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SUMMARY

Outcome-dependent sampling (ODS) designs have been well recognized as a cost-effective way to enhance
study efficiency in both statistical literature and biomedical and epidemiologic studies. A partially linear
additive model (PLAM) is widely applied in real problems because it allows for a flexible specification
of the dependence of the response on some covariates in a linear fashion and other covariates in a non-
linear non-parametric fashion. Motivated by an epidemiological study investigating the effect of prenatal
polychlorinated biphenyls exposure on children’s intelligence quotient (IQ) at age 7 years, we propose a
PLAM in this article to investigate a more flexible non-parametric inference on the relationships among
the response and covariates under the ODS scheme. We propose the estimation method and establish the
asymptotic properties of the proposed estimator. Simulation studies are conducted to show the improved
efficiency of the proposed ODS estimator for PLAM compared with that from a traditional simple random
sampling design with the same sample size. The data of the above-mentioned study is analyzed to illustrate
the proposed method.
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1. INTRODUCTION

Epidemiologists and biostatisticians are now paying more attention to the outcome-dependent sampling
(ODS) design recognizing that it is a cost-effective way to improve study efficiency. A general ODS
scheme, e.g. the case–control study in Cornfield (1951), is a retrospective sampling scheme where the
primary exposure or covariates are only observed on some subsets of the study population with a probabil-
ity depending on the value of the outcome variable which can be either continuous or discrete. The principle
idea of such a design is to concentrate resources where there is the greatest amount of information, thus
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making it more appealing than the traditional simple random sampling (SRS), to provide increased statis-
tical power or equivalently, a reduced sample size given a fixed budget.

The ODS design is especially attractive when considering the high cost of assessing the exposure vari-
able and the easy availability of the outcome. For example, in a recent epidemiological study employing
an ODS design (Gray and others, 2005), investigators were interested in studying how in utero exposure
to polychlorinated biphenyls (PCBs), which is represented by maternal third trimester serum PCB lev-
els, is related to the offspring’s intelligence quotient (IQ) at 7 years of age. The study subjects are chil-
dren born into the Collaborative Perinatal Project (CPP); a prospective cohort was designed to identify
determinants of a wide variety of neurological outcomes and birth defects (Niswander and Gordon, 1972).
Because of the great expense associated with the blood serum assay to obtain the PCB levels of all 43 628
eligible children from the 55 908 pregnancies recruited from 12 U.S. study centers from 1959 to 1965
(Longnecker and others, 2001), the investigators chose to measure the PCB exposure for a sample that
was assembled in an ODS way based on the observed IQ scores. That is, treating the eligible 43 628 chil-
dren as a known population, an overall simple random sample of 1256 subjects and an additional 207
children from those with IQ scores either one or more standard deviations below or above the mean were
included in the sample.

For analysis of data obtained through such a complex ODS design as described above, the usual
methods like maximum likelihood, assuming identically and independently distributed data, and ordi-
nary least squares, would derive inconsistent estimations (Holt and others, 1980). Unlike the case–control
study where the sampling scheme can be ignored as the underlying model is logistic, the analysis for
data from an ODS design with a continuous response must take into account that the ODS design is a
biased sampling scheme to avoid biased estimates of the regression parameters. Several methods have
been developed for this purpose. Commonly used methods include the weighted estimating equation
approach by Horvitz and Thompson (1952), where the weights are inversely proportional to the probabil-
ity of being sampled (inverse probability weighting), and another weighted pseudo-likelihood method by
Holt and others (1980), requiring a correct specification of all the underlying distributions. These methods,
however, only account for the sampling scheme in an approximate way. Zhou and others (2002) proposed a
more efficient semi-parametric empirical likelihood method in which no distribution of the exposure vari-
able was specified and the biased sampling design was more precisely reflected in the likelihood function.
A pseudo-score estimation method was also considered by Chatterjee and others (2003) for ODS data, as
well as the estimated likelihood method proposed by Weaver and Zhou (2005).

