
Coagulation Abnormalities of Sickle Cell Disease: Relationship 
with Clinical Outcomes and the Effect of Disease Modifying 
Therapies

Denis Noubouossie, MD, PhD, Nigel S. Key, MBChB, and Kenneth I. Ataga, MBBS
Division of Hematology/Oncology, University of North Carolina at Chapel Hill, USA

Abstract

Sickle cell disease (SCD) is a hypercoagulable state. Patients exhibit increased platelet activation, 

high plasma levels of markers of thrombin generation, depletion of natural anticoagulant proteins, 

abnormal activation of the fibrinolytic system, and increased tissue factor expression, even in the 

non-crisis “steady state.” Furthermore, SCD is characterized by an increased risk of thrombotic 

complications. The pathogenesis of coagulation activation in SCD appears to be multi-factorial, 

with contributions from ischemia-reperfusion injury and inflammation, hemolysis and nitric oxide 

deficiency, and increased sickle RBC phosphatidylserine expression. Recent studies in animal 

models suggest that activation of coagulation may contribute to the pathogenesis of SCD, but the 

data on the contribution of coagulation and platelet activation to SCD-related complications in 

humans are limited. Clinical trials of new generations of anticoagulants and antiplatelet agents, 

using a variety of clinical endpoints are warranted.
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 1. Introduction

Sickle cell disease (SCD) refers to a group of genetic disorders defined by the presence of 

sickle hemoglobin (HbS), chronic hemolysis and multi-organ morbidity. More than 300 000 

children were born with sickle cell anemia (SCA), the homozygous form of SCD, in 2010 

(1) and it is predicted that more than 400 000 children will be born annually by 2050 (2). 

Comprehensive care in resource-rich countries, including newborn screening, infection 

prophylaxis with penicillin, and hydroxyurea therapy, has improved the survival as well as 
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the quality of life of individuals with SCD (3). In addition to its well-known hemolytic and 

vaso-occlusive complications, SCD is characterized by a variety of thrombotic 

complications, including ischemic stroke (4). Furthermore, multiple recent studies show that 

patients with SCD have an increased risk of venous thromboembolism (5–8). The high 

prevalence of thrombotic complications, combined with the well documented hemostatic 

alterations in the direction of a procoagulant phenotype shows that SCD can be considered 

to be a true hypercoagulable state (9–13). In an attempt to improve our understanding of the 

role of hypercoagulability in the pathogenesis of SCD, many groups have addressed the link 

between coagulation activation and various clinical manifestations of the disease. Using data 

from animal models and patients, the current review provides an update on coagulation 

abnormalities in SCD, their relationship with selected clinical complications, the effect of 

current disease-modifying treatments, and summarizes the published studies of 

anticoagulants and anti-platelet agents.

 2. Hemostatic alterations of SCD

 2.1. In vivo thrombin and fibrin generation

Chronic activation of coagulation is commonly observed in patients with SCD at ‘steady-

state’ compared to healthy control subjects with normal hemoglobin. This is evidenced by 

increased plasma levels of in vivo markers of thrombin and fibrin generation, including 

thrombin-antithrombin complexes (TAT), prothrombin fragment 1.2 (F1.2), fibrinopeptide 

A, D-dimers and plasmin-antiplasmin complexes (PAP) (14–21). There are conflicting 

reports regarding further increases in coagulation activation markers during painful crises as 

compared with the non-crisis, ‘steady-state” (14–21). There are also conflicting reports on 

the association between markers of coagulation activation and the frequency of painful 

crisis. A significant correlation was reported between D-dimer levels measured during the 

non-crisis state and the frequency of pain crises the following year (22). In addition, plasma 

D-dimer level was inversely correlated with the time to the next pain episode (22). However, 

no associations were found between both plasma TAT and D-dimer levels obtained at steady 

state and the frequency of acute pain crises in other studies of adults and children with SCD 

(23,24). The reason for these conflicting data is uncertain, but may be related to the 

difficulty in accurately defining the steady state in patients with SCD.

 2.2. Ex vivo thrombin generation assays and thromboelastography

The capacity to generate thrombin reflects the balanced effect of all components of the 

coagulation cascade (both pro- and anticoagulant) and correlates with the bleeding or 

thrombotic phenotype (25,26). Thrombin generation assays (TGA) reliably assess an 

individual’s rate and potential to generate thrombin ex vivo in plasma and possibly in whole 

blood, following a calibrated trigger of coagulation (27,28). Although multiple studies are 

published (29–32), the results of ex vivo TGA in SCD patients at “steady state” compared 

with age-matched controls or with patients during acute painful episodes are inconsistent. 

This inconsistency may be due to heterogeneity in the genotypes and treatments of enrolled 

subjects, lack of race-matched controls in some studies, variability in the timing of blood 

collection, sample preparation and/or the analytical conditions of the assays (Table 1). 

Differences in these parameters have been shown to result in large inter-center variability of 
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results (33). Using a model of whole blood thrombin generation, higher maximum levels of 

αTAT were generated in adults with HbSS at steady state than in race-matched controls, 

irrespective of the intrinsic or extrinsic pathway of coagulation activation, in line with the 

increased peak of thrombin generation in platelet-poor plasma (PPP) (34).

Thromboelastography, another tool to assess global coagulation, measures the viscoelastic 

changes of a clotting sample from initiation to the formation of a stable clot. Whole blood is 

the common sample type used for thromboelastographic assessments. It is believed that the 

outcome reflects the effect of both plasma and cellular blood components including 

platelets, white blood cells and red blood cells (RBC) that are altered in SCD. Children with 

HbSS and HbSC had higher angle, higher maximum amplitude and higher coagulation index 

values (a computed parameter designed by the manufacturer which measures the global 

coagulability of the sample) at “steady state” compared to race-matched controls (35). The 

reaction time was reduced in HbSS patients in the “steady state” compared with controls. In 

HbSS patients, maximum amplitude and coagulation index increased further during painful 

episodes (35). Finally, the reaction time of the thrombogram was positively correlated with 

protein C and protein S levels, alpha angle correlated with platelet count, and the maximal 

amplitude and coagulation index correlated with D-dimer levels (35).

 2.3. Tissue factor and contact system activation

Tissue factor (TF), the physiological trigger of coagulation, is normally separated from 

contact with plasma proteins by an intact layer of endothelial cells, thus preventing 

coagulation activation. In patients with HbSS and compound heterozygous forms of SCD, 

increased levels of circulating TF are expressed by endothelial cells, monocytes and 

microparticles derived from these cells (20,36–38). As SCD is associated with endothelial 

injury, it is also likely that sub-endothelial TF is exposed to circulating blood at sites of 

vascular injury. No difference was observed in whole blood TF procoagulant activity 

between HbSS and HbSC patients in one study (20). However, a smaller study reported a 

significantly increased percentage of TF-positive monocytes and whole blood TF activity in 

HbSS compared with HbSC, although no difference was seen in TF-positive microparticles 

(36). The number of TF-positive monocytes, TF-positive circulating endothelial cells and 

TF-positive microparticles derived from these cells appear to increase during painful 

episodes compared to the non-crisis, “steady state” (37,38), although no difference in whole 

blood TF procoagulant activity was observed between these two clinical states (20).

Multiple studies show associations of markers of hemolysis with whole blood TF 

procoagulant activity, TF-positive monocytes, as well as plasma markers of thrombin and 

fibrin generation in patients with SCD (24,36,39,40). Heme, an inflammatory mediator and a 

product of intravascular hemolysis, induces functional TF expression in cultured human 

umbilical vein endothelial cells and human lung microvascular endothelial cells 

independently of IL-1α and TNFα (41). Heme has also been reported to increase TF 

expression on human blood mononuclear cells via toll-like receptor 4 (42) and on mouse 

leukocytes, although not on mouse lung endothelial cells (43). Increasing the bioavailability 

of nitric oxide (NO) either by breathing NO, addition of arginine, an NO precursor, to the 

diet or by breeding the animals to overexpress endothelial NO synthase led to significant 
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reduction in endothelial TF expression in two mouse models of SCD, thus demonstrating a 

role for NO in endothelial TF regulation and coagulation activation in SCD (44). At steady 

state, endothelial TF expression in the pulmonary veins is increased in sickle mice with 

severe disease phenotypes (BERK and S+S-Antilles mice), but it is similar in mild 

phenotypes (NY1DD and SAD mice) and non-sickle, control mice (45,46). Transient 

hypoxia-induced stress in sickle mice with mild disease phenotypes leads to up-regulation of 

endothelial cell expression of TF in the pulmonary veins (45,46), indicating a role for 

ischemia-reperfusion injury in TF expression in SCD. Increased TF expression in the 

pulmonary veins following hypoxia-reoxygenation is primarily dependent upon NFκB 

activation in monocytes (47). Recent data from animal models suggest that in addition to 

initiating coagulation, TF may trigger other biological pathways, including inflammation 

and vascular injury. Inhibition of TF with a blocking antibody effectively prevented the 

accelerated thrombus formation observed in mice that express hemoglobin S in a light/dye-

induced model of cerebral microvascular thrombosis (48). Since increased TF expression 

was not detected in the cerebral vasculature of these mice, it is likely that the TF responsible 

for the effect was expressed on circulating hematopoietic cells. Antibody-mediated blockade 

of TF in another mouse model of SCD significantly reduced plasma levels of TAT, 

interleukin-6 (IL-6), soluble vascular cell adhesion molecule-1 (VCAM-1), and serum 

amyloid protein, as well as neutrophil infiltration in the lung evaluated by the measurement 

of myeloperoxidase activity (49). In addition, specific deletion of the TF gene in endothelial 

cells reduced plasma level of IL-6 without affecting the plasma level of TAT, suggesting that 

endothelial TF plays a role in inflammation but not in coagulation activation in this mouse 

model (49).

