI non-

converters (MCI-NC)), as well as 52 healthy controls (HC). Specifically, we build multiple 

binary classifiers to confirm the classification performance of our proposed method, 

including AD vs. HC, MCI vs. HC, and MCI-C vs. MCI-NC.

Image Pre-processing and feature extraction

The same image pre-processing as in (Zhang et al. 2011, 2012) is performed for all MRI and 

PET images, including anterior commissure (AC) - posterior commissure (PC) correction, 

skull-stripping, removal of cerebellum, and segmentation of structural MR images into three 

different tissues: grey matter (GM), white matter (WM), and cerebrospinal fluid (CSF). With 

atlas warping, we can partition each subject image into 93 regions of interests (ROIs). For 

each of the 93 ROIs, we compute the GM tissue volume from the subject’s MRI image. For 

PET image, we first rigidly align it with its respective MRI image of the same subject, and 

then compute the average value of PET signals in each ROI. Therefore, for each subject, we 

can finally obtain totally 93 features from MRI image and another 93 features from PET 

image.

Discriminative Multi-Task Feature Selection (DMTFS)

Before deriving our proposed discriminative multi-task feature selection (DMTFS) method, 

we first briefly introduce the traditional multi-task feature selection (MTFS) model (Zhang 

et al. 2012). Suppose  as training subjects from the m 
-th modality (i.e., task), and Y=[y1, …, yi, …, yN]T∈RN represents the corresponding 

response vector from all training subjects, where d and N are the numbers of features and 

training subjects, respectively. Here,  is a feature vector of the i -th subject from the m -th 

modality, and yi∈{+1,−1} is the response class label (i.e., patient or healthy control). In 

addition, wm∈Rd represents the weight vector of linear function for the m -th task, and 

W=[w1, …, wm, …, wM]∈Rd×M denotes the weight matrix including all wm. Then, the 

MTFS model is to optimize the following objective function:

(1)

where M is the number of modalities,  the l2,1 -norm of weight matrix 

which calculates the sum of l2 -norm of wj (Yuan and Lin 2006), and wj is the j-th row of W 
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which represents the weight vector of the j -th feature across M tasks. Here, the l2,1 -norm is 

adopted to enforce the group sparsity on the weight matrix, i.e., encouraging a number of 

rows in the weight matrix being zero. The first term in Eq. (1) is the empirical loss function, 

which measures the error between predicted value obtained from learning model and the true 

value. λ is a regularization parameter which balances the relative importance of both terms. 

The larger λ value means the more zero rows appear in the weight matrix, i.e., few of 

features are preserved.

In MTFS model, a linear function (i.e., f(x)=wTx) was used to map the data from the original 

high-dimensional feature space to one-dimensional space. This model only focuses on the 

relationship between label and subject, and thus ignores the distribution information of 

subjects from each modality, such as the compactness of intra-class subjects and the 

separability of inter-class subjects. This kind of information may help induce the more 

discriminative features and thus further improve the classification performance. Figure 2 

illustrates an example. Here each color denotes a class, and the points with the same color 

denote that they come from the same class. The arrows with green color denote that green 

points (which are intra-class nearest neighbors) should be closer to the central green point in 

the new feature space. Also, the arrows with purple color denote that purple points (which 

are inter-class nearest neighbors) should be far away from the central green point in the new 

feature space. Intuitively, Fig. 2 shows that intra-class samples should be closer while inter-

class samples should be far away in the new feature space.

To address this problem, inspired by some recent works (Cai et al. 2007; Xue et al. 2009), 

we propose a new discriminative regularization term to preserve the distribution information 

of subjects. To be specific, in each modality, for each subject , we first seek its k nearest 

neighbors, i.e., , and define two disjoint subject subsets 

as follows:

(2)

(3)

where  includes the neighbors that have the same label with the subject , and 

 contains the neighbors having different labels with the subject . Then, to 

discover discriminative structure and geometrical information of the data, we construct two 

graphs, i.e., intra-class graph  and inter-class graph , with each subject as a node for 

both graphs. Let  and  denote the weight matrices of  and , respectively. We 

define:
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(4)

(5)

Then, to preserve the discriminative and structural information of two graphs during linear 

mapping, we introduce a new discriminative regularization term as:

(6)

Where

(7)

and

(8)

Here,  and  represent intra-class and inter-class Laplacian 

matrices for the m-th modality, respectively.  and  are 

the corresponding diagonal matrices. σ is a positive constant which controls the relative 

importance of both terms.

With the regularizer in Eq. (6), our proposed discriminative multi-task feature selection 

model (DMTFS) has the following objective function:

(9)
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where λ and σ are positive constants whose values can be determined via inner cross-

validation on the training data. Below, we give an algorithm to solve the optimization 

problem in Eq. (9).