Recently, an increasing number of papers focusing on the efficiency gain and application of ODS
designs, development of ODS designs and model fitting for the ODS data have been published. For
example, in the framework of linear models, Zhou and others (2007) investigated the efficiency gain
of the ODS designs under a wide range of the exposure distributions and illustrated the application of
the ODS designs through 3 epidemiological real data. Xu and Zhou (2012) proposed a mixed regression
model for a cluster base of a two-stage outcome-auxiliary-dependent sampling design with a continu-
ous outcome. Zhou and others (2014) developed a two-phase probability-dependent sampling scheme.
Ding and others (2012) studied the regression analysis of a summed missing data problem under an ODS
design. Ding and others (2014) considered an ODS design for failure-time data with censoring. More-
over, the statistical inference of linear models has also been extended to the case of partially linear mod-
els. Zhou, Qin and others (2011) and Zhou, You and others (2011) both proposed a partially linear model
for fitting the data from an ODS design. However, they only consider the model with a single non-
parametric function, which may fail to meet with the multiple non-linearities that are commonly seen
in practice. Furthermore, their models cannot be directly extended to one with multiple non-linearities
due to the identifiability problem, which, in general, refers to the phenomenon that different non-
parametric components can generate the same mean so that the true non-parametric components cannot be
identified.
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In the aforementioned study investigating the relation between prenatal PCB exposure and children’s
subsequent IQ performance at age 7, the dataset was analyzed to show that the PCB did not have a
detrimental effect on IQ scores until reaching a higher serum level (Zhou, Qin and others, 2011). Mean-
while, another confounding variable, the highest education level of the mother at the child’s birth (EDU),
has also been detected to have a non-linear positive influence on IQ scores (Zhou, You and others, 2011),
which agrees with previous research results that mother’s years in college have a much greater effect on
children’s IQ than those in primary and secondary school do (Oddy and others, 2003; Breslau and others,
2005). Motivated by the findings above, a more reasonable model which can simultaneously incorporate
both the PCB and EDU effects non-parametrically is desired. Therefore, we consider a partially linear
additive model (PLAM) in this article to give a more thorough investigation of these relationships under
the ODS scheme. In comparison with Zhou and others (2007) which focus on linear models, we here allow
non-linear relationships between covariates and response. Furthermore, our proposed method can handle
more than one non-linear function.

A PLAM can be regarded as a combination of a linear regression model and the generalized addi-
tive models (Hastie and Tibshirani, 1990). It allows for flexible specification of the dependence of the
response on some covariates linearly and other covariates non-linearly. Coull and others (2001) adopted a
PLAM to analyze the respiratory health and air pollution data. Liang and others (2008) applied PLAMs to
study the relationship between environmental chemical exposures and semen quality. Carroll and others
(2009) considered a PLAM for repeatedly measured data. Liu and others (2014) proposed a class of gen-
eral partially linear additive transformation models for right-censored survival data. Although the PLAM
is a powerful tool for data analysis and is widely applied in practice, its statistical inference under ODS
designs has not been reported in the literature, possibly due to the complexity in development of theory
and computation in the setting of biased ODS designs. Commonly used methods for PLAMs are generally
developed for the data from SRS, such as the back-fitting method (Hastie and Tibshirani, 1990), marginal
integration approach (Linton and Nielsen, 1995) and direct fitting approach based on low-rank smooth-
ing (Hastie, 1996; Marx and Eilers, 1998). However, these methods cannot be directly applied to the ODS
design because it is a biased sampling scheme, and a minor modification to these methods cannot accom-
plish this task. Therefore, we propose a penalized maximum likelihood method to make inference of the
PLAM under an ODS scheme.

The rest of this article is organized as follows. In Section 2, we describe the data structure of the general
ODS design and the PLAM, and derive the penalized likelihood function. In Section 3, we propose the
inference method and present the asymptotic properties of the proposed estimator. Simulation studies are
conducted in Section 4 to demonstrate the performance of the proposed ODS estimator in a PLAM, with
a comparison to that derived from a traditional SRS design with the same sample size. In Section 5, a real
data from the CPP study is analyzed to illustrate our proposed method. Finally, we give some discussions
in Section 6.

2. DATA STRUCTURE, MODEL, AND THE PENALIZED LOG-LIKELIHOOD

2.1 Notation and ODS data structure

In this section, we give a brief overview of the ODS design considered in Zhou and others (2002). Let Y
denote a continuous outcome, the domain of which is assumed to be composed of K mutually exclusive
intervals: Ck = (ak−1, ak] with ak being known constants satisfying a0 = −∞< a1 < a2 < · · ·< aK = ∞.
Thus, the study population is split into K strata by Ck, k = 1, 2, . . . , K . In practice, it is found that K = 3
is sufficient to allow for the benefits of ODS designs. The data structure of the ODS sample consists
of two components. First, an overall simple random sample of the population (the SRS sample) is taken
with size n0. Secondly, an additional simple random sample of size nk from each of the K intervals of
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Y (the supplemental samples) is extracted with a distinguishing, perhaps unknown selection probability.
Then the total ODS sample size is n = ∑K

k=0 nk .
To fix notations, let Xl for l = 1, 2, . . . , L define all the variables relating to the outcome in a non-linear

way and X = (X1, X2, . . . , X L)
T , W is a (p − 1)-dimensional vector of covariates relating to the outcome

in a linear way. Then the ODS data structure can be summarized as follows:

SRS sample: {Y0 j , X0 j ,W0 j }, j = 1, 2, . . . , n0;
Supplemental sample: {Yk j , Xk j ,Wk j | Yk j ∈ Ck}, k = 1, 2, . . . , K ; j = 1, 2, . . . , nk .