In patients with SCD, markers of in vivo thrombin and fibrin generation, including plasma 

TAT, F1.2 and D-dimer, show only moderate or no correlation with whole blood TF 

procoagulant activity, total TF-positive microparticles, and TF-positive microparticles 

derived from monocytes or endothelial cells (20,36,38). While this may reflect the 

contribution of endothelial and sub-endothelial TF at sites of vascular injury that is not 

measured in blood, it may also reflect a contribution of activation of the intrinsic pathway to 

in vivo thrombin generation. Indeed, plasma levels of contact system proteins, including 

factor XII, prekallikrein and high molecular weight kininogen have been shown to be 

decreased in patients with SCD at “steady state” compared with control subjects, with 

further decreases during acute painful episodes (50–52). Autoactivation of contact system 

proenzymes is known to occur on negatively charged surfaces. Potential candidates for 

contact system activation in vivo include polyphosphates, nucleic acids, misfolded proteins, 

heparan sulfate, sulfatides, collagen and phosphatidylserine (53,54). Polyphosphates may be 

released by activated platelets (55) and an increased number of circulating microparticles are 

described in SCD (see below). In addition, increased levels of cell-free DNA and 

nucleosomes released by activated neutrophils, and possibly other cells, have been detected 

in the plasma of SCD patients at “steady state,” with accentuated levels during acute painful 

episodes and acute chest syndrome (56–58). Kininogen deficient mice transplanted with 

bone marrow from Townes sickle mice show lower levels of plasma TAT compared to 

normal kininogen littermates (59). In addition, in a model of TNFα-induced vaso-occlusive 

crisis in Townes sickle mice, elevation of plasma levels of TAT strongly correlates with 
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elevation of plasma levels of cell-free DNA (59). Together, these data suggest a potential 

role for the contact system in the hypercoagulability of SCD.

 2.4. Platelet activation, red blood cells and microparticles

Platelets are activated during the “steady state,” with further activation during acute painful 

episodes, as evidenced by increased levels of soluble markers of platelet activation including 

platelet-derived soluble CD40 ligand (60,61), platelet factor 3 (62), platelet factor 4 

(22,63,64), beta-thromboglobulin (22,63,64) and thrombospondin-1 (65); decreased platelet 

content of thrombospondin-1 (65) and CD40 ligand (60,65); increased expression of surface 

markers of activation including P-selectin (22,66,67), CD63 (66), activated glycoprotein IIb/

IIIa (22,66) and phosphatidylserine (19,22); increased numbers of platelet-platelet (63), 

platelet-erythrocyte (68), and platelet-leukocyte aggregates (61); and increased numbers of 

platelet-derived microparticles. Functional assays show enhanced platelet aggregation in 

adult patients at “steady state” compared with control subjects, (63,69) while aggregation is 

reduced in children (70,71). As an increase in platelet aggregation is observed in 

splenectomized non-SCD adults (69), it is hypothesized that the enhanced platelet 

aggregation in adults with SCD is due to the high number of circulating young and 

hyperactive platelets secondary to autosplenectomy (72). Platelet procoagulant activity is 

significantly increased in patients during acute pain episodes compared to the non-crisis 

state, and is significantly correlated with the number of acute pain episodes during the 

following year (22). In addition, a trend towards a higher level of soluble CD40 ligand was 

reported in patients with more frequent pain episodes (<3 episodes vs. ≥3 episodes in the 

previous year, p = 0.058), although the difference was not statistically significant (24). 

Platelet activation assessed by the activated fibrinogen receptor, glycoprotein IIb/IIIa, is 

correlated with echocardiography-derived tricuspid regurgitant jet velocity and laboratory 

markers of hemolysis (73). Furthermore, administration of sildenafil, a phosphodiesterase-5 

inhibitor that potentiates NO-dependent signaling, has been shown to decrease platelet 

activation.

Loss of normal membrane phospholipid asymmetry, with resultant increased expression of 

phosphatidylserine (PS) at the surface of the outer cell membrane, is present in a 

subpopulation of red blood cells (RBC) in SCD patients (74). Abnormal PS exposure 

functions as a recognition signal for cell removal during apoptosis of nucleated cells (75) 

and during aging of RBCs (76,77). Since patients with SCD have reduced or absent spleen 

function (72), the removal of senescent RBCs from the circulation is impaired leading to the 

presence of a high percentage of circulating PS-positive RBCs (19,78,79). PS provides a 

negatively charged surface which serves as a docking site for tenase and prothrombinase 

complexes involved in coagulation pathways (80). PS-positive RBCs in normal individuals 

support thrombin generation in PPP (81), suggesting a role in the hypercoagulability of 

SCD. The number of PS-positive sickle RBC, but not PS-positive platelets, is significantly 

correlated with plasma F1.2, D-dimer, and PAP complexes (19,82). However, PS expressed 

on sickle RBCs has also been shown to provide a catalytic surface for factor Va inhibition by 

activated protein C in vitro, indicating a possible role of PS-positive RBCs in 

downregulation of thrombin generation in patients with SCD (83).
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Exposure of PS is a hallmark of microparticles, which are submicron vesicles released by 

various cells during activation or apoptosis, and is used for their enumeration in flow 

cytometry analysis by quantifying binding by annexin V or lactadherin labeled with a 

fluorescent molecule. The phospholipid-dependent procoagulant activity of microparticles 

has also been measured using functional assays based on their ability to support the 

assembly of the prothrombinase complex (84,85). Compared to individuals with normal 

hemoglobin, patients with SCD have a higher total concentration of circulating 

microparticles at “steady state” assessed by flow cytometry (38,78,86) and higher 

procoagulant activity assessed by functional assays (87,88). These microparticles are derived 

from various cells, including RBCs (38,78,86), platelets (38,78,86), monocytes (38) and 

endothelial cells (38). The total concentration of microparticles is reported to be correlated 

with plasma F1.2 (38), D-dimers (38,86) and TAT (38) levels in adult patients with HbSS, 

HbSβ-thalassemia and HbSC, although no correlations were found in one study of adult 

HbSS patients (78). RBC- and platelet-derived microparticles can also trigger thrombin 

generation in a factor XII-dependent manner (89), possibly by the binding and autoactivation 

of contact system enzymes on PS (90). There are inconsistent data regarding further 

increases of the concentration of total microparticles during acute painful episodes (38,88)

(86,87). A history of at least 3 painful episodes in the previous year was associated with a 

higher “steady state” plasma concentration of monocyte-derived microparticles in a group of 

adults with HbSS and HbSβ-thalassemia (91), while another study of adult HbSS patients 

reported associations of painful episodes in the previous 2 years with lower concentrations 

of erythrocyte-derived microparticles, but higher total and platelet-derived microparticles 

(92).

 2.5. Factor VIII, ADAMTS 13 and von Willebrand factor

The plasma level of coagulation factor VIII (FVIII) is elevated in patients with SCD at 

“steady state” and during acute pain episodes compared with non-SCD controls (14,23,93–

96). In one report, FVIII activity correlated with plasma levels of D-dimer, suggesting a 

contribution of elevated FVIII activity to coagulation activation in SCD (94). FVIII also 

strongly correlates with von Willebrand factor antigen (vWF:Ag) and markers of hemolysis, 

but not with high-sensitivity C-reactive protein, suggesting a role for hemolysis in the 

elevation of plasma levels of FVIII in SCD (94). Reduced ADAMTS13 activity has been 

reported in patients with SCD at “steady state” (97,98). Other studies have reported similar 

ADAMTS13 activity in SCD patients and controls, but reduced ADAMTS13 activity/

vWF:Ag ratio in patients at “steady state,” with further reduction during pain crisis (99,100). 

In vitro studies demonstrate that cell-free hemoglobin released during intravascular 

hemolysis can bind the A2 domain of the von Willebrand molecule and prevent its cleavage 

by ADAMTS13 (97). In addition, high plasma levels of thrombospondin-1 have been 

observed in some SCD patients with undetectable levels of ADAMTS13 activity, suggesting 

an inhibitory effect of thrombospondin-1 on enzyme activity (98). In patients with SCD, 

reduced ADAMTS13 activity may account, at least in part, for the increased circulating 

levels of vWF, especially the ultra-large multimer forms (100,101), and subsequent elevation 

of plasma level of FVIII. However, in one study, plasma vWF level was not significantly 

different in SCD patients with and without undetectable ADAMTS13 activity, suggesting 

that ADAMTS13 activity is not the sole regulatory determinant of vWF levels in SCD (98).
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 2.6. Natural anticoagulant proteins

Reduced plasma levels of physiologic anticoagulants is commonly observed in patients with 

SCD. A moderate decrease in plasma levels of protein C and protein S is consistently 

observed during the “steady state,” with perhaps further decreases occurring during acute 

pain episodes (14–17,21,93,102,103). Among vitamin K-dependent proteins, protein S has 

the highest affinity for membranes exposing phosphatidylserine (104,105). Calcium-

dependent binding of protein S at the surface of RBC microparticles and irreversibly sickled 

RBCs (106) prevents the binding of protein S to β2-glycoprotein-1, thus enhancing its 

inactivation by C4b-binding protein (107). The binding of protein S to β2-glycoprotein 1 is 

also inhibited by antiphospholipid antibodies (108). Another potential reason for the low 

levels of physiologic anticoagulants in SCD is chronic consumption due to ongoing 

coagulation activation. In vivo, the protein C/protein S anticoagulant pathway is activated by 

the binding of thrombin and protein C to thrombomodulin and endothelial protein C-

receptor (EPCR), their respective receptors expressed on endothelial cells. The pattern of 

expression of these transmembrane proteins in the various vascular beds in patients with 

SCD is unknown. Using a light/dye thrombosis model, enhanced thrombus formation in 

cerebral arterioles and venules was demonstrated in mice expressing hemoglobin S (48). 