Optimization algorithm

In our study, we use the Accelerated Proximal Gradient (APG) technique (Chen et al. 2009; 

Liu 2999) to solve the optimization problem in Eq. (9). Specifically, we first separate the 

objective function in Eq. (9) into a non-smooth part as:

(10)

and a smooth one as:

(11)

Then, the function h(W)+g(W) can be approximately expressed by the following function:

(12)

where ||·||F denotes the Frobenius norm, h(Wk) represents the gradient of h(W) at the point 

Wk in the k -th iteration process, and 〈W−Wk, ∇h(Wk)〉 denotes the inter product of matrixes 

which equals to Tr((W−Wk)T∇h(Wk)). Here, n represents the iteration step size, whose value 

can be decided by using line search.

Finally, the iterative process of APG algorithm can be interpreted as follows:

(13)

Where . According to (Chen et al. 2009; Liu 2999), we can decompose 

the problem in Eq. (13) into d separate sub-problems, for which the analytical solutions can 

be easily obtained. Also, from (Chen et al. 2009; Liu 2999), instead of performing gradient 

descent based on Wk, we can compute the following formulation as:

(14)

where  and .
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Multi-kernel SVM classification

After selecting the discriminative and common features (i.e., brain regions) across multiple 

modalities, we then use the multi-kernel SVM method proposed in (Zhang et al. 2011) for 

final classification of AD/MCI from healthy controls. Specifically, based on the features 

obtained from the proposed method, we compute a linear kernel across different subjects for 

each modality and then use the following function to integrate the multiple kernels:

(15)

where  represents the kernel function over the m -th modality between the 

sample xi and xj, and αm ≥ 0 is a weight parameter with constraint of Σmαm =1. Here, we 

find the optimal values of αm by using a coarse-grid search on the training subjects with 

range from 0 to 1 and the interval value of 0.1. Finally, the LIBSVM tool-box (Chang and 

Lin 2011) is adopted to perform SVM with the mixed kernel defined in Eq. (15).

Results

Classification performance

In this paper, we adopt 10-fold cross-validation to evaluate the classification performance. 

Specifically, we divide the whole samples into 10 parts, leaving one part for testing and the 

remaining parts as training data in each cross-validation. This process is repeated for 10 

independent times to avoid the bias in random partition of samples. Four performance 

measures, including classification accuracy (ACC) measuring the proportion of subjects 

correctly classified among the whole subjects, sensitivity (SEN) measuring the proportion of 

AD or MCI patients correctly classified, specificity (SPE) measuring the proportion of 

healthy controls correctly classified, and the area under receiver operating characteristic 

(ROC) curve (AUC), are used to evaluate the classification performance of different 

classification methods.

We compare our proposed DMTFS method with several other methods, including multi-task 

feature selection method (denoted as MTFS) (Zhang et al. 2012), and multi-modal 

classification method proposed in (Zhang et al. 2011) using the least absolution shrinkage 

and selection operator (Lasso) as feature selection (denoted as MML). For further 

comparison, we also concatenate the MRI and PET features into a long feature vector, 

followed by the sequential forward floating selection (SFFS) (Pudil et al. 1994) for feature 

selection, and then using the standard SVM for classification. Table 1 lists the comparison of 

different methods for AD/MCI classifications. Figure 3 plots the ROC curves of different 

methods.

From Table 1 and Fig. 3, we can see that our proposed method outperforms the other 

methods in all performance measures for both AD and MCI classifications. Specifically, our 

method achieves the classification accuracies of 95.92 % and 82.13 % for AD vs. HC and 

MCI vs. HC, respectively, while the best accuracies of other methods are only 92.07 % and 

74.17 %, respectively. In addition, our method achieves high AUC values of 0.97 and 0.82 
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for AD vs. HC and MCI vs. HC, respectively, showing better diagnostic power than the 

other methods for AD/MCI classifications.

On the other hand, we also perform experiments on classifying MCI converters (MCI-C) 

from MCI non-converters (MCI-NC), with the corresponding results shown in Table 2 and 

Fig. 4. As can be seen from Table 2 and Fig. 4, our proposed method achieves better 

classification performances than other methods for MCI-C vs. MCI-NC classification. 

Specifically, our proposed method achieves a classification accuracy of 71.12 % for MCI-C 

vs. MCI-NC classification, which is nearly 10 % higher than the best result by other 

methods.

In addition, we perform significance test on the classification performances between our 

proposed method and other compared methods by using the standard paired t test under the 

significance level of 95 %. Table 3 shows the results of t test between our method and any 

other method. As we can see from Table 3, for all the three classification tasks, i.e., AD vs. 

HC, MCI vs. HC, and MCI-C vs. MCI-NC, our proposed method is significantly better than 

other compared methods, which again shows the advantages of our proposed method.

