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Summary

The case-cohort design has been widely used as a means of cost reduction in assembling or 

measuring expensive covariates in large cohort studies. The existing literature on the case-cohort 

design is mainly focused on right-censored data. In practice, however, the failure time is often 

subject to interval-censoring; it is known only to fall within some random time interval. In this 

paper, we consider the case-cohort study design for interval-censored failure time and develop a 

sieve semiparametric likelihood approach for analyzing data from this design under the 

proportional hazards model. We construct the likelihood function using inverse probability 

weighting and build the sieves with Bernstein polynomials. The consistency and asymptotic 

normality of the resulting regression parameter estimator are established and a weighted bootstrap 

procedure is considered for variance estimation. Simulations show that the proposed method 

works well for practical situations, and an application to real data is provided.
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1. Introduction

In epidemiologic cohort studies, the outcomes of interest are often times to failure events, 

such as cancer, heart disease and HIV infection, which are relatively rare even after a long 

period of follow-up; the study cohorts are usually chosen very large so as to yield reliable 

information about the effect of exposure variables on these rare failure times. In many cases, 

the exposure variables of interest are difficult or expensive to collect or measure. With 

limited funds, it could be prohibitive to obtain these variables for all subjects in a large 

cohort. Prentice (1986) proposed the case-cohort design where the expensive exposure 

variables are obtained only for a random sample, named the subcohort, from the study 

cohort, as well as for subjects who have experienced the failure event during the follow-up 

period. Extensive research has been done on this design. Under the proportional hazards 

model, Prentice (1986) and Self & Prentice (1988) proposed pseudolikelihood approaches; 

Chen & Lo (1999) and Chen (2001) developed estimating equation methods; Marti & 

Supplementary material
Supplementary material available at Biometrika online includes the two lemmas used in the proof of Theorem 1 and their proofs, and 
the Matlab code for the proposed inference procedure.

HHS Public Access
Author manuscript
Biometrika. Author manuscript; available in PMC 2018 March 01.

Published in final edited form as:
Biometrika. 2017 March ; 104(1): 17–29. doi:10.1093/biomet/asw067.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Carolina Digital Repository

https://core.ac.uk/display/304662390?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Chavance (2011) and Keogh & White (2013) proposed multiple imputation approaches; 

Scheike & Martinussen (2004) and Zeng & Lin (2014) considered maximum likelihood 

estimation; and Kang & Cai (2009) and Kim et al. (2013) developed weighted estimating 

equation approaches for case-cohort studies with multiple outcomes. Other related cost-

effective sampling schemes include outcome-dependent sampling designs (Zhou et al., 2002; 

Ding et al., 2014). All of these designs and methods are primarily focused on right-censored 

data where the failure time of interest is either exactly observed or is right-censored. In 

practice, however, the occurrences of some failure events, such as HIV infection and 

diabetes, are not accompanied by any symptoms and their determinations rely on laboratory 

tests or physician diagnosis; the exact times to these failure events are not available.

In this paper, we consider the case-cohort study design for interval-censored failure time 

data, which arise when the failure time of interest is observed or known only to belong to a 

random time interval (Sun, 2006). Areas that often produce such data include epidemiologic 

studies, biomedical follow-up studies, demographic studies and social sciences, where the 

study subjects are only examined for the occurrence of the failure event at discrete visits 

instead of being continuously monitored. One example is the Atherosclerosis Risk in 

Communities study, a longitudinal epidemiologic cohort study, where the participants were 

scheduled to be examined for health status every three years on average. In this study, the 

occurrence of a disease such as diabetes was known only between two consecutive 

examinations, so only interval-censored data on time to the disease were available. Interval-

censoring is a general type of censoring that includes left- and right-censoring as special 

cases. If a participant had developed the disease at the first follow-up examination U, we 

would have a left-censored observation denoted by (0, U]; if a participant had not yet 

developed the disease at the last follow-up examination V, we would obtain a right-censored 

observation denoted by (V, +∞); otherwise, the observation would be a finite time interval 

with both endpoints in (0, +∞). Here we consider the interval-censored case-cohort design 

in which the expensive exposure variables are obtained only for a subcohort that is a simple 

random sample of the study cohort and for subjects who are known to have experienced the 

failure event, i.e., who have the right endpoint of the observed interval finite.