These mice expressed lower levels of EPCR on the endothelium of cerebral arterioles and 

venules than wild type mice, and genetic intervention to increase EPCR in these vessels 

abrogated the enhanced thrombus formation in the brain (48). Furthermore, the capacity to 

generate thrombin ex vivo was significantly increased in children with SCD at steady state 

compared with age-matched controls only when the protein C/protein S anticoagulant 

pathway was activated by addition of exogenous thrombomodulin(32). Similarly, a higher 

peak thrombin generation was observed in adult HbSS patients than in age- and race-

matched controls only when thrombomodulin or activated protein C was added to their 

plasma (34). Together, these findings indicate the relevance of the impaired protein C/protein 

S anticoagulant pathway in the hypercoagulability of SCD. While there are conflicting 

reports on the plasma levels of antithrombin (93,109), one study reported normal plasma 

levels of tissue factor pathway inhibitor (TFPI) antigen in SCD patients at steady state and 

during painful episodes (20). Plasma level of heparin cofactor II, a physiologic serine 

protease inhibitor, has been reported to be lower in HbSS and HbSC patients during both 

“steady state” and acute painful episodes compared to healthy controls (110). A summary of 

coagulation abnormalities and their potential contributions to hypercoagulability and 

thrombosis in SCD is shown in Figure 1.

 3. Vasculopathy of SCD

Vasculopathy is a term that has been used to describe the progressive remodeling of the 

arterial vasculature, leading to impaired blood flow. The pathogenesis of vasculopathy in 

SCD is not fully elucidated. Several distinct concepts, histologic (111–114), radiologic 

(115–119) and mechanistic (120,121), all using the term ‘sickle vasculopathy’ have been 

described in the literature. Mechanistically, the term has been used to describe a generalized 

form of endothelial dysfunction with likely contributions from genetic factors (122,123), 

intravascular hemolysis, endothelial injury, vascular inflammation and chronic activation of 

coagulation ultimately leading to tissue hypoperfusion and damage (120,121). Intravascular 
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hemolysis is thought to account for a third of the total hemolysis occurring in patients with 

SCD (124). The resultant cell-free hemoglobin consumes nitric oxide (NO) to generate 

methemoglobin and NO3
− (125,126). Arginase, an enzyme also released from RBCs during 

intravascular hemolysis, metabolizes L-arginine, the substrate for NO production by the 

enzyme NO synthase (125). Consumption and reduced production lead to impaired NO 

bioavailability which is associated with platelet activation and vascular endothelial 

dysfunction (125).

Recent data from in vitro studies and animal models support a role of chronic activation of 

coagulation in the development of vascular inflammation in SCD. Thrombin and other serine 

proteases of the clotting system have coagulation-independent activities that are mediated 

via binding to protease-activated receptors (PARs) (127). For instance, thrombin promotes 

fibrocyte proliferation in vitro, and blockade of TF pathway prevents intimal hyperplasia in a 

mouse model of vascular injury (128). As discussed previously, the TF pathway not only 

serves as a trigger for coagulation activation, but also promotes inflammation and vascular 

injury in sickle mice (49). Further analyses of the effect of downstream coagulation 

proteases in this model show that TF, thrombin and factor Xa have differential contributions 

to vascular injury and inflammation in these mice. Factor Xa contributes to systemic 

inflammation (IL-6) through PAR-2 expressed on non-hematopoietic cells, while thrombin 

contributes to neutrophil infiltration in the lungs independently of PAR-1 expressed on non-

hematopoietic cells (129). Consistent with the cross-talk of coagulation and inflammation, 

both plasma TAT and D-dimer levels have been reported to be correlated with soluble 

VCAM-1 in patients with SCD (24).

 4. Thrombosis-Related Complications of SCD and the Link with 

Hemostatic Alterations

 4.1. Venous Thromboembolism (VTE)

Until recently, venous thromboembolism (VTE) has been overlooked as a cardiovascular 

complication of SCD. Two retrospective studies based on data from administrative databases 

of hospital discharge records addressed the risk of VTE in the SCD population (5,6). A 

significantly higher discharge diagnosis of pulmonary embolism (PE) was reported in 

African-Americans with SCD younger than 40 years than in African Americans without 

SCD (0.44% vs 0.12%), although a similar rate of deep venous thrombosis (DVT) was 

observed in both groups (5). Similarly, a higher incidence of inpatient PE was reported in 

patients with SCD than in the non-SCD population in the US state of Pennsylvania, although 

the prevalence of PE among SCD patients ≤50 years of age did not differ from that of non-

SCD patients of similar age. In this study, SCD patients admitted with PE were older, had 

longer lengths of hospitalization, greater severity of illness and higher inpatient mortality 

than SCD admissions without PE (6). In a single center retrospective study of 404 SCD 

patients (7), 25% had a history of VTE, 31% of which were catheter-related. Of the patients 

with non-catheter-related VTE who had complete records for all provoking factors, 42% had 

no identifiable risk factors for VTE (7). Multiple studies based on administrative databases 

(110,130–135) and one small prospective, controlled, cohort study (136) have reported an 

increased risk of VTE in women with SCD during pregnancy and the puerperium as 
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compared with those without SCD (137). Analysis of VTE incidence and mortality risk in 

the cohort of patients enrolled in the Cooperative Study of Sickle Cell Disease (CSSCD) (8) 

supports the notion that SCD is associated with an increased risk of VTE (8). In addition, 

patients with VTE had a higher risk of death than those without VTE (5,7,8). The risk of 

VTE was higher in patients with HbSS/Sβ°-thalassemia genotypes than in those with HbSC/

Sβ+-thalassemia, while co-inheritance of α-thalassemia was protective (8). Overall, PE 

appears to be a more frequent manifestation of VTE than DVT in SCD (5,6,8).

 4.2. Stroke and Silent Cerebral Infarct (SCI)

Stroke is a major cause of morbidity and mortality in patients with SCD (138), with 

cumulative risks of 11% and 24% for first event at 20 and 45 years old, respectively, in 

HbSS patients reported in the CSSCD (4). Both ischemic and hemorrhagic strokes are 

observed in SCD. A high incidence of ischemic stroke is observed in the first decade and 

after the third decade of life, while the incidence of hemorrhagic stroke peaks within the 

third decade in patients with HbSS (4). Clinical risk factors for ischemic stroke include prior 

transient ischemic attack, low steady-state hemoglobin level, systolic blood pressure, acute 

chest syndrome within two weeks of the stroke event as well as the rate per year of acute 

chest syndrome (4). Nocturnal hypoxemia is also recognized as a risk factor for acute 

neurological events (139). Some genetic factors such as the co-inheritance of α-thalassemia 

(140) and the nonsynonymous SNP VCAM1 G1238C (141) may be protective, while others 

such as SNPs in the tumor growth factor-β and P-selectin genes identified using genome-

wise association studies have been associated with an increased risk of overt stroke in 

patients with SCA (142). The best predictor of stroke risk to date is an elevated transcranial 

Doppler (TCD) velocity, which is the qualifying criterion for primary stroke prevention by 

regular blood transfusion (115). However, the presence of thrombosis in the large and small 

cerebral arteries commonly described at autopsy of SCD patients with ischemic stroke 

suggests the participation of coagulation abnormalities to the pathogenesis of this 

devastating complication (111,112). Multiple studies have evaluated the association of 

various parameters of coagulation and cerebrovascular disease in SCD patients 

(21,23,24,30,143–146) (Table 2). All of these studies had cross-sectional designs and 

included only small numbers of patients with cerebrovascular disease. The conflicting 

results of these studies may also be due to the heterogeneity of patient genotypes, treatments 

and the criteria used to define cerebrovascular disease across the studies. Consequently, 

more studies are required to better understand the contribution of coagulation abnormalities 

to the pathogenesis of stroke of SCD.

The use of magnetic resonance imaging (MRI) has allowed the recognition of infarct-like 

lesions of the brain in the setting of a normal neurologic examination or the absence of an 

abnormality on neurological examination that can be explained by the location of this lesion 

(147). Silent cerebral infarcts (SCI) are detected in all SCD genotypes and are found in up to 

37% of HbSS children before the age of 14 (147). Although referred to as “silent” infarcts, 

SCI is a morbid condition associated with neurocognitive impairment, poor academic 

performance, neurologic soft signs, and increased risk for subsequent overt stroke as 

compared with SCD children with normal MRI findings (147–149). The pathogenesis of 

SCI is unknown, and no autopsy study has specifically described the histopathological 
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lesions corresponding to the bright spots observed on MRI. Acute demyelination, sinus 

venous thrombosis and small artery and arteriole disease are suggested to account for the 

MRI lesions of SCI (147). One study reported lower steady state plasma levels of tissue-

plasminogen activator (tPA) and ADAMTS13 in SCD children with SCI compared with 

those without SCI, although plasma levels of TAT, F1.2 and D-dimers were similar in both 

groups (23).