2.2 A partially linear additive model

A general PLAM has the following form:

Y = β∗
int +

L∑
l=1

g∗
l (Xl)+ W Tβ + ε, (2.1)

where β∗
int is an intercept term, β is a (p − 1)-dimensional vector of linear regression coefficients, g∗

l (·)
are unknown smooth functions and ε is the random error. In this article, we adopt the penalized splines
(P-spline) to handle the non-parametric functions. Under the working assumption that g∗

l (·) is an rl-degree
spline function with Tl fixed knots {t1, . . . , tTl } for l = 1, . . . , L , we have that g∗

l (xl)= π∗T (xl)α
∗
l , where

π∗(xl)= (1, xl , x2
l , . . . , xrl

l , (xl − t1)
rl+, . . . , (xl − xtTl

)
rl+)T is an rl-degree power spline basis with knots

{t1, . . . , tTl }, (x)rl+ = xrl 1x�0 and α∗
l is an (ri + Tl + 1)-dimensional vector. Due to the requirement of iden-

tifiability, the g∗
l (·) in (2.1) are defined only up to an additive constant. Therefore, they can be replaced

by centered functions gl(xl)= g∗
l (xl)− Eg∗

l (xl), where Eg∗
l (xl) denotes the expectation of g∗

l (xl). Con-
sidering that gl(xl) are spline functions, we then have gl(xl)= g∗

l (xl)− Eg∗
l (xl)= πT

l αl , where πT
l =

(xl − Exl , x2
l − Ex2

l , . . . , xrl
l − Exrl

l , . . . , (xl − t1)
rl+ − E(xl − t1)

rl+, . . . , (xl − tTl )
rl+ − E(xl − tTl )

rl+)T is
a centered rl-degree truncated power spline basis. Following Aerts and others (2002), the expectations
can be replaced by their corresponding sample means in the computation. Therefore, for the requirement
of identifiability, we will consider the inference of the following model in this article:

Y = βint +
L∑

l=1

gl(Xl)+ W Tβ + ε,

= βint +
L∑

l=1

πT
l αl + W Tβ + ε,

=̇ DT θ0 + ε, (2.2)

where D = (πT
1 , . . . , π

T
L ,W T , 1)T is a combined design matrix and θ0 = (αT

1 , . . . , α
T
L , β

T , βint)
T. We are

interested in estimation of gl(·), l = 1, . . . , L and β.
In addition to the truncated power splines, there are alternative splines that can also be used to fit our

model. We illustrate how to adapt B splines to our proposed method as an illustrative example in the
supplementary material available at Biostatistics online. Another thing worth mentioning in practice is
the possible interactions that can exist in various forms, such as linear–linear, linear–smooth and smooth–
smooth interactions. Including interactions in the PLAM may have important implications depending on
the research background. Yet, it is also a challenging topic and worth more consideration and discussion
in the future.
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2.3 The penalized log-likelihood function

Denote F(y | x, w; θ) and f (y | x, w; θ) as the conditional cumulative distribution function and proba-
bility density function, respectively, for Y given X and W ; FX,W (x, w) and fX,W (x, w) denote the joint
cumulative distribution function and probability density function, respectively, of X and W . Then the like-
lihood for the observed data from an ODS design can be written as⎧⎨

⎩
n0∏

j=1

f (y0 j | x0 j , w0 j ; θ) fX,W (x0 j , w0 j )

⎫⎬
⎭

⎧⎨
⎩

K∏
k=1

nk∏
j=1

f (yk j , xk j , wk j | yk j ∈ Ck; θ)
⎫⎬
⎭ , (2.3)

where f (yk j , xk j , wk j |yk j ∈ Ck; θ) denotes the joint density function of {yk j , xk j , wk j } conditional on yk j

being in the interval Ck . By applying the Bayes formula, (2.3) can be written as

Ln(θ)=
⎧⎨
⎩

n0∏
j=1

f (y0 j | x0 j , w0 j ; θ) fX,W (x0 j , w0 j )

⎫⎬
⎭ ×

K∏
k=1

⎧⎨
⎩

nk∏
j=1

f (yk j | xk j , wk j ; θ) fX,W (xk j , wk j )∫
ψk(x, w; θ) dFX,W (x, w)

⎫⎬
⎭ ,

where ψk(x, w; θ)= (F(ck | x, w; θ)− F(ck−1 | x, w; θ)) for k = 1, . . . , K . Define πk = ∫
ψk(x, w; θ)

dFX,W (x, w), k = 1, . . . , K − 1, πK = 1 − ∑K−1
k=1 πk and pk j = fX,W (xk j , wk j ), k = 0, . . . , K , j =

1, . . . , nk . We then have the log-likelihood as

ln(θ, {pk j }, {πk})= l1n(θ)+
K∑

k=0

nk∑
j=1

log pk j −
K∑

k=1

nk logπk, (2.4)

where l1n(θ)=
∑K

k=0

∑nk
j=1 log f (yk j |xk j , wk j ; θ) is a function only involving θ .

As mentioned earlier, we introduce the P-spline to estimate the non-parametric functions. After incor-
porating the penalty into (2.4), we obtain the following penalized log-likelihood function:

pln(θ, {pk j }, {πk}; {qsl })= l1n(θ)+
K∑

k=0

nk∑
j=1

log pk j −
K∑

k=1

nk logπk − 1

2
nθT�θ, (2.5)

where� = diag
{
(0T

r1×1, qs1 1T
T1×1, . . . , 0T

rL ×1, qsL 1T
TL ×1, 0T

p×1)
T
}

with {qsl } being the smoothing parameters
for the non-parametric functions and θT�θ is a common quadratic penalty function.