To the best of our knowledge, there is no method to date in the literature that deals with the 

general interval-censored case-cohort design described above, although several papers 

discuss related issues. Gilbert et al. (2005) considered the case-cohort design for a HIV 

vaccine trial where they treated the midpoint of the finite observed interval as the exact HIV 

infection time and then employed Self & Prentice (1988)’s method developed for right-

censored case-cohort data to do the analysis. Li et al. (2008) presented a special interval-

censored case-cohort design by assuming that the inspection time intervals are fixed and the 

same for all study subjects and the number of time intervals does not change with the sample 

size. Li & Nan (2011) considered fitting the relative risk regression model to the case-cohort 

sampled current status data, a special case of interval-censored data that arise when each 

study subject is examined only once for the occurrence of the failure event and thus the 

failure time is either left- or right-censored at the only examination. In this paper, we 

consider the case-cohort study design for general interval-censored failure time and develop 

a novel semiparametric method for fitting the proportional hazards model to data arising 

from this design.
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Many authors have studied regression analysis of interval-censored data, obtained by simple 

random sampling, under the proportional hazards model. Among others, Finkelstein (1986) 

considered the maximum likelihood estimation with a discrete hazard assumption; Huang 

(1996) and Zeng et al. (2016) studied the fully semiparametric maximum likelihood 

estimation for current status data and mixed-case interval-censored data, respectively; Satten 

(1996) proposed a marginal likelihood approach which avoids estimating the baseline hazard 

function but remains computationally intensive; Satten et al. (1998) developed a rank-based 

procedure using imputed failure times, where a parametric baseline hazard is assumed; Pan 

(2000) suggested a multiple imputation approach which is semiparametric but did not 

provide theoretical justification; Lin et al. (2015) and Wang et al. (2016) represented the 

cumulative baseline hazard function as a monotone spline and then developed methods from 

Bayesian and frequentist perspectives, respectively, via two-stage Poisson data 

augmentations; Zhang et al. (2010) proposed a spline-based sieve semiparametric maximum 

likelihood method and proved that the resulting regression parameter estimator is 

asymptotically normal and efficient. Zhang et al. (2010) also provided a motivation of the 

sieve method, reasoning about the choice of basis functions, a theoretical framework and 

rigorous proofs based on empirical process theory. Besides having attractive asymptotic 

properties under various scenarios (e.g. Huang & Rossini, 1997; Shen, 1998; Xue et al., 

2004), the sieve method is easy to implement and computationally fast as, for example, it 

usually involves much fewer parameters than a fully semiparametric method. In this paper, 

we focus on fitting the proportional hazards model to interval-censored data from the case-

cohort design. We employ inverse probability weighting to construct the likelihood function 

and then, following the idea of Zhang et al. (2010), we develop a Bernstein-polynomial-

based sieve likelihood estimation method. We also present a weighted bootstrap procedure 

for variance estimation.

2. Data, model and likelihood

Suppose that there are n independent subjects in a cohort study. Let Ti denote the failure 

time of subject i and Zi a p-dimensional vector of covariates that may affect Ti. Suppose that 

the failure time is subject to interval-censoring and the full cohort data are denoted by

where Ui and Vi are two random examination times, and (Δ1i, 1 − Δ1i − Δ2i) indicate left- 

and right-censored observations, respectively.