 4.3. Acute Chest Syndrome and Pulmonary Hypertension

Acute chest syndrome is defined as the presence of a new pulmonary infiltrate on chest x-

ray, associated with a variety of respiratory signs and symptoms, including chest pain, fever, 

dyspnea or cough in a patient with SCD (150). It is a common cause of hospitalization of 

patients with SCD, second only to acute pain episodes, and is a leading cause of death (151). 

The causes of acute chest syndrome were extensively evaluated by the National Acute Chest 

Syndrome Study Group, and include infection, fat embolism and possibly pulmonary 

infarction (150). In this multicenter study, it was presumed that pulmonary infarction was the 

cause of acute chest syndrome in 16% of episodes with complete study data, but in which no 

specific etiology was otherwise identified (150). While autopsy studies have shown 

microscopic organized thrombi in the lungs of SCD patients (152), the contribution of this 

finding to the pathogenesis of acute chest syndrome is uncertain. Pulmonary thrombosis was 

detected, using computerized tomography imaging techniques, in 17% of patients during 

episodes of acute chest syndrome in a single center study (153). However, it is uncertain if 

these pulmonary thrombi were present before or occurred following the development of 

acute chest syndrome. Steady state levels of TAT and D-dimer were not significantly 

different in adult and pediatric patients with histories of acute chest syndrome compared to 

patients with no previous episodes (23,24). Similarly, a series of coagulation parameters, 

including plasma levels of FVIII, vWF, F1.2, TAT, D-dimer, ADAMTS13 antigen, 

plasminogen activator inhibitor and tPA, did not correlate with the rate of acute chest 

syndrome in children with SCD (23).

Pulmonary vasculopathic complications, such as echocardiography-derived elevation in 

tricuspid regurgitant jet velocity (TRV) and pulmonary hypertension, are increasingly 

recognized in adult patients with SCD. Although the prevalence of elevated TRV is high in 

SCD (154,155), a right heart catheterization is always required to confirm the diagnosis of 

pulmonary hypertension. Pulmonary hypertension is defined as a resting mean pulmonary 

arterial pressure (mPAP) ≥ 25 mm Hg by right heart catheterization (RHC) (156). Autopsy 

studies have reported the presence of in situ thrombi in the pulmonary vasculature of SCD 

patients with pulmonary hypertension, suggesting a role for hypercoagulability in this 

complication (113,114). There are no studies evaluating the relationship between markers of 

coagulation activation and RHC-confirmed pulmonary hypertension in SCD. No significant 

associations were observed between plasma markers of coagulation activation (TAT, D-

dimer) and TRV in SCD (24,39,40). One pediatric study reported negative correlations 

between plasma levels of tPA and TRV (23). There are conflicting reports on the association 

of platelet activation with TRV, with one study showing a correlation between activated 

GPIIb/IIIa receptor with TRV (73), while another showed no association between soluble 

CD40 ligand and TRV (40). Furthermore, higher levels of both platelet- and erythrocyte-
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derived microparticles have been reported in patients with histories of ACS and elevated 

TRV compared to those without either of these complications (143), although no significant 

differences were seen in the plasma concentrations of total-, endothelial cell derived-, and 

TF-positive microparticles in another study (91).

 4.4. Other Complications

Avascular necrosis is a chronic complication which occurs in up to 50% of HbSS subjects by 

age 35 (157). In patients without SCD, avascular necrosis has been reported to be associated 

with thrombophilia, including elevated factor VIII activity, heterozygosity for factor V 

Leiden, and elevated plasma levels of TAT, F1.2, PAI-1, and platelet- and endothelial cell-

derived microparticles (158,159). No association was observed between avascular necrosis 

and plasma levels of TAT, D-dimer and microparticle-associated TF in 2 cross-sectional 

studies of adult SCD patients (24)(160), although a higher total number of microparticles 

was observed in patients with avascular necrosis than in those without this complication 

(160). “Steady state” plasma levels of markers of in vivo thrombin and fibrin generation 

were not associated with histories of leg ulcers, retinopathy or priapism in adult SCD 

patients (24), nor with histories of splenic sequestration, hemolytic or aplastic crises in 

children (23). The number of platelet-derived microparticles was reported to be significantly 

higher in adult patients with albuminuria compared to those without, but no differences were 

observed in total microparticles or other circulating cell-derived microparticles (91).

 5. Effect of Disease Modifying Treatments, Anticoagulants and Anti-

Platelet Agents on the Hypercoagulable State of SCD

 5.1. Hydroxyurea

Hydroxyurea is approved by the US Food and Drug Administration specifically for treating 

SCD. It has been shown to reduce the frequency of acute painful episodes, dactylitis, acute 

chest syndrome, hospitalizations, and the need for blood transfusions in children and adults 

with sickle cell anemia (161,162). Observational studies have reported a reduction of TCD 

velocity (163–165), rate of first stroke (166) and the rate of stroke recurrence (167–170) in 

SCD patients treated with hydroxyurea. The Stroke With Transfusions Changing to 

Hydroxyurea (SWiTCH) trial, was a randomized, non-inferiority trial comparing 

transfusions and iron chelation to hydroxyurea and therapeutic phlebotomy for children with 

sickle cell anemia, stroke, and iron overload, with a composite primary endpoint allowing an 

increased stroke risk but requiring superiority for removing iron (171). Although there were 

7 strokes in the hydroxyurea/phlebotomy arm and none in the transfusions/chelation arm, 

within the non-inferiority stroke margin, the study was stopped after interim analysis 

revealed equivalent liver iron content, indicating futility for the composite primary endpoint. 

More recently, the randomized Transcranial Doppler With Transfusions Changing to 

Hydroxyurea (TWiTCH) study was stopped prematurely by the Data Monitoring Committee 

after hydroxyurea was found to be non-inferior to chronic RBC transfusions in lowering 

TCD velocities in children with SCD who were at high risk for stroke (172).

Several studies have evaluated the effect of hydroxyurea on coagulation parameters in 

patients with SCD. There are conflicting reports on the effect of hydroxyurea on total, 
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specific blood cell-derived and TF-bearing microparticles (31,78,91,173). A reduction in 

plasma D-dimer level in patients treated with hydroxyurea has been reported (78,174), with 

these studies reporting conflicting effects of hydroxyurea on circulating TAT complexes. 

Adult patients treated with hydroxyurea also manifest a longer lag time, slower rate and 

reduced peak of ex vivo thrombin generation in TGA compared with untreated patients (31). 

One study of pediatric patients with SCD reported a negative correlation between ETP and 

peak ex vivo thrombin generation normalized for age and duration of hydroxyurea treatment, 

suggesting a time-dependent effect of hydroxyurea on overall coagulation potential in 

children with SCD (146). However, all of these have been cross-sectional studies in which 

the steady state plasma levels of coagulation parameters were compared in SCD patients 

based on treatment with hydroxyurea, often with no consideration of patient dosage, 

adherence or duration of treatment. Finally, treatment of a small group of children with SCD 

and β-thalassemia intermedia was reported to lower the plasma level of FVIII and protein C 

after approximately 6 months of hydroxyurea therapy (175).

 5.2. Chronic Blood Transfusion

Chronic blood transfusion is effective for the primary (176) and secondary (171) prevention 

of stroke as well as for reducing the risk of recurrent cerebral infarcts (177) in children with 

SCD. In addition, chronic transfusion therapy decreases the frequency of acute pain episodes 

and acute chest syndrome (178). A significant reduction in the concentration of erythrocyte-

derived microparticles was reported in one study, although the concentrations of platelet-

derived microparticles and total annexin V-positive microparticles remained similar before 

and following RBC exchange transfusion (179). In children with HbSS and HbSβ0-

thalassemia receiving regular blood transfusion to keep HbS ≤20%, plasma levels of 

coagulation factor X and factor XI, total protein S, heparin cofactor II, F1.2 and TAT 

remained higher than in race- and age-matched controls, suggesting ongoing coagulation 

activation despite chronic transfusion (21).

 5.3. Anticoagulant Therapy

Downregulation of coagulation with anticoagulant drugs has been used to assess the 

contribution of hemostatic alterations to the pathogenesis of SCD. However, the majority of 

the published studies are small, poorly controlled, and have focused mainly on the frequency 

of painful episodes as the primary endpoint (Table 3). Although low intensity 

anticoagulation with the vitamin K antagonist, acenocoumarol, has been reported to 

normalize circulating markers of in vivo thrombin generation in patients with SCD 

(180,181), no reduction was observed in the frequency of pain episodes (181). A small study 

of 4 patients with severe SCD reported a reduction of the number of days of hospitalization 

per year and number of days spent in the emergency department during periods when 

patients received prophylactic doses of unfractionated heparin compared to periods when 

they were off treatment (182). More recently, a randomized, double-blind, placebo-

controlled study of the low molecular weight heparin, tinzaparin, in 253 patients with HbSS 

showed a significant reduction in the number of days with the most severe pain scores, the 

overall duration of painful crisis, and the duration of hospitalization in the treatment group 

compared with placebo (183). However, it is uncertain whether the beneficial effects were 
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due to the anticoagulant property of tinzaparin or its anti-inflammatory and P-selectin 

blocking effects (184,185).

Studies in animal models of SCD have suggested a link between coagulation activation and 

vascular inflammation (186). Blockade of factor Xa or thrombin using specific direct 

inhibitors, rivaroxaban and dabigatran, respectively, significantly reduced TAT and local 

tissue inflammation, with decreased levels of myeloperoxidase and the number of 

neutrophils in the lungs of sickle mice (129). Furthermore, treatment of sickle mice with 

rivaroxaban resulted in decreased IL-6, suggesting an effect on systemic inflammation. 