3. ESTIMATION METHOD AND ASYMPTOTIC PROPERTIES

Based on the empirical likelihood approach proposed in Zhou and others (2002) with no assumptions on
the underlying distribution of X and W , we propose a penalized maximum likelihood method to make
inference of the PLAM for data from an ODS design.

We first profile the penalized log-likelihood in (2.5) over pk j by fixing θ and obtain the empirical
likelihood estimator function of pk j over all distributions whose support contains the observed values of
X and W . Then, with the restrictions

∑K
k=0

∑nk
j=1 pk j {ψi (xk j , wk j ; θ)− πi } = 0, i = 1, . . . , K − 1 and∑K

k=0

∑nk
j=1 pk j = 1, a Lagrange multiplier argument is used and the estimator of pk j is derived as p̂k j =

1/[n{1 + ∑K−1
i=1 λi {ψi (xk j , wk j ; θ)− πi }}]. Details of the derivation can be found in the supplementary

material available at Biostatistics online. Substituting p̂k j into (2.5), we then get the following profile
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penalized likelihood function:

ppln(ξ ; {qsl }L
l=1)= l1n(θ)−

K∑
k=0

nk∑
j=1

log{1 + vT h(xk j , wk j )} −
K∑

k=0

nk∑
j=1

log{Q(xk j , wk j )}

−
K∑

k=1

nk logπk − 1

2
nθT�θ, (3.1)

where h(xk j , wk j )= (h1(xk j , wk j ), . . . , hK−1(xk j , wk j ))
T, hi (xk j , wk j )= {ψi (xk j , wk j ; θ)− πi }/{Q(xk j ,

wk j )}, i = 1, . . . , K − 1, and Q(xk j , wk j )=
∑K−1

i=1 ψi (xk j , wk j ; θ)ni/(nπi )+ n0/n. As the Lagrange
multipliers {λi }K−1

i=1 are not centered at zero due to the biased nature of the ODS design, we re-parameterize
them to vi = λi − ni/(nπi ), i = 1, . . . , K − 1 and define ξ = (θT , πT , vT )T with π = (π1, . . . , πK−1)

T

and v= (v1, . . . , vK−1)
T. Finally, a Newton–Raphson iterative procedure is applied to obtain the maxi-

mizer of the profile penalized likelihood function in (3.1), namely our proposed estimator ξ̂ for ξ0. Note
that the smoothing parameters are required to be selected and can be realized through the generalized
cross-validation (GCV). In the simulation study and real data analysis, we select the smoothing parameter
{qsl } through grid search. To be more specific, for each qsl , 15 equally spaced (based on the log scale)
points across the closed interval (10−6, 107) are selected as the grids. For each possible combination of
{qsl } values on the grids, we calculate its GCV score and choose the one yielding the smallest GCV score
as the selected set of values for {qsl }. Borrowing the idea of Qu and Li (2006), the GCV score is defined as

GCV
({qsl }L

l=1

) = 1

n
l̃n

/(
1 − 1

n
d f

)2

,

where l̃n = ppln(ξ ; {qsl }L
l=1)+ (1/2)nθT�θ , df = trace{G({qsl }L

l=1)} is the effective degrees of freedom
with G

({qsl }L
l=1

) = (∂2/∂θ∂θT l̃n − n�)−1∂2/∂θ∂θT l̃n . Then {q̂sl }L
l=1 = argmin{qsl } GCV({qsl }).

The following theorem summarizes the asymptotic properties for the proposed estimator of the PLAM
from an ODS design.

THEOREM 1 Assume that Conditions (C.1)–(C.4) hold. (i) If smoothing parameters satisfy qsl = o(1), l =
1, . . . , L , then ξ̂ converges to ξ0 with probability one. (ii) If smoothing parameters satisfy qsl = o(1/

√
n),

l = 1, . . . , L , then
√

n(ξ̂ − ξ0)→ N (0,�).

The conditions and sketch of the proof is given in the supplementary material available at Biostatistics
online.

Define ∂/∂ξ
{

ppln(ξ ; {qsl }L
l=1)

} = ∑K
k=0

{∑nk
j=1 gk j (yk j , xk j , wk j ; ξ)

}
and (1/n)Vn

(
ξ ; {qsl }L

l=1

) =
(1/n)∂2/∂ξ∂ξ T {ppln(ξ ; {qsl }L

l=1)}. The covariance matrix � can be consistently estimated by
�̂= Â−1 B̂ Â−1, where Â = (1/n)Vn

(
ξ̂ ; {qsl }L

l=1

)
and B̂ = (1/n)

∑K
k=0

∑nk
j=1 gk j

(
yk j , xk j , wk j ; ξ̂

)
gT

k j(
yk j , xk j , wk j ; ξ̂

)
.