Under our interval-censored case-cohort design, the covariates are obtained only for subjects 

from the subcohort as well as those who are known to have experienced the failure event, 

i.e., Δ1i = 1 or Δ2i = 1. Let ξi indicate that the covariate Zi is obtained, i = 1,…, n. Then the 

observed data under our interval-censored case-cohort design can be represented by
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For the selection of the subcohort, we consider independent Bernoulli sampling with 

selection probability q ∈ (0, 1). Thus, under our design, the probability that we observe the 

covariate Zi is

Since the covariates under our design can be considered as missing at random, we employ 

inverse probability weighting to construct the likelihood function. In particular, suppose that 

the failure time follows the proportional hazards model, under which the conditional 

cumulative hazard function of Ti given Zi has the form

(1)

where β is a p-dimensional regression parameter and Λ(t) is an unspecified cumulative 

baseline hazard function. Assume that Ti is conditionally independent of the examination 

times (Ui, Vi) given Zi and the joint distribution of (Ui, Vi, Zi) does not involve the 

parameters (β, Λ). Then that inverse probability weighted log-likelihood function has the 

form

(2)

where the weight wi is

3. Sieve estimation and inference

Now we consider the estimation of θ = (β, Λ). Let

denote the parameter space of θ, where ℬ = {β ∈ Rp, ||β|| ≤ M}, M is a positive constant, and 

ℳ is the collection of all continuous nonnegative and nondecreasing functions over the 
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interval [σ, τ]. As defined in Condition (C1) in the Appendix, σ and τ are known constants 

usually taken in practice to be the lower and upper bounds of all observation times.

To estimate θ, it is natural to maximize the weighted log-likelihood (2). However, this is not 

easy, as  involves both the finite-dimensional regression parameter β and the infinite-

dimensional nuisance parameter Λ. Since only the values of Λ at the examination times {Ui, 

Vi : i = 1,…, n} matter in the log-likelihood , one may follow the conventional approach 

by taking the nonparametric maximum likelihood estimator of Λ as a right-continuous 

nondecreasing step function with jumps only at the examination times and then maximizing 

 with respect to β and the jump sizes (Huang, 1996). However, such a fully semiparametric 

estimation method could involve a large number of parameters (p + 2n) if there are no ties 

among {Ui, Vi : i = 1,…, n}. To ease the computation burden, by following the idea of 

Zhang et al. (2010), we propose a sieve estimation approach via Bernstein polynomials. In 

particular, we define the sieve space as

where ℬ is given above and

with Bk(t, m, σ, τ) Bernstein basis polynomials of degree m = o(nν) for some ν ∈ (0, 1),

and Mn = O(na) for some a > 0 controlling the size of Θn. Because the cumulative baseline 

hazard function Λ(t) is nonnegative and nondecreasing, it is desirable to restrict its estimate 

to be nonnegative and nondecreasing and we impose these constraints on the ϕk. One can 

show that Λ(t) can be approximated by the Bernstein polynomial Λn(t) with the coefficients 

ϕk = Λ(σ + (k/m)(τ − σ)) arbitrarily well as n → ∞, that is, the sieve space Θn 

approximates the parameter space Θ arbitrarily well as n → ∞ (Feller, 1971; Lorentz, 1986; 

Shen, 1997; Wang & Ghosh, 2012). We define the sieve likelihood estimator θ̂n = (β̂n, Λ̂n) 

of θ to be the value of θ that maximizes the weighted log-likelihood function  over Θn. 

Compared to the fully semiparametric method, the sieve method significantly reduces the 

dimensionality of the optimization problem and relieves the computation burden.

We now establish the asymptotic properties of the proposed estimator θ̂n. Let Oξ = {U, V, 

Δ1, Δ2, ξZ, ξ} denote a single observation under our interval-censored case-cohort design 

and G(u, v) the joint distribution function of the two random examination times (U, V). We 

assume both G(u, v) and g(u, v | z) to be unknown, where g(u, v | z) is the conditional 
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density of (U, V) given Z = z defined in Condition (C4) in the Appendix. For any θ1 = (β1, 

Λ1) and θ2 = (β2, Λ2) in the parameter space Θ = ℬ ⊗ ℳ, define a distance:

where ||v|| denotes the Euclidean norm for a vector v and 

. Let θ0 = (β0, Λ0) denote the 

true value of θ. The following theorems give the consistency and asymptotic normality of 

the proposed estimator θ̂n when n → ∞. The proofs of these theorems and the regularity 

conditions needed for them are given in the Appendix.