Genetic reduction of prothrombin level to below 10% activity in sickle mice also resulted in 

lower plasma levels of steady state D-dimer, IL-6, soluble VCAM-1, as well as white blood 

cell and platelet counts despite similar RBC profiles compared with control mice (187) 

indicative of decreased coagulation activation, systemic inflammation and vascular injury. 

Interestingly, sickle mice with reduced prothrombin level experienced no significant 

bleeding and had decreased mortality and less damage to organs, including the lung, kidney, 

heart and liver (187). Together, these animal studies provide a proof of concept that 

diminution of coagulation activation in SCD may indeed decrease end-organ damage. Based 

on the observed effects in sickle mice, a study of the factor Xa inhibitor, rivaroxaban, is 

ongoing in patients with SCD to assess its pharmacodynamic effects and safety 

(www.clinicaltrials.gov. identifier NCT02072668).

 5.4. Anti-platelet Agents

There have been multiple studies of antiplatelet agents in SCD (Table 4), although most of 

these trials did not correlate the in vivo effect of the drugs on platelet activation with clinical 

endpoints. In a randomized, double-blind, placebo-controlled study, treatment with 

ticlopidine resulted in a reduction in the frequency, duration, and severity of acute pain 

episodes in patients with SCD compared with placebo following 6 months of therapy (188). 

Eptifibatide, a specific and reversible synthetic peptide inhibitor of the αIIbβ3 receptor, was 

shown to inhibit platelet aggregation, and decrease soluble CD40L levels as well as plasma 

levels of inflammatory mediators in a phase 1 study of adults with HbSS (189). Although 

eptifibatide was not associated with major bleeding or thrombocytopenia, it did not improve 

times to discharge, crisis resolution or the total opioid use in a pilot, randomized, double-

blind and placebo-controlled trial of adults with SCD admitted for acute pain episodes (190). 

However, this study was not adequately powered to assess clinical outcomes. Treatment with 

prasugrel, a third-generation platelet P2Y12 ADP antagonist, in a multicenter, phase 2 

randomized, double-blind study resulted in reduced markers of platelet activation, with no 

hemorrhagic events requiring medical intervention in adults with SCD (191). Although 

efficacy was not a primary end-point of this study, the treatment group showed a non-

significant trend towards reduction in the rate and intensity of pain. More recently, a phase 3, 

multinational study evaluating the efficacy of prasugrel in 341 children with sickle cell 

anemia (HbSS and HbSβ0 thalassemia) showed no significant difference in the rate of vaso-

occlusive crisis (a composite of painful crisis and acute chest syndrome) among those who 

received prasugrel compared with placebo (192). However, subgroup analyses showed that 

the effect of prasugrel was greatest in the group of patients between the ages of 12 and 17 

years and in patients not receiving hydroxyurea (192).
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 6. Conclusion

SCD is a hypercoagulable state characterized by chronic activation of coagulation in vivo 
and increased risk of both arterial and venous thrombosis. There is increasing evidence that 

the activation of coagulation in SCD is not just a secondary event, but may contribute to 

disease pathogenesis. Although treatment with hydroxyurea and chronic blood transfusion 

have important clinical benefits, patients continue to experience clinical complications, 

including thrombotic complications. Defining the contribution of the hypercoagulable state 

to disease pathogenesis requires further studies using transgenic animal models. Despite the 

disappointing results of the phase 3 trial of prasugrel in children, other well controlled 

clinical studies of new anticoagulants and antiplatelet agents, using a variety of clinical 

endpoints will help to further define the contribution of coagulation and platelet activation to 

the pathophysiology of SCD and its complications.
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Practice points

• Patients with SCD are at increased risk of both arterial and venous 

thrombosis.

• Treatment with hydroxyurea results in decreased frequency of acute 

pain episodes, acute chest syndrome, transfusion requirement, lower 

TCD velocity and perhaps mortality.

• Blood transfusion remains the standard of care for primary and 

secondary prevention of stroke in SCD.
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Research agenda

• Improvement of our understanding of the role of coagulation and 

platelet abnormalities in the development of clinical complications of 

SCD.

• Define the contribution of the contact system to the pathophysiology of 

SCD.

• Need for longitudinal studies to define the effects of hydroxyurea and 

chronic blood transfusion on coagulation activation in SCD.

• Need for well-designed clinical trials with new generations of 

anticoagulants and antiplatelet agents using a variety of clinical 

endpoints.
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Figure 1. Pathogenesis of thrombosis in sickle cell disease
RBC - Red blood cells; isRBC - Irreversibly sickled red blood cells; PLT - Platelets; MP - 

Microparticles; cfDNA - Cell-free DNA; NETs - Neutrophil extracellular traps; NO - Nitric 

oxide; IRI - Ischemia reperfusion injury; TF - Tissue factor; PS - phosphatidylserine; EC - 

Endothelial cell; vWF - von Willebrand factor; FVIII - Factor VIII; FXa - Activated factor 

X.

Noubouossie et al. Page 27

Blood Rev. Author manuscript; available in PMC 2017 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Noubouossie et al. Page 28

Ta
b

le
 1

St
ud

ie
s 

of
 T

hr
om

bi
n 

G
en

er
at

io
n 

A
ss

ay
s 

in
 S

ic
kl

e 
C

el
l D

is
ea

se

St
ud

y
P

at
ie

nt
s

Sa
m

pl
e 

P
re

pa
ra

ti
on

A
na

ly
ti

c 
C

on
di

ti
on

s
SC

D
 S

te
ad

y 
St

at
e 

vs
. 

H
ea

lt
hy

 C
on

tr
ol

s
C

ri
si

s 
vs

. S
te

ad
y 

St
at

e

A
m

in
 e

t a
l (

29
),

 2
01

5
N

 =
 3

5
A

ge
: 1

8 
– 

65
 y

ea
rs

G
en

ot
yp

e:
 H

bA
S,

 H
bS

S,
 H

bS
β0 -

th
al

C
itr

at
ed

 W
B

 w
ith

 C
T

I;
 d

ou
bl

e 
ce

nt
ri

fu
ga

tio
n

15
00

g 
×

 1
5m

in
 a

nd
 1

30
00

g 
×

 2
m

in
St

or
ag

e 
−

80
 °

C

1p
M

 T
F 

+
 4

μM
 P

L
Sh

or
te

r 
T

tP
ea

k 
(a

)

L
ow

er
 E

T
P 

(a
)

N
/A

W
he

lih
an

 e
t a

l (
34

),
 

20
14

N
 =

 2
5

A
ge

: 2
0 

– 
54

 y
ea

rs
G

en
ot

yp
e:

 H
bS

S

C
itr

at
ed

 W
B

 w
ith

 C
T

I
D

ou
bl

e 
ce

nt
ri

fu
ga

tio
n

25
00

g 
×

 1
5m

in
 ×

 2
St

or
ag

e 
−

80
 °

C

5p
M

 T
F 

+
 4

μM
 P

L
 ±

 T
M

 o
r 

A
PC

L
ow

er
 p

ea
k 

w
ith

ou
t T

M
 

or
 A

PC
; i

nc
re

as
ed

 %
 o

f 
re

si
du

al
 p

ea
k 

w
ith

 T
M

 o
f 

A
PC

N
/A

Sh
ah

 e
t a

l (
30

),
 2

01
2

N
 =

 5
1

A
ge

: >
 4

 y
ea

rs
G

en
ot

yp
e:

 H
bS

S

C
itr

at
ed

 W
B

 n
o 

C
T

I
D

ou
bl

e 
ce

nt
ri

fu
ga

tio
n

35
00

g 
×

 1
5m

in
 a

nd
 9

50
0g

 ×
 1

0 
m

in

1p
M

 T
F 

+
 4

μM
 P

L
N

/A
Sh

or
te

r 
T

tp
ea

k 
(b

) ;
 

L
ow

er
 s

lo
pe

 (b
) ;

 

H
ig

he
r 

pe
ak

 (b
) ;

 

H
ig

he
r 

E
T

P 
(b

)

G
er

ot
zi

af
as

 e
t a

l (
31

),
 

20
12

N
 =

 9
2

*  
A

ge
: 2

5.
48

 ±
 8

.0
2 

ye
ar

s
G

en
ot

yp
e:

 H
bS

S

C
itr

at
ed

 W
B

 n
o 

C
T

I
D

ou
bl

e 
ce

nt
ri

fu
ga

tio
n

20
00

g 
×

 1
0m

in
 ×

 2

5p
M

 T
F 

+
 4

μM
 P

L
Sh

or
te

r 
T

tp
ea

k 
; h

ig
he

r 
pe

ak
; h

ig
he

r 
sl

op
e

N
ot

 a
va

ila
bl

e

N
ou

bo
uo

ss
ie

 e
t a

l (
32

),
 

20
12

N
 =

 8
3

A
ge

: 2
 –

 2
1 

ye
ar

s
G

en
ot

yp
e:

 H
bS

S,
 H

bS
C

, H
bS

β0 -
th

al
, H

bS
β-

th
al

C
itr

at
ed

 W
B

 n
o 

C
T

I
D

ou
bl

e 
ce

nt
ri

fu
ga

tio
n

32
00

g 
×

 1
5 

m
in

 a
nd

 1
60

00
g 

×
 2

m
in

1p
M

 T
F 

+
 4

μM
 P

L
 w

ith
ou

t T
M

H
ig

he
r 

pe
ak

; h
ig

he
r 

sl
op

e
N

o 
ch

an
ge

 in
 

pa
ra

m
et

er
s

1p
M

 T
F 

+
 4

μM
 P

L
 w

ith
 T

M
Sh

or
te

r 
LT

; h
ig

he
r 

pe
ak

; 
hi

gh
er

 s
lo

pe
; i

nc
re

as
ed

 
E

T
P

N
o 

ch
an

ge
 in

 
pa

ra
m

et
er

s

B
et

al
 e

t a
l (

19
3)