4. SIMULATION STUDIES

In this section, we conduct simulation studies to evaluate the finite-sample behavior of our proposed esti-
mator. For all simulations, we generate 1000 simulated datasets and each ODS sample consists of 800
individuals. Two different non-parametric functions are considered in the PLAM, one being monotonic
and the other being unimodal within threshold regions. In the simulation, we adopt a 3-degree centered
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truncated power spline basis and choose 10 fixed knots, which are selected as the equally spaced sample
quantiles, for each of the two functions, as suggested by Yu and Ruppert (2002). Simulation results based
on B splines are included in the supplementary material available at Biostatistics online.

We assume the following PLAM in the simulation study:

Y = β0 + g1(X1)+ g2(X2)+ W Tβ + ε, (4.1)

where g1(X1)=(4X1)− 0.5 with (·) being a standard normal distribution function, g2(X2)=
−1.1 sin(πX2), X1 and X2 are independently generated from a normal distribution with mean zero and
standard deviation 0.25, and W is generated from a normal distribution with mean 1 and standard devi-
ation 0.4. The random error ε is normally distributed with mean zero and variance σ 2

0 = 0.3 and we take
β0 = β = 1.

The ODS design in the simulation study is similar to the design of the CPP study. The total sample
is composed of an overall SRS sample n0 and two equal-sized supplemental samples n1 and n3 from the
two tail parts of the 3 strata of Y (n1 = n3, n2 = 0) divided by cut points μY ± aσY . Here a is a constant
determining the location of the cut points for creating supplemental samples given μY and σY . The propor-
tion of the SRS sample in the ODS is calculated as ρ = n0/n, n = n0 + n1 + n3. For this simulation study,
100 000 data are generated as the population data and the mean and standard deviation of the generated
population Y ’s are calculated asμY and σY , respectively. Furthermore, we investigate the effect of different
a as well as the varying allocation of ODS sample size between the SRS sample and supplemental samples,
on the estimation efficiency by considering scenarios with three different values of a(0.8, 1.0 & 1.2) and
ρ(0.4, 0.5 & 0.6) after referring to Zhou and others (2007), namely n0 = 320, n1 = n3 = 240, n0 = 400,
n1 = n3 = 200 and n0 = 480, n1 = n3 = 160.

For all simulations presented here, we compared the proposed estimator based on the ODS sample
including both the overall SRS sample and the supplemental samples (P estimator) with three other esti-
mators. One estimator is a penalized maximum likelihood estimator (PMLE) based on the SRS por-
tion of the ODS sample (V-estimator). Another estimator is a PMLE based on an SRS sample with the
same sample size as the ODS sample (S-estimator). The third estimator is derived in a similar way but
by treating the ODS sample as if it was an SRS sample (M-estimator). The PMLE is derived from the
penalized log-likelihood function for simple random sample under normal distribution, pln(θ; {qsl })=
l1n(θ)− nθT�θ/2, where l1n(θ)= −∑n

j=1 log(2πσ 2)− (y j − DT
j θ)

2/(2σ 2) and� is the penalty matrix
defined as (2.5) in Section 2. Similar GCV scores to that in Section 3 can be defined for the PMLE method
and the same selection procedure of the smoothing parameters as that used by the proposed method can be
also applied to the PMLE method. For the ODS sample, the penalized log-likelihood function is defined
as (2.5) in Section 2.

For the non-parametric part, we computed the average of the mean square error (AMSE) of the estimated
non-parametric functions ĝ1 over 801 equal spaced grid points on the interval [−0.75, 0.75] (the mean of
X1 minus and plus 3 times the standard deviation of X1) over 1000 replications, as well as those of ĝ2.
Besides, the coverage probability of the 95% nominal confidence interval (CI) at 3 points, namely −0.75,
0, 0.75, for g1 and g2, respectively, are also investigated.

To facilitate the comparison, we calculated a relative average mean square error (RMSE) for the estima-
tor of the non-parametric part which is defined as AMSE(ĝQ)/AMSE(ĝP),where ĝQ and ĝP denote the Q
and P estimator, respectively, for either of the two non-parametric functions g1 and g2, and Q represents the
P , S, V, and M estimator. Similarly, the coverage probability of the 95% nominal CI and a relative MSE

(RMSE) defined as MSE(β̂Q)/MSE(β̂P) are also calculated for the estimator of the parametric part β̂.
The simulation results are summarized in Table 1. From the table, we can find that the P estimator

has the smallest AMSE (average MSE over 801 grid points) for both ĝ1 and ĝ2, and the smallest MSE
for β̂, among all the estimators compared since all the RMSEs for the S, V, and M estimators are >1.
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Table 1. Simulation results for the PLAM in the study

a Methods RMSE(ĝ1) RMSE(ĝ2) RMSE(β̂) C Pĝ1
(−0.75, 0, 0.75) C Pĝ2

(−0.75, 0, 0.75) C P(β̂)

n0 = 320, n1 = n3 = 240
0.8 P 1.0000 1.0000 1.0000 (0.830, 0.948, 0.840) (0.831, 0.906, 0.820) 0.953