Theorem 1

Assume that Conditions (C1) – (C5) given in the Appendix hold. Then d(θ̂n, θ0) → 0 

almost surely and d(θ̂n, θ0) = Op(n−min{(1−ν)/2,νr/2}), where ν ∈ (0, 1) such that m = o(nν) 

and r is defined in Condition (C3).

Theorem 2

Assume that Conditions (C1) – (C5) given in the Appendix hold. If ν > 1/2r, we have

in distribution, where

with v⊗2 = vv′ for a vector v, and I(β) and l*(β, Λ; O) being the information and efficient 
score for β based on O = {U, V, Δ1, Δ2, Z}, respectively, which will be discussed in the 
Appendix.

Note that I(β) does not have an explicit expression, since its determination involves an 

integral equation which has no closed-form solution in general (Huang & Wellner, 1997). 

Thus, for variance estimation of β̂n, we suggest to employ the weighted bootstrap procedure 

of Ma & Kosorok (2005), which is easy to implement and works reasonably well in our 

setting. Let {u1, …, un} denote n independent realizations of a bounded positive random 

variable u satisfying E(u) = 1 and var(u) = ε0 < + ∞. Define the new weights 

. Let  be the sieve estimator that maximizes the new 

weighted log-likelihood function  over Θn, where  is obtained by replacing wi with 

in . If we generate B samples of {u1, …, un} and obtain the corresponding , then the 

sample variance of these ’s rescaled by ε0 can be used to estimate the variance of β̂n. The 
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weighted bootstrap variance estimator is consistent under the assumptions of Theorem 2. In 

fact, this result can easily be seen from Theorem 2 of Ma & Kosorok (2005) and as 

commented by Ma & Kosorok (2005) right after their Theorem 2: once the asymptotic 

properties of the semiparametric M-estimators are established, the weighted bootstrap can be 

verified almost automatically. More details can be found in Ma & Kosorok (2005).

There are restrictions on the parameters due to nonnegativity and monotonicity, but they can 

be easily removed by reparameterization. For example, we may reparameterize the 

parameters {ϕ0,…, ϕm} as the cumulative sums of { }. Regarding the 

restriction Σ0≤k≤m |ϕk| ≤ Mn, since Mn = O(na) is defined mainly for technical reasons and 

can be chosen reasonably large for fixed sample size in practice, we need not consider this 

restriction in computation. To obtain the proposed estimator θ̂n, many existing optimization 

methods can be used, including the Nelder–Mead simplex algorithm and the Newton–

Raphson method. For the numerical studies in Sections 4 and 5, the Nelder–Mead simplex 

algorithm in fminsearch in Matlab was used. One also needs to specify the degree of 

Bernstein polynomials m, which controls the smoothness of the approximation. For this, we 

suggest to consider several different values of m and choose the one that minimizes

More guidelines and discussion on the choice of m will be given below. The Matlab code 

that implements the proposed inference procedure is available in the Supplementary 

Material.

4. A simulation study

In this section, we perform a simulation study to evaluate the finite-sample performance of 

the proposed method. We assumed that the covariate Z had the standard normal distribution 

and that given Z, the failure time T followed the proportional hazards model (1) with the 

cumulative baseline hazard function Λ(t) = 0.2t2. We considered β = 0 or log 2.

To generate interval-censored data {Ui, Vi, Δ1i = I(Ti ≤ Ui), Δ2i = I(Ui < Ti ≤ Vi) : i = 1,…, 

n}, we mimicked biomedical follow-up studies. In particular, we assumed that each study 

subject was scheduled to be examined at k different follow-up time points within the interval 

[0, τ] in addition to the baseline exam at time 0. More specifically, to mimic the 

Atherosclerosis Risk in Communities study, we chose k equally spaced time points over the 

interval [0, τ] denoted by e1,…, ek. For each subject, the k scheduled follow-up time points 

were generated as ei plus a uniform random variable on [−τ/{3(k + 1)}, τ/{3(k + 1)}], i = 1,

…, k. At each of these time points, it was assumed that a subject could miss the scheduled 

examination with probability ζ, independent of the examination results at other time points. 