, 2
00

9
N

 =
 2

3
A

ge
: 1

8 
– 

58
 y

ea
rs

G
en

ot
yp

e:
 H

bS
S,

 H
bS

β0 -
th

al

PP
P 

no
 C

T
I

5p
M

 T
F 

+
 4

μM
 P

L
Sh

or
te

r 
LT

; s
ho

rt
er

 
T

tp
ea

k
D

ec
re

as
ed

 E
T

P
Sh

or
te

r 
st

ar
t t

ai
l

N
/A

PP
P 

+
 C

T
I

1p
M

 T
F 

+
 4

μM
 P

L
D

ec
re

as
ed

 E
T

P
Sh

or
te

r 
T

tp
ea

k
Sh

or
te

r 
st

ar
t t

ai
l

N
/A

(a
) R

es
ul

ts
 c

om
pa

ri
ng

 H
bS

S 
pa

tie
nt

s 
w

ith
 H

bA
A

 in
di

vi
du

al
s

(b
) R

es
ul

ts
 c

om
pa

ri
ng

 p
at

ie
nt

s 
in

 p
ai

nf
ul

 c
ri

si
s 

w
ith

 s
te

ad
y 

st
at

e 
in

 p
ai

re
d 

co
m

pa
ri

so
n.

* A
ge

 e
xp

re
ss

ed
 a

s 
m

ea
n 

±
 S

D
.

C
T

I 
– 

C
or

n 
T

ry
ps

in
 I

nh
ib

ito
r;

 E
T

P 
– 

E
nd

og
en

ou
s 

T
hr

om
bi

n 
Po

te
nt

ia
l; 

W
B

 –
 W

ho
le

 B
lo

od
; A

PC
 –

 A
ct

iv
at

ed
 P

ro
te

in
 C

; T
M

 –
 T

hr
om

bo
m

od
ul

in
; P

PP
 –

 P
la

te
le

t-
Po

or
 P

la
sm

a;
 P

L
 –

 S
yn

th
et

ic
 P

ho
sp

ho
lip

id
s;

 
T

tp
ea

k 
– 

T
im

e 
to

 P
ea

k;
 T

F 
– 

T
is

su
e 

Fa
ct

or
; T

G
A

 –
 T

hr
om

bi
n 

G
en

er
at

io
n 

A
ss

ay
; N

/A
 –

 N
ot

 A
va

ila
bl

e;
 S

C
D

 –
 S

ic
kl

e 
C

el
l D

is
ea

se

Blood Rev. Author manuscript; available in PMC 2017 July 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Noubouossie et al. Page 29

Ta
b

le
 2

Pu
bl

is
he

d 
st

ud
ie

s 
on

 th
e 

lin
k 

be
tw

ee
n 

co
ag

ul
at

io
n 

pa
ra

m
et

er
s 

an
d 

ce
re

br
ov

as
cu

la
r 

di
se

as
e 

in
 p

at
ie

nt
s 

w
ith

 s
ic

kl
e 

ce
ll 

di
se

as
e

St
ud

y
G

en
ot

yp
e

N
um

be
r

A
ge

D
ef

in
it

io
n 

of
 c

er
eb

ro
va

sc
ul

ar
 

di
se

as
e

C
oa

gu
la

ti
on

 p
ar

am
et

er
s 

an
al

yz
ed

M
ai

n 
fi

nd
in

gs

C
ol

om
ba

tti
 e

t a
l 

(2
3)

, (
20

13
)

H
bS

S
H

bS
β0

H
bS

C

44
M

ea
n:

 6
.4

9 
ye

ar
s 

(r
an

ge
: 1

.4
8 

– 
15

.1
1)

Pr
es

en
ce

 o
f 

SC
I 

on
 M

R
I 

(N
 =

 
9/

30
)

V
as

cu
la

r 
st

en
os

is
 o

n 
M

R
I 

(N
 =

 
23

/3
0)

A
bn

or
m

al
 T

C
D

 (
N

 =
 3

/3
5 

pa
tie

nt
s 

>
 2

 y
ea

rs
 o

ld
)

PT
, P

T
T,

 F
V

II
I:

C
, v

W
F:

 A
g 

&
 a

ct
iv

ity
, 

PA
I:

A
g,

 t-
PA

:A
g,

 D
-D

im
er

s,
 P

F 
1.

2,
 T

A
T,

 
A

D
A

M
T

S-
13

 A
g 

&
 a

ct
iv

ity

N
o 

co
rr

el
at

io
n 

be
tw

ee
n 

co
ag

ul
at

io
n 

pa
ra

m
et

er
s 

an
d 

T
C

D
 v

el
oc

iti
es

 o
r 

ab
no

rm
al

 M
R

I.
Si

gn
if

ic
an

t r
ed

uc
tio

n 
of

 t-
PA

:A
g 

an
d 

bo
rd

er
lin

e 
re

du
ct

io
n 

of
 A

D
A

M
T

S1
3 

in
 

pa
tie

nt
s 

w
ith

 v
s 

w
ith

ou
t S

C
I

Ta
nt

aw
y 

et
 a

l 
(1

43
),

 (
20

13
)

H
bS

S
H

bS
β

50
M

ea
n:

 1
1.

1 
ye

ar
s 

(r
an

ge
: 2

 –
 1

8)
H

is
to

ry
 o

f 
st

ro
ke

 (
N

 =
 5

)
C

ir
cu

la
tin

g 
le

ve
ls

 o
f 

pl
at

el
et

- 
an

d 
er

yt
hr

oc
yt

e-
de

ri
ve

d 
M

Ps
In

cr
ea

se
d 

le
ve

ls
 o

f 
bo

th
 p

la
te

le
t-

 a
nd

 
er

yt
hr

oc
yt

e-
de

ri
ve

d 
M

Ps
 in

 p
at

ie
nt

s 
w

ith
 v

s.
 w

ith
ou

t h
is

to
ry

 o
f 

st
ro

ke

N
ou

bo
uo

ss
ie

 e
t a

l 
(1

46
),

 (
20

13
)

H
bS

S
H

bS
C

H
bS

β+

48
R

an
ge

: 2
 –

 1
6 

ye
ar

s
T

C
D

, n
o 

ca
se

 >
 2

00
 c

m
/s

, 2
 

ca
se

s 
be

tw
ee

n 
17

0–
19

0 
cm

/s
.

E
x-

vi
vo

 th
ro

m
bi

n 
ge

ne
ra

tio
n

PC
 a

ct
iv

ity
, f

re
e 

PS
Po

si
tiv

e 
co

rr
el

at
io

n 
be

tw
ee

n 
T

C
D

 
ve

lo
ci

ty
 a

nd
 E

T
P 

an
d 

pe
ak

 th
ro

m
bi

n 
ge

ne
ra

tio
n 

no
rm

al
iz

ed
 f

or
 a

ge
 r

an
ge

.
N

eg
at

iv
e 

co
rr

el
at

io
n 

be
tw

ee
n 

T
C

D
 

ve
lo

ci
ty

 a
nd

 b
ot

h 
PC

 a
ct

iv
ity

 a
nd

 f
re

e 
PS

 le
ve

ls
.

A
ta

ga
 e

t a
l (

24
),

 
(2

01
2)

H
bS

S
H

bS
C

H
bS

β0

H
bS

D

64
M

ed
ia

n:
 3

7 
ye

ar
s 

(I
Q

R
: 2

6.
7 

– 
46

.2
) 

fo
r 

H
bS

S/
H

bS
D

/
H

bS
β0  

(N
=

52
)

M
ed

ia
n:

 4
9 

ye
ar

s 
(I

Q
R

: 3
0.

2 
– 

19
.0

) 
fo

r 
H

bS
C

/H
bS

β+
 

(N
=

12
)

H
is

to
ry

 o
f 

st
ro

ke
 (

N
 =

 5
)

D
-D

im
er

s,
 T

A
T,

 C
D

40
L

, M
PT

F 
PC

A
B

or
de

rl
in

e 
as

so
ci

at
io

n 
be

tw
ee

n 
in

cr
ea

se
d 

D
-d

im
er

s 
an

d 
hi

st
or

y 
of

 
st

ro
ke

Sh
ah

 e
t a

l (
30

),
 

(2
01

2)
H

bS
S

20
 c

hi
ld

re
n

31
 a

du
lts

M
ed

ia
n:

 1
7 

ye
ar

s 
(r

an
ge

: 4
 –

 4
1)

T
C

D
 a

t s
te

ad
y 

st
at

e 
an

d 
du

ri
ng

 
V

O
C

 in
 c

hi
ld

re
n 

(N
 =

 2
0)

E
x-

vi
vo

 th
ro

m
bi

n 
ge

ne
ra

tio
n,

 D
-D

im
er

s,
 T

A
T

N
o 

co
rr

el
at

io
n 

be
tw

ee
n 

th
ro

m
bi

n 
ge

ne
ra

tio
n 

pa
ra

m
et

er
s 

an
d 

T
C

D
 

ve
lo

ci
ty

 a
t s

te
ad

y 
st

at
e 

or
 V

O
C

.
Po

si
tiv

e 
co

rr
el

at
io

n 
be

tw
ee

n 
T

C
D

 
ve

lo
ci

ty
 a

nd
 b

ot
h 

D
-D

im
er

s 
an

d 
TA

T
 

le
ve

ls
 a

t s
te

ad
y-

st
at

e 
bu

t n
ot

 d
ur

in
g 

V
O

C
.