The most discriminative brain regions

Because of the importance of the brain region-related disease in early diagnosis, we besides 

reporting classification performances, and also investigate the top selected features (i.e., 

brain regions) by our proposed DMTFS method. To be specific, since the selected features in 

each cross-validation are not the same, we select those features as the most discriminative 

features which have the highest occurrence frequency in every cross-validation folds.

Figure 5 plots the top 15 selected brain regions for MCI vs. HC classification. As can be 

seen from Fig. 5, our method can effectively identify those disease-related brain regions 

such as hippocampal, amygdala, precuneus, and temporal pole, which have been reported to 

be relevant with AD in the previous studies (Dai et al. 2009; Del Sole et al. 2008; Misra et 

al. 2009; Solodkin et al. 2013; Van Hoesen and Hyman 1990; Wang et al. 2012). For 

example, hippocampus are located in the temporal lobe of the brain, which are the role of the 

memory and spatial navigation. The Hippocampi are the first damaged regions in AD, 

showing loss of memory and spatial orientation. Hyman BT et al. (Hyman et al. 1984) also 

mentioned that the focal pattern of pathology isolates the hippocampal may induce to 

damage of memory in AD. Amygdala is the subcortical central of the limbic system, and has 

the function of regulating visceral sensation and producing emotions. Many researchers have 

found that the important role of amygdala in AD patients (Knafo et al. 2009; Poulin et al. 

2011). Such as Knafo et al. (Knafo et al. 2009) mentioned that individuals who have AD 

with a significant shrinkage of amygdala, and extensive gliosis. In addition, precuneus (Del 

Sole et al. 2008; Karas et al. 2007) and temporal pole (Nobili et al. 2008) also show 

significant abnormalities in AD.

Discussion

In this paper, we propose a new discriminative multi-task feature selection method for AD 

vs. HC, MCI vs. HC, and MCI-C vs. MCI-NC classifications. Experimental results 
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demonstrate that our proposed method achieves better classification performances and also 

identifies more discriminative features, compared with the existing multi-modality based 

methods. Specifically, our proposed method achieves an accuracy of 95.92 % for 

classification between AD and HC, a high accuracy of 82.13 % for the classification 

between MCI and HC, and a high accuracy of 71.12 % for classification between MCI-C vs. 

MCI-NC.

Multi-modality based classification

Since different modalities may provide complementary information for diagnosis of AD 

(Apostolova et al. 2010; Landau et al. 2010), a lot of recent studies have investigated 

combining multi-modalities of data for AD diagnosis, showing improved classification 

performances (Walhovd et al. 2010; Bouwman et al. 2007; Wee et al. 2012; Ye et al. 2008; 

Davatzikos et al. 2011). For more comparisons, Table 4 lists the comparison between our 

proposed method and several other state-of-the-art methods for multi-modality based 

AD/MCI classification. For example, Huang et al. (Huang et al. 2011) proposed the sparse 

composite linear discriminant analysis (SCLDA) model performed on MRI and PET 

modalities of data, achieving the accuracy of 94.30 % for AD classification. Gray et al. 

(Gray et al. 2013) used four modalities (including MRI, PET, CSF and genetic) of data and 

achieved the accuracies of 89.00 %, 74.60 % and 58.00 % for classifying AD, MCI and 

MCI-C, respectively. Liu et al. (Liu et al. 2014) used two modalities including MRI and PET 

and achieved the accuracies of 94.40 %, 78.80 % and 67.80 % for classifying AD, MCI and 

MCI-C, respectively. As we can see from Table 4, our proposed method consistently 

outperforms the other state-of-the-art methods for multi-modality based classifications of 

AD, MCI, and MCI-C.

Effect of parameters

In our proposed model, there are two regularization terms including the group-sparsity 

regularizer and the discriminative regularizer. Accordingly, two regularization parameters 

(i.e., λ and σ) are used to balance the contributions of different terms. More specifically, λ 
is used to control the group sparsity of the model, and σ is used to balance the relative 

importance between the intra-class Laplacian matrix and the inter-class Laplacian matrix. 

Figure 6 gives the classification accuracies of our proposed method under different values of 

the parameter λ. For comparison, we also give the classification results of standard MTFS 

method (i.e., without the discriminative regularization term). Also, it is worth noting that 

when λ=0, no feature selection step is performed, i.e., all features are used for subsequent 

classification. In addition, we also test different values for the parameter σ, ranging from 0 

to 1 at a step size of 0.1, with a fixed λ value, as shown in Fig. 7.