For subject i, if the failure event had already occurred at the first follow-up examination, we 

defined Ui to be the first follow-up examination time, Vi = τ and (Δ1i, Δ2i) = (1, 0); if the 

failure event had not yet occurred at the last follow-up examination, we defined Vi to be the 

last follow-up examination time, Ui = 0 and (Δ1i, Δ2i) = (0, 0); otherwise, we defined Ui and 

Vi to be the two consecutive follow-up examination times bracketing Ti and (Δ1i, Δ2i) = (0, 
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1). We used k = 8 and ζ = 0.2, and determined the length of study τ according to the desired 

proportion of events, i.e., subjects with Δ1 = 1 or Δ2 = 1. Regarding the proportion of events, 

we considered 0.05 or 0.15.

To generate the subcohort, we employed independent Bernoulli sampling with selection 

probability q = 0.2. For the variance estimation of the proposed estimator βn̂, we used the 

weighted bootstrap procedure described in Section 3 and generated the random sample {u1,

…, un} from the exponential distribution.

Table 1 presents the simulation results for the estimation of β based on the proposed method, 

denoted by β̂prop, when the cohort size is n = 500, 1000 or 2000. These results were obtained 

from 1000 replicates and the variance estimate was calculated based on 200 bootstrap 

samples. For comparison, we also provided in Table 1 the estimation results using the sieve 

maximum likelihood method based on: (i) the subcohort only, denoted by β̂sub; (ii) a simple 

random sample of the cohort which has the same size as the case-cohort sample, denoted by 

β̂srs. For the degree of Bernstein polynomials, we used m = 3 for all methods and situations 

considered.

Table 1 shows that the proposed estimator is virtually unbiased. The variance estimates 

based on the weighted bootstrap procedure are close to the corresponding empirical 

variances and yield reasonable coverages. In addition, under all situations considered, the 

proposed estimator is more efficient than the estimators based on subcohort only or a simple 

random sample of the same size as the case-cohort sample. Especially, when the cohort size 

is 500 or 1000 and the proportion of events is 0.05, the subcohort-based and simple-random-

sample-based estimators yield larger biases and inflated variances while the proposed 

estimator still has good performance. We also conducted simulations with Λ(t) = 0.1t, k = 6, 

ζ = 0.3, q = 0.25 and m = 4 or 5 as well as other methods for generating interval-censored 

data and obtained similar results. In particular, the results seem to be fairly robust to the 

choice of m.

5. An application

In this section, we illustrate the proposed method using data from the Atherosclerosis Risk 

in Communities study, a longitudinal epidemiologic observational study consisting of men 

and women aged 45–64 at baseline, recruited from four US field centers (Forsyth County, 

NC (Center-F), Jackson, MS (Center-J), Minneapolis Suburbs, MN (Center-M) and 

Washington County, MD (Center-W)). Forsyth County, Minneapolis Suburbs, and 

Washington County include white participants, and Forsyth County and Jackson Center 

include African American participants. The study began in 1987 and the participants 

received an extensive examination, including medical, social and demographic data. These 

participants were scheduled to be re-examined on average of every three years with the first 

exam occurring in 1987–89, the second in 1990–92, the third in 1993–95 and the fourth in 

1996–98. There were participants that missed some scheduled re-visits and thus had less 

than four follow-up examinations. For each participant, the occurrence of a disease such as 

diabetes can be observed only between two consecutive examinations and therefore only 

interval-censored failure time data were available. We illustrate the proposed method by 
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investigating the effect of high-density lipoprotein cholesterol level on the risk of diabetes 

after adjusting for confounding variables and other risk factors in white women younger than 