L
ie

sn
er

 e
t a

l (
21

),
 

(1
99

8)
H

bS
S

H
bS

β0
96

M
ea

n:
 8

.1
 y

ea
rs

 
(r

an
ge

: 5
.5

 –
 1

2.
1)

A
bn

or
m

al
 T

C
D

 (
N

 =
 1

7)
 o

r 
hi

st
or

y 
of

 o
ve

rt
 s

tr
ok

e 
on

 
ch

ro
ni

c 
tr

an
sf

us
io

n 
th

er
ap

y 
(N

 =
 

13
)

A
T,

 P
C

 a
ct

iv
ity

, f
re

e 
PS

, H
C

F 
II

, f
ib

ri
no

ge
n,

 
FV

II
, F

X
, F

X
I,

 F
X

II
, A

PC
R

, A
PL

 A
bs

R
ed

uc
ed

 A
PC

R
 r

at
io

 in
 u

nt
ra

ns
fu

se
d 

vs
. p

at
ie

nt
s 

w
ith

 h
is

to
ry

 o
f 

ov
er

t s
tr

ok
e 

on
 c

hr
on

ic
 tr

an
sf

us
io

n 
th

er
ap

y

T
C

D
 –

 T
ra

ns
cr

an
ia

l D
op

pl
er

; M
R

I 
– 

M
ag

ne
tic

 R
es

on
an

ce
 I

m
ag

in
g;

 P
T

 –
 P

ro
th

ro
m

bi
n 

T
im

e;
 P

T
T

 –
 P

ar
tia

l T
hr

om
bo

pl
as

tin
 T

im
e;

 F
V

II
I:

C
 –

 F
ac

to
r 

V
II

I 
C

oa
gu

la
nt

; v
W

F 
– 

vo
n 

W
ill

eb
ra

nd
 F

ac
to

r;
 P

A
I:

A
g 

– 
Pl

as
m

in
og

en
 A

ct
iv

at
or

 I
nh

ib
ito

r 
A

nt
ig

en
; t

-P
A

 –
 T

is
su

e-
ty

pe
 P

la
sm

in
og

en
 A

ct
iv

at
or

; P
F1

.2
 –

 P
ro

th
ro

m
bi

n 
Fr

ag
m

en
t 1

.2
; T

A
T

 –
 T

hr
om

bi
n-

A
nt

ith
ro

m
bi

n 
C

om
pl

ex
; S

C
I 

– 
Si

le
nt

 C
er

eb
ra

l I
nf

ar
ct

; P
C

 –
 

Pr
ot

ei
n 

C
; P

S 
– 

Pr
ot

ei
n 

S;
 E

T
P 

– 
E

nd
og

en
ou

s 
T

hr
om

bi
n 

Po
te

nt
ia

l; 
M

PT
F 

PC
A

 –
 M

ic
ro

pa
rt

ic
le

 T
is

su
e 

Fa
ct

or
 P

ro
co

ag
ul

an
t A

ss
ay

; V
O

C
 –

 V
as

o-
oc

cl
us

iv
e 

C
ri

si
s;

 A
T

 –
 A

nt
ith

ro
m

bi
n;

 H
C

F 
II

 –
 H

ep
ar

in
 

C
of

ac
to

r 
II

; A
PC

R
 –

 A
ct

iv
at

ed
 P

ro
te

in
 C

 R
es

is
ta

nc
e;

 A
PL

 A
bs

 –
 A

nt
ip

ho
sp

ho
lip

id
 A

nt
ib

od
ie

s;
 I

Q
R

 –
 I

nt
er

qu
ar

til
e 

R
an

ge

Blood Rev. Author manuscript; available in PMC 2017 July 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Noubouossie et al. Page 30

Ta
b

le
 3

Pu
bl

is
he

d 
St

ud
ie

s 
of

 th
e 

E
ff

ec
t o

f 
A

nt
ic

oa
gu

la
nt

s 
in

 P
at

ie
nt

s 
w

ith
 S

ic
kl

e 
C

el
l D

is
ea

se
*

St
ud

y
G

en
ot

yp
e

N
um

be
r 

of
 P

at
ie

nt
s

T
re

at
m

en
t

R
an

do
m

iz
at

io
n

D
ur

at
io

n 
of

 T
re

at
m

en
t

M
ai

n 
re

su
lt

s

Q
ar

i e
t a

l (
18

3)
, (

20
07

)
H

bS
S

25
3

T
in

za
pa

ri
n 

vs
. p

la
ce

bo
Y

es
D

ur
at

io
n 

of
 h

os
pi

ta
liz

at
io

 n
, 

m
ax

im
um

 7
 d

ay
s

R
ed

uc
tio

n 
in

 n
um

be
r 

of
 d

ay
s 

w
ith

 th
e 

m
os

t 
se

ve
re

 p
ai

n 
sc

or
e,

 d
ur

at
io

n 
of

 o
ve

ra
ll 

pa
in

fu
l 

cr
is

is
, a

nd
 d

ur
at

io
n 

of
 h

os
pi

ta
liz

at
io

n

Sc
hn

og
 e

t a
l (

18
1)

, 
(2

00
1)

H
bS

S
14

A
ce

no
co

um
ar

ol
 v

s.
 p

la
ce

bo
ye

s
14

 w
ee

ks
R

ed
uc

ed
 m

ar
ke

rs
 o

f 
co

ag
ul

at
io

n 
ac

tiv
at

io
n,

 
bu

t n
o 

re
du

ct
io

n 
of

 p
ai

n 
ep

is
od

e 
w

ith
 a

ct
iv

e 
tr

ea
tm

en
t

H
bS

C
8

W
ol

te
rs

 e
t a

l (
18

0)
, 

(1
99

5)
H

bS
S

6
A

ce
no

co
um

ar
ol

N
o

2 
m

on
th

s
R

ed
uc

ed
 p

ro
th

ro
m

bi
n 

fr
ag

m
en

t 1
.2

H
bS

C
1

C
ha

pl
in

 e
t a

l (
18

2)
, 

(1
98

9)
H

bS
S

4
H

ep
ar

in
N

o
2 

– 
6 

ye
ar

s
R

ed
uc

ed
 f

re
qu

en
cy

 o
f 

pa
in

 e
pi

so
de

s

Sa
lv

ag
gi

o 
et

 a
l (

19
4)

, 
(1

96
3)

H
bS

S
12

W
ar

fa
ri

n
N

o
12

 –
 3

4 
m

on
th

s
M

od
es

t d
ec

re
as

e 
in

 f
re

qu
en

cy
 o

f 
pa

in
 

ep
is

od
es

* A
da

pt
ed

 f
ro

m
 A

ta
ga

 K
I 

&
 K

ey
 N

S.
 H

yp
er

co
ag

ul
ab

ili
ty

 in
 s

ic
kl

e 
ce

ll 
di

se
as

e:
 n

ew
 a

pp
ro

ac
he

s 
to

 a
n 

ol
d 

pr
ob

le
m

. H
em

at
ol

. E
du

c.
 P

ro
gr

am
 A

m
. S

oc
. H

em
at

ol
. 2

00
7:

91
–9

6 
(9

).

Blood Rev. Author manuscript; available in PMC 2017 July 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Noubouossie et al. Page 31

Ta
b

le
 4

Pu
bl

is
he

d 
st

ud
ie

s 
on

 a
nt

i-
pl

at
el

et
 a

ge
nt

s 
in

 p
at

ie
nt

s 
w

ith
 s

ic
kl

e 
ce

ll 
di

se
as

e 
(a

)

St
ud

y
G

en
ot

yp
es

N
um

be
r 

of
 p

at
ie

nt
s

T
re

at
m

en
t

R
an

do
m

iz
at

io
n

D
ur

at
io

n
M

ai
n 

re
su

lt
s

H
ee

ne
y 

et
 a

l (
19

2)
, 

(2
01

5)

H
bS

S
30

8

Pr
as

ug
re

l v
s 

pl
ac

eb
o

Y
es

9 
– 

24
 m

on
th

s

N
o 

si
gn

if
ic

an
t d

if
fe

re
nc

e 
in

 r
at

e 
of

 V
O

C
 e

ve
nt

s,
 r

at
e 

of
 

ho
sp

ita
liz

at
io

n 
fo

r 
V

O
C

, r
at

e 
of

 R
B

C
 tr

an
sf

us
io

n,
 r

at
e 

of
 p

ai
n,

 
in

te
ns

ity
 o

f 
pa

in
, r

at
e 

of
 a

na
lg

es
ic

 u
se

, o
r 

ra
te

 o
f 

ab
se

nc
e 

fr
om

 
sc

ho
ol

 d
ue

 to
 s

ic
kl

e 
ce

ll-
re

la
te

d 
pa

in
; n

o 
di

ff
er

en
ce

 in
 d

ur
at

io
n 

of
 h

os
pi

ta
liz

at
io

n 
fo

r 
V

O
C

, t
im

e 
fr

om
 r

an
do

m
iz

at
io

n 
to

 1
st
 o

r 
2nd

 V
O

C
, o

r 
in

ci
de

nc
e 

of
 T

IA
 o

r 
is

ch
em

ic
 s

tr
ok

e

H
bS

β0  
th

al
as

se
m

ia
33

St
yl

es
 e

t a
l (

19
5)