As we can see from Fig. 6, under all values of λ, our proposed method significantly 

outperforms the MTFS method on all three classification tasks (i.e., AD vs. HC, MCI vs. HC 

and MCI-C vs. MCI-NC), which again shows the advantage of our method by introducing 

the discriminative regularization term based on the intra-class and inter-class Laplacian 

matrices. On the other hand, Fig. 7 indicates that the corresponding curves w.r.t different 

values of σ are very smooth on all the three classification tasks, showing a good robustness, 

i.e., insensitive to the values of σ.
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Comparsion with single model methods

Here, to estimate the effect of combining multi-modality image data and provide a more 

comprehensive comparison of the result from the proposed model, we further perform two 

experiments, that are (1) using only MRI modality, and (2) using only PET modality. It’s 

worth noting that our proposed model can also be used in single-modality case, where our 

model degrades into discriminative single-task (modality) feature selection followed by 

SVM classification. With corresponding results shown in Table 5. As can be seen from Table 

5, using multi-modalities (i.e., MRI+PET) achieves significantly better performances than 

only using single modality (MRI or PET).

Comparison with other feature selection methods

In order to further show the superiority of our proposed method, we compare it with other 

popular feature selection methods including RelieF (Kira and Rendell 1992) and Elastic Net 

(Zou and Hastie 2005). For fair comparison, we use the same classifier (i.e., multi-kernel 

SVM) after performing feature selection using RelieF, Elastic Net and our proposed method. 

Table 6 gives the classification accuracies of different feature selection methods for AD vs. 

HC, MCI vs. HC and MCI-C vs. MCI-NC, respectively. As we can see from Table 6, our 

proposed method always achieves the best classification accuracies in all the three 

classification tasks, compared to RelieF and Elastic Net. In particular, our proposed method 

exceeds nearly 10 percentage points than other two compared methods in the classification 

accuracy of MCI-C vs. MCI-NC. This result again validates the efficacy of our proposed 

method.

Limitations

The current study is limited by the following two factors. First, in this paper, we use two 

modalities, i.e., MRI and PET, for AD/MCI classification. However, there exist other 

modalities (e.g., CSF and APOE) which may also contain commentary information for 

further improving the classification performance. Second, we only consider two class 

classification problems (i.e., AD vs. HC, MCI vs. HC and MCI-C vs. MCI-NC), while did 

not test our proposed method for multi-class classification. In the future, we will address the 

above limitations to further improve the classification performance.

Conclusion

This paper proposed a discriminative multi-task feature selection method for classification of 

AD/MCI. Different from the existing multi-modality based feature selection methods, our 

proposed method explores both the distribution information of intra-class subjects and inter-

class subjects. Experimental results on the ADNI dataset show that our proposed method not 

only improves the classification performance, but also has potential to discover the disease-

related biomarkers useful for diagnosis of disease, in comparison with the state-of-the-art 

multi-modality based methods.
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Fig. 1. 
Overview of proposed method
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Fig. 2. 
The diagram of discriminative analysis
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Fig. 3. 
ROC curves of the classification performance of different methods in AD/MCI and HC
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Fig. 4. 
ROC curves of the classification performance of different methods in MCI-C and MCI-NC
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Fig. 5. 
Top 15 brain regions in MCI vs. HC classification
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Fig. 6. 
Classification accuracies under different values of λ
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Fig. 7. 
Classification accuracy with the change of discriminative parameter σ
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Table 2

The comparison of different methods for MCI converter classification

Method MCI-C vs. MCI-NC

ACC(%) SEN(%) SPE(%) AUC

SFFS 56.28 44.42 64.82 0.55

MML 61.67 54.19 66.96 0.61

MTFS 61.61 57.21 65.36 0.62

DMTFS(proposed) 71.12 67.21 73.93 0.68

ACC ACCuracy, SEN SENsitivity, SPE SPEcificity
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Table 3

Significance test on the classification accuracies between our proposed method and other methods

Compared method p-value

AD vs. HC MCI vs. HC MCI-C vs. MCI-NC

SFFS <0.0001 <0.0001 <0.0001

MML 0.0011 <0.0001 <0.0007

MTFS <0.0001 <0.0001 <0.0001
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Table 4

The comparison between proposed method and the state-of-the-art multi-modality based classification 

methods

Methods Modalities AD vs. HC MCI vs. HC MCI-C vs. MCI-NC

Huang et al. MRI+PET 94.30 % – –

Gray et al. MRI+PET+CSF+genetic 89.00 % 74.60 % 58.00 %

Liu et al. MRI+PET 94.40 % 78.80 % 67.80 %

DMTFS(proposed) MRI+PET 95.92% 82.13% 71.12%

ACC ACCuracy, SEN SENsitivity, SPE SPEcificity
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Table 6

The accuracies of different feature selection methods for AD, MCI and MCI-C classification

Methods AD vs. HC (%) MCI vs. HC (%) MCI-C vs. MCI-NC (%)

SFFS 91.26 72.91 60.00

RelieF(Dai et al. 2009) 93.46 76.89 63.89

Elastic Net(Del Sole et al. 2008) 89.62 75.70 61.61

Proposed method 95.92 82.13 71.12
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