V 4.8290 4.4746 2.8397 (0.766, 0.947, 0.761) (0.747, 0.860, 0.761) 0.942
S 1.0619 1.0769 1.1167 (0.821, 0.931, 0.830) (0.815, 0.874, 0.829) 0.938
M 1.1763 2.7745 4.8363 (0.825, 0.951, 0.815) (0.748, 0.886, 0.746) 0.587

1.0 P 1.0000 1.0000 1.0000 (0.831, 0.936, 0.818) (0.813, 0.910, 0.847) 0.935
V 4.6509 4.4903 2.6667 (0.752, 0.929, 0.744) (0.748, 0.858, 0.756) 0.932
S 1.1548 1.1432 1.0548 (0.817, 0.924, 0.821) (0.801, 0.863, 0.820) 0.932
M 1.2503 3.4196 6.1534 (0.824, 0.931, 0.815) (0.676, 0.861, 0.707) 0.424

1.2 P 1.0000 1.0000 1.0000 (0.813, 0.928, 0.825) (0.827, 0.913, 0.841) 0.927
V 4.4107 5.0147 2.6605 (0.725, 0.920, 0.744) (0.735, 0.860, 0.723) 0.933
S 1.0304 1.0951 1.0287 (0.817, 0.924, 0.821) (0.801, 0.863, 0.820) 0.932
M 1.2797 5.9730 8.1981 (0.820, 0.926, 0.832) (0.646, 0.898, 0.608) 0.319

n0 = 400, n1 = n3 = 200
0.8 P 1.0000 1.0000 1.0000 (0.835, 0.943, 0.838) (0.835, 0.898, 0.838) 0.950

V 3.2948 3.4415 2.1254 (0.759, 0.922, 0.775) (0.768, 0.870, 0.796) 0.952
S 1.1313 1.1370 1.1232 (0.821, 0.931, 0.830) (0.815, 0.874, 0.829) 0.938
M 1.1764 2.3350 4.3450 (0.832, 0.947, 0.840) (0.794, 0.889, 0.784) 0.624

1.0 P 1.0000 1.0000 1.0000 (0.829, 0.921, 0.832) (0.834, 0.894, 0.831) 0.945
V 2.9937 3.1717 2.3145 (0.766, 0.917, 0.762) (0.757, 0.856, 0.764) 0.939
S 1.1685 1.1463 1.1494 (0.817, 0.924, 0.821) (0.801, 0.863, 0.820) 0.932
M 1.2906 3.4226 6.5563 (0.818, 0.923, 0.811) (0.731, 0.871, 0.743) 0.432

1.2 P 1.0000 1.0000 1.0000 (0.831, 0.935, 0.819) (0.819, 0.890, 0.836) 0.944
V 3.3235 3.2038 2.1598 (0.781, 0.919, 0.773) (0.788, 0.847, 0.761) 0.937
S 1.1690 1.0921 1.0488 (0.817, 0.924, 0.821) (0.801, 0.863, 0.820) 0.932
M 1.3773 4.6348 8.3850 (0.830, 0.934, 0.814) (0.676, 0.861, 0.697) 0.293

n0 = 480, n1 = n3 = 160
0.8 P 1.0000 1.0000 1.0000 (0.823, 0.945, 0.827) (0.822, 0.878, 0.832) 0.953

V 2.2548 2.3630 1.8352 (0.776, 0.936, 0.780) (0.787, 0.846, 0.791) 0.949
S 1.1434 1.0801 1.1654 (0.817, 0.924, 0.821) (0.801, 0.863, 0.820) 0.932
M 1.1586 1.8934 3.6940 (0.821, 0.948, 0.816) (0.786, 0.862, 0.794) 0.682

1.0 P 1.0000 1.0000 1.0000 (0.844, 0.922, 0.829) (0.809, 0.880, 0.847) 0.939
V 2.3113 2.2494 1.8696 (0.791, 0.942, 0.785) (0.778, 0.839, 0.779) 0.948
S 1.1240 1.0684 1.1937 (0.817, 0.924, 0.821) (0.801, 0.863, 0.820) 0.932
M 1.2205 2.5597 5.8704 (0.846, 0.923, 0.823) (0.745, 0.866, 0.773) 0.470

1.2 P 1.0000 1.0000 1.0000 (0.831, 0.937, 0.843) (0.832, 0.900, 0.830) 0.944
V 2.2539 2.5031 1.8372 (0.800, 0.927, 0.783) (0.761, 0.866, 0.789) 0.951
S 1.1432 1.1148 1.0911 (0.817, 0.924, 0.821) (0.801, 0.863, 0.820) 0.932
M 1.3580 3.5656 8.3516 (0.821, 0.939, 0.825) (0.733, 0.872, 0.736) 0.290

Notes: RMSE(ĝi ), relative mean squared error for ĝi ; RMSE(β̂), relative MSE for β̂; C P(β̂), coverage probability of 95% nominal
CI for β̂; C Pĝi (−0.75, 0, 0.75), coverage probability of 95% nominal CI of ĝi at −0.75, 0, 0.75, i = 1, 2; P, proposed estimator;
V, the estimator based on the SRS portion of the ODS design; S, the estimator based on an equal-sized SRS sample as the ODS
design; M, the estimator treating ODS samples as SRS.