,‡
 

(2
01

5)

H
bS

S
30

Pr
as

ug
re

l
N

o

Pa
rt

 A
* :

 2
8±

8 
da

ys
Fe

w
 c

as
es

 o
f 

m
ild

 a
nd

 s
el

f-
lim

ite
d 

bl
ee

di
ng

 s
id

e 
ef

fe
ct

s 
at

 
cl

in
ic

al
ly

 r
el

ev
an

t p
la

te
le

t i
nh

ib
iti

on
H

bS
β0  

th
al

as
se

m
ia

3
Pa

rt
 B

# :
 2

2–
36

 
da

ys

W
un

 e
t a

l (
19

1)
,†

 
(2

01
3)

H
bS

S
37

Pr
as

ug
re

l v
s 

pl
ac

eb
o

Y
es

30
 d

ay
s

N
o 

bl
ee

di
ng

 e
ve

nt
 r

eq
ui

ri
ng

 m
ed

ic
al

 a
tte

nt
io

n;
 s

ig
ni

fi
ca

nt
 

de
cr

ea
se

 in
 p

la
te

le
t a

ct
iv

at
io

n 
bi

om
ar

ke
rs

; n
on

-s
ig

ni
fi

ca
nt

 
de

cr
ea

se
 in

 r
at

e 
an

d 
in

te
ns

ity
 o

f 
pa

in
H

bS
C

15

H
bS

β 
th

al
as

se
m

ia
9

D
es

ai
 e

t a
l (

19
0)

, 
(2

01
3)

H
bS

S
10

E
pt

if
ib

at
id

e 
vs

 p
la

ce
bo

Y
es

28
 –

 3
5 

da
ys

N
o 

m
aj

or
 b

le
ed

in
g 

ep
is

od
e 

or
 th

ro
m

bo
cy

to
pe

ni
a;

 n
o 

di
ff

er
en

ce
s 

in
 th

e 
m

ed
ia

n 
tim

es
 to

 d
is

ch
ar

ge
, t

im
es

 to
 c

ri
si

s 
re

so
lu

tio
n 

or
 m

ed
ia

n 
to

ta
l o

pi
oi

d 
us

e
H

bS
C

1

H
bS

β0  
th

al
as

se
m

ia
2

Z
ag

o 
et

 a
l (

19
6)

, 
(1

98
4)

H
bS

S
25

A
sp

ir
in

 v
s 

pl
ac

eb
o

Y
es

5 
m

on
th

s
N

o 
di

ff
er

en
ce

 in
 f

re
qu

en
cy

 o
f 

pa
in

 e
pi

so
de

s,
 h

em
og

lo
bi

n,
 

re
tic

ul
oc

yt
e 

co
un

t, 
ir

re
ve

rs
ib

ly
 s

ic
kl

ed
 R

B
C

s 
an

d 
H

bF
H

bS
β0  

th
al

as
se

m
ia

4

C
ab

an
ne

s 
et

 a
l (

18
8)

, 
(1

98
4)

H
bS

S
14

0
T

ic
lo

pi
di

ne
 v

s 
pl

ac
eb

o
Y

es
6 

m
on

th
s

R
ed

uc
tio

n 
of

 f
re

qu
en

cy
 a

nd
 d

ur
at

io
n 

of
 p

ai
n 

ep
is

od
es

Se
m

pl
e 

et
 a

l (
19

7)
, 

(1
98

4)

H
bS

S
8

T
ic

lo
pi

di
ne

 v
s 

pl
ac

eb
o

Y
es

4 
w

ee
ks

N
o 

im
pr

ov
em

en
t i

n 
fr

eq
ue

nc
y 

of
 p

ai
n 

ep
is

od
es

 o
r 

pl
at

el
et

 
su

rv
iv

al
, b

ut
 d

ec
re

as
e 

in
 p

la
te

le
t r

el
ea

se
 p

ro
du

ct
s

H
bS

β0  
th

al
as

se
m

ia
1

G
re

en
be

rg
 e

t a
l (

19
8)

, 
(1

98
3)

H
bS

S
40

A
sp

ir
in

 v
s 

pl
ac

eb
o

Y
es

21
 m

on
th

s
N

o 
de

cr
ea

se
 in

 f
re

qu
en

cy
 o

f 
pa

in
 e

pi
so

de
s

H
bS

C
8

H
bS

O
A

ra
b

1

O
sa

m
o 

et
 a

l (
19

9)
, 

(1
98

1)
H

bS
S

10
0

A
sp

ir
in

Y
es

6 
w

ee
ks

In
cr

ea
se

 in
 o

xy
ge

n 
af

fi
ni

ty
, h

em
og

lo
bi

n,
 a

nd
 R

B
C

 li
fe

sp
an

C
ha

pl
in

 e
t a

l (
20

0)
, 

(1
98

0)
H

bS
S

3
A

sp
ir

in
/d

ip
 y

ri
da

m
ol

e
N

o
10

4 
w

ee
ks

M
od

es
t d

ec
re

as
e 

in
 f

re
qu

en
cy

 o
f 

pa
in

 e
pi

so
de

s,
 p

la
te

le
t c

ou
nt

, 
an

d 
fi

br
in

og
en

 le
ve

l

* T
he

 p
ur

po
se

 o
f 

Pa
rt

 A
 w

as
 to

 c
ha

ra
ct

er
iz

e 
th

e 
re

la
tio

ns
hi

p 
be

tw
ee

n 
do

se
, a

ct
iv

e 
m

et
ab

ol
ite

 e
xp

os
ur

e,
 a

nd
 p

la
te

le
t r

ea
ct

iv
ity

 a
ft

er
 s

in
gl

e 
do

se
s 

of
 p

ra
su

gr
el

. P
at

ie
nt

s 
re

ce
iv

ed
 u

p 
to

 3
 s

in
gl

e 
do

se
s 

of
 p

ra
su

gr
el

 
se

pa
ra

te
d 

by
 1

4±
4 

da
ys

 b
et

w
ee

n 
ea

ch
 d

os
e.

Blood Rev. Author manuscript; available in PMC 2017 July 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Noubouossie et al. Page 32
# T

he
 p

ur
po

se
 o

f 
Pa

rt
 B

 w
as

 to
 c

ha
ra

ct
er

iz
e 

th
e 

re
la

tio
ns

hi
p 

be
tw

ee
n 

ac
tiv

e 
m

et
ab

ol
ite

 e
xp

os
ur

e 
an

d 
pl

at
el

et
 r

ea
ct

iv
ity

 d
ur

in
g 

da
ily

 d
os

in
g.

 D
ai

ly
 d

os
es

 o
f 

pr
as

ug
re

l w
er

e 
ta

ke
n 

du
ri

ng
 2

 d
os

in
g 

tr
ea

tm
en

ts
 

th
at

 e
ac

h 
la

st
ed

 1
4±

4 
da

ys
.

‡ T
hi

s 
st

ud
y 

w
as

 p
er

fo
rm

ed
 in

 c
hi

ld
re

n 
w

ith
 a

 b
od

y 
w

ei
gh

t ≥
 1

2 
kg

, a
nd

 a
ge

 ≥
 2

 to
 <

18
 y

ea
rs

.

† T
hi

s 
st

ud
y 

w
as

 p
er

fo
rm

ed
 in

 a
du

lt 
pa

tie
nt

s 
w

ith
 S

C
D

 a
ge

d 
18

 to
 5

5 
ye

ar
s.

V
O

C
 –

 V
as

o-
oc

cl
us

iv
e 

cr
is

is
; T

IA
 –

 T
ra

ns
ie

nt
 is

ch
em

ic
 a

tta
ck

; R
B

C
 –

R
ed

 b
lo

od
 c

el
l

(a
) A

da
pt

ed
 f

ro
m

 A
ta

ga
 K

I 
&

 K
ey

 N
S.

 H
yp

er
co

ag
ul

ab
ili

ty
 in

 s
ic

kl
e 

ce
ll 

di
se

as
e:

 n
ew

 a
pp

ro
ac

he
s 

to
 a

n 
ol

d 
pr

ob
le

m
. H

em
at

ol
. E

du
c.

 P
ro

gr
am

 A
m

. S
oc

. H
em

at
ol

 2
00

7:
 9

1–
6 

(9
).

Blood Rev. Author manuscript; available in PMC 2017 July 01.


	Abstract
	1. Introduction
	2. Hemostatic alterations of SCD
	2.1. In vivo thrombin and fibrin generation
	2.2. Ex vivo thrombin generation assays and thromboelastography
	2.3. Tissue factor and contact system activation
	2.4. Platelet activation, red blood cells and microparticles
	2.5. Factor VIII, ADAMTS 13 and von Willebrand factor
	2.6. Natural anticoagulant proteins

	3. Vasculopathy of SCD
	4. Thrombosis-Related Complications of SCD and the Link with Hemostatic Alterations
	4.1. Venous Thromboembolism (VTE)
	4.2. Stroke and Silent Cerebral Infarct (SCI)
	4.3. Acute Chest Syndrome and Pulmonary Hypertension
	4.4. Other Complications

	5. Effect of Disease Modifying Treatments, Anticoagulants and Anti-Platelet Agents on the Hypercoagulable State of SCD
	5.1. Hydroxyurea
	5.2. Chronic Blood Transfusion
	5.3. Anticoagulant Therapy
	5.4. Anti-platelet Agents

	6. Conclusion
	References
	Figure 1
	Table 1
	Table 2
	Table 3
	Table 4