55 years based on data from an interval-censored case-cohort sample. Specifically, we 

constructed the interval-censored case-cohort sample in the following way. The cohort of 

interest consists of 2799 white women younger than 55 years and 202 were observed to have 

developed diabetes during the study. We selected a simple random sample of the cohort by 

Bernoulli sampling and set the selection probability equal to q = 0.1. The subcohort had 272 

subjects and the final case-cohort sample had 451 subjects. We considered the proportional 

hazards model

where the vector of covariates Z included high-density lipoprotein cholesterol level, total 

cholesterol level, body mass index, age, smoking status, and indicators for field centers 

where Center-M was chosen as reference. We fitted this model using the proposed method 

and presented the results in Table 2. For comparison, we also provide in Table 2 the analysis 

results based on the subcohort only. Regarding the degree of Bernstein polynomials, we 

chose m = 3 for both analyses according to the AIC criterion described in Section 3. One can 

see from Table 2 that the proposed method based on the case-cohort sample yielded smaller 

standard errors and more significant results compared to the method based on the subcohort 

only. In particular, the results suggest that higher high-density lipoprotein cholesterol, lower 

total cholesterol and lower body mass index levels are significantly associated with lower 

risk of diabetes in white women younger than 55 years.

6. Concluding remarks

There are some practical considerations for the implementation of the proposed design and 

method. First, under our design, the subcohort is a simple random sample of the cohort 

selected by independent Bernoulli sampling. When the subcohort is selected by sampling 

without replacement, our method should work, though more complicated arguments would 

be needed to develop the asymptotic results (Saegusa & Wellner, 2013). Moreover, when 

some covariates are available for all cohort members, a stratified case-cohort design based 

on those covariates could be considered to improve the study efficiency and adapting our 

method to such design should be straightforward. Second, regarding the degree of Bernstein 

polynomials m, there does not seem to be a single true value. According to the simulation 

studies, the results seem to be fairly robust to the choice of m. In practice, we suggest to 

consider several different values such as m = 3 to 8 and base the selection on the AIC 

criterion. Although similar strategies are commonly used in the literature (e.g. Wang et al., 

2016), further study on AIC and other model selection criteria or methods in this setting 

would be appreciated. Third, assessing the goodness-of-fit of the proportional hazards model 

is an important practical issue. Ren & He (2011) and Wang et al. (2006) considered this 

problem for univariate and correlated interval-censored data, respectively, obtained by 

simple random sampling. Extensions of these methods to the case-cohort design warrant 

future research. Lastly, as suggested by the Associate Editor, the missing data problem may 
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arise when the covariates are not obtainable for some subjects in the case-cohort sample. 

Accommodating such situation would be practically useful and merits further investigation. 

Another interesting future research direction, suggested by a referee, is to consider cost-

effective sampling designs for more general types of censored or truncated data (e.g. 

Turnbull, 1976; Huber et al., 2009).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

Proofs of Theorems 1 and 2

In this appendix, we provide the proofs of Theorems 1 and 2. Denote the observation on a 

single subject under our interval-censored case-cohort design by Oξ = {U, V, Δ1 = I(T ≤ U), 

Δ2 = I(U < T ≤ V), ξZ, ξ}, where U and V are two random examination times, (Δ1, 1 − Δ1 − 

Δ2) indicate left- and right-censored observations, respectively, and ξ indicates the covariate 

Z being observed with Pr(ξ = 1) ≡ πq(Δ1, Δ2) = Δ1 + Δ2 + (1 − Δ1 − Δ2)q. Before proving 

the theorems, we first describe the regularity conditions needed as follows:

(C1) There exists η > 0 such that P(V − U ≥ η) = 1. The union of the supports of U 
and V is contained in the interval [σ, τ], where 0 < σ < τ < + ∞.

(C2) The distribution of Z has a bounded support and is not concentrated on any 

proper subspace of Rp. Also E{var(Z|U)} and E{var(Z|V)} are positive definite.