Also, the nominal 95% CIs based on the estimated standard errors for the regression coefficients β are
found to provide good coverage. The coverage probabilities of g1(·) and g2(·) are higher at point 0 than
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those at point −0.75 and 0.75, since more data are collected around point 0 and thus can fit better. With a
larger sample, the coverage probabilities are expected to be improved. Note that the ODS design is a biased
sampling design, so the M method which treats the ODS sample as if it was an SRS sample may result
in inconsistent estimates. The obviously high RMSE(β̂) and low coverage probability of β using the M
method exhibit evidence that ignoring the ODS design can result in biased estimation. However, unlike the
case of a linear model or non-linear model with single monotonic non-linear function, in the ODS design
of the CPP study which concentrates more resources on the tails of the outcome, we do not recognize an
obvious pattern that the efficiency gain from the ODS design is higher with a low proportion of subjects
in the SRS sample or with a high concentration of sampling at the tails of the outcome. This may be due to
the introduction of more than one non-linear function simultaneously in the PLAM where these functions
would possibly twist with each other. Therefore, how to obtain more informative supplemental samples
and improve the efficiency of the ODS design for the case of additive models is an interesting topic and
deserves further study in the future.

5. ANALYSIS OF THE CPP DATA

As mentioned in the introduction section of the article, our motivating example is the CPP study where
primary exposure (maternal pregnancy serum level of PCB) was found to have a non-linear relationship
with the offspring’s subsequent IQ performance at age 7, so was another confounding variable EDU. We
then apply our proposed PLAM accounting for both of the two possibly non-linear functions to the dataset,
hoping to draw a more complete picture of the relation between prenatal PCB exposure and the children’s
IQ scores.

In our analysis, we use the Weschler Intelligence Scale for children at 7 years of age (IQ), which had
been observed for the entire CPP population, as the outcome variable and the prenatal PCB exposure
level, measured through a serum assay with a relatively high cost, as the exposure variable. Additional
confounding variables include the socioeconomic status of the children’s family (SES), the gender (SEX),
and race (RACE) of the children, and their mother’s education (EDU).

As only 1038 of the 1463 subjects obtained in Gray and others (2005) were observed to have complete
data on all covariates, the ODS data structure for our CPP dataset becomes as follows: an overall SRS
sample of 849 subjects, and two supplemental samples with 108 or 81 subjects from the children in the
CPP population whose IQ scores are at least 1 standard deviation (14) above or below the mean (96),
respectively. The description of the dataset is given in Table 2. Note that we ignore any possible multicenter
effect in the analysis presented here.

We then consider the following PLAM for the dataset:

IQ = β0 + g1(PCB)+ g2(EDU)+ β1 SES + β2 RACE + β3 SEX + ε, (5.1)

where ε is a normal error with zero mean. Based on the previous partially linear studies, we adopt a 2-degree
centered truncated power function with 10 fixed knots selected as the equally spaced sample quantiles of
PCB level (1.16, 1.70, 2.17, 2.61, 3.05, 3.52, 4.06, 4.63, 5.54, and 6.88) to estimate the non-parametric
function g1(·) for PCB. And for estimation of g2(·) for EDU, we adopt a 3-degree centered power spline
with 5 fixed knots selected as the equally spaced sample quantiles of EDU (3, 6, 9, 12, and 15).

We then apply our proposed method to fit this model with the two smoothing parameters qs1 and qs2 ,
both chosen to be 107 by the GCV method, along with 2 other methods, the V method and the M method,
as comparisons. Estimates of the regression coefficients are given in Table 3, and the estimates of the
non-parametric functions g1(·) and g2(·) are presented in Figure 1. Example codes can be found in the
supplementary material available at Biostatistics online.
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Table 2. Description of variables in the CPP analysis dataset (Ntotal = 1038)

Continuous variables

MEAN STD Q1 Q3 MIN MAX

IQ 96.23 16.09 84.00 108.00 56.00 145.00
PCB (ug/L) 3.16 1.93 1.88 3.86 0.25 17.61
EDU (year) 10.86 2.44 9.00 12.00 1.00 18.00
SES 4.84 2.20 3.30 6.30 0.30 9.30

Categorical variables

N Percent (%) N Percent (%)

SEX RACE
1 = Female 523 50.39 1 = Black 506 48.75
0 = Male 515 49.61 0 = Other 532 51.25

Notes: For continuous variables: MEAN, mean of the variable; STD, standard deviation of the variable; Q1, 25%
percentile of the variable; Q3, 75% percentile of the variable; MIN, minimum value of the variable; MAX, maximum
value of the variable. For categorical variables: N : the number of subjects with the specific value of the variable;
Percent: N/Ntotal.

Table 3. Estimates for the CPP analysis dataset

β̂P SE(β̂P) 95%CI(β̂P) β̂V SE(β̂V) 95%CI(β̂V) β̂M SE(β̂M) 95%CI(β̂M)

Intercept 95.27 1.32 (92.68, 97.86) 95.36 1.54 (92.34, 98.38) 95.62 1.59 (92.51, 98.73)
PCB See Figure 1 See Figure 1 See Figure 1
EDU See Figure 1 See Figure 1 See Figure 1
SES 1.04 0.22 (0.61,1.47) 0.97 0.26 (0.46,1.47) 1.25 0.26 (0.74,1.76)
RACE −8.28 0.76 (−9.77,−6.80) −7.90 0.90 (−9.67,−6.14) −10.14 0.92 (−11.94,−8.33)
SEX −0.82 0.68 (−2.16, 0.52) −0.76 0.84 (−2.40, 0.87) −0.97 0.80 (−2.55, 0.60)

Notes: β̂P, β̂V, and β̂M denote the estimates obtained by the P, V, and M methods, respectively; SE(β̂P), SE(β̂V), and SE(β̂M) are
the estimated standard errors of corresponding estimators; 95% CI(β̂P), 95% CI(β̂V), and 95% CI(β̂M) are the 95% CIs for the
corresponding estimators.

From the left panel in Figure 1, we can see that the IQ score is related to the PCB level non-linearly. The
P estimator of the non-parametric function g1 shows that the relationship is positive in the lower range of
PCB level, and then, after reaching a high point when the PCB level is about 7.44μg/L, a decreasing trend
of the estimator is revealed. While most individuals only own a relatively low PCB level, this result should
not be over-interpreted because of the possible existence of other uncaptured confounding variables like a
higher fish intake during pregnancy mentioned in Qin and Zhou (2011), which can both relate to a higher
serum level of PCBs and a higher IQ in offspring.

The right panel in Figure 1 presents a similar story as with Zhou, You and others (2011) that there exists
a clear non-linear positive relation between the mother’s education level (EDU) and child’s IQ score. The P
estimate of the function g2 indicates that EDU has a much greater influence on children’s IQ around year 12
(i.e. after higher school education level), which completely agrees with previous results (Oddy and others,
2003; Breslau and others, 2005).

Both panels in Figure 1 show that the P method yields smaller estimated variances and narrower 95%
CIs than the V method.

From Table 3, it is obvious that the P method provides narrower 95% CIs than the V and M methods. The
point estimates by the M method show noticeable difference with those by the P and V methods, which is
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Fig. 1. The estimated function of g1 on PCB (μg/L) and g2 on EDU. Thicker dashed curves, dotted curves and
dot-dashed curves show the estimates and its corresponding estimated CIs obtained by the P, V, and M methods,
respectively. P, proposed estimator; V, the estimator based on the SRS portion of the ODS design; M, the estimator
treating ODS samples as SRS samples.

possibly due to the inconsistency of the M method. The conclusions by these three methods are consistent.
The socioeconomic status of the child’s family is found to have a positive relation with the child’s IQ score,
and blacks tend to have a worse IQ performance than children of other races. But no evidence has been
shown that there exists an association between the child’s sex and IQ.

6. DISCUSSION

In this article, we innovatively introduced a PLAM for data obtained through an ODS design with a contin-
uous outcome. To make inference under this biased sampling scheme, we proposed a penalized maximum
likelihood method. Simulation studies shows that the proposed method yields more efficient estimates
than those obtained from an SRS design with the same sample size across all the scenarios we considered,
indicating that applying an ODS scheme in practice would actually reduce the study costs while achieving
the same statistical efficiency by requiring a smaller sample size than the SRS design. This advantage
is especially meaningful for a budget-limited study where measurement of the main exposure variable is
really expensive, yet the outcome is relatively easy to obtain.

Unlike previous findings in the linear model or partially linear model with a single monotonic non-
linear function, we do not recognize an obvious pattern that the efficiency gain from the ODS design is
higher with a low proportion of subjects in the SRS sample and high concentration of sampling at the
extreme tails of the outcome. This may be due to the introduction of more than one non-linear functions
simultaneously in the PLAM where these functions would possibly twist with each other. Linear model
theory shows that the variance of regression coefficient estimator is inversely proportional to the summed
squares of observed X values. In general, there are less X values falling at its distributional tails than at the
center and an efficiency gain can be expected if more X ’s are sampled at the tails. In a simple setting as a
linear model or non-linear model with single monotonic non-linear function, if we sample the response Y at
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its two distributional tails, the observed exposure values X are also more likely to occur at its distributional
tails. Therefore, we would expect an obvious efficiency gain from sampling at the tails of the outcome;
the larger the proportion of sampling at tails, the more X values would occur at its distributional tails,
and thus the more efficiency gain we would expect. However, this may not be the case when we allow for
more than one non-linear, non-monotonic function in the model. Sampling more at the tails of Y does not
necessarily indicate more covariates occurring at their tails. We are therefore not surprised when observing
an unobvious efficiency gain when a larger proportion of sampling at tails is applied. Further studies are
needed to explore how to obtain more informative supplemental samples of the ODS design under the
framework of additive models.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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