(C3) For r = 1 or 2, the function Λ0 ∈ ℳ is continuously differentiable up to order r in 

[σ, τ] with the first derivative being strictly positive, and satisfies α−1 < Λ0(σ) < 

Λ0(τ) < α for some positive constant α. Also β0 is an interior point of ℬ ⊂ Rp.

(C4) The conditional density g(u, v | z) of (u, v) given z has bounded partial 

derivatives with respect to u and v, and the bounds of these partial derivatives do 

not depend on (u, v, z).

(C5) 0 < q ≤ πq(Δ1, Δ2) ≤ 1, where q is a known constant.

Note that Conditions (C1) – (C4) are commonly used in the studies of interval-censored data 

(Huang & Rossini, 1997; Zhang et al., 2010) and are usually satisfied in practice. In the 

following, we will prove Theorems 1 and 2 under these conditions by employing the 

empirical process theory and some nonparametric methods or techniques. For the proofs, 

define Pf = ∫ f(y)dP(y), the expectation of f(Y) taken under the distribution P, and 

, the expectation of f (Y) under the empirical measure Pn.

Proof of Theorem 1

We first prove the strong consistency of θn̂. Let lw(θ, Oξ) denote the weighted log-likelihood 

function based on a given single observation Oξ and consider the class of functions ℒn = 

{lw(θ, Oξ) = w l(θ, O) : θ ∈ Θn} where the functions are random variables on the probability 

space indexed by θ. Then based on Lemma 1 given in the Supplementary Material, the 

covering number of ℒn satisfies

Furthermore, by Lemma 2 given in the Supplementary Material, we have
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(A.1)

almost surely. Let M(θ, Oξ) = −lw(θ, Oξ), and define Kε = {θ : d(θ, θ0) ≥ ε, θ ∈ Θn} for ε > 

0 and

Then

(A.2)

If θ̂n ∈ Kε, then we have

(A.3)

Define δε = inf Kε PM(θ0, Oξ) − PM(θ0, Oξ). Then under Condition (C2), using the same 

arguments as those in Zhang et al. (2010, p. 352), we can prove δε > 0. It follows from (A.2) 

and (A.3) that

with ζn = ζ1n + ζ2n, and hence ζn ≥ δ∊. This gives {θ̂n ∈ Kε} ⊆ {ζn ≥ δε}, and by (A.1) and 

the strong law of large numbers, we have both ζ1n → 0 and ζ2n → 0 almost surely. 

Therefore, , which proves that d(θ̂n, θ0) → 0 

almost surely.

Now we will show the convergence rate of θ̂n by using Theorem 3.4.1 of van der Vaart & 

Wellner (1996). Below we use K̃ to denote a universal positive constant which may differ 

from place to place. First note from Theorem 1.6.2 of Lorentz (1986) that there exists a 

Bernstein polynomial Λn0 such that ||Λn0 − Λ0||∞ = O(m−r/2). Define θn0 = (β0, Λn0). Then 

we have d(θn0, θ0) = O(n−rν/2). For any η > 0, define the class of functions ℱη = {lw(θ, Oξ) 

− lw(θn0, Oξ) : θ ∈ Θn, η/2 < d(θ, θn0) ≤ η} for a given single observation Oξ, where the 

functions are random variables on the probability space indexed by θ. One can easily show 
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that P(lw(θ0, Oξ) − lw(θn0, Oξ)) ≤ K̃d(θ0, θn0) ≤ K̃n−rν/2. Also under Condition (C2), using 

the same arguments as those in Zhang et al. (2010, p. 352), we obtain P(lw(θ0, Oξ) − lw(θ, 

Oξ)) ≤ K̃d2(θ0, θ). Thus, for large n, we have P(lw(θ, Oξ) − lw(θn0, Oξ)) = P(lw(θ, Oξ) − 

lw(θ0, Oξ)) + P (lw(θ0, Oξ) − lw(θn0, Oξ)) ≤ K̃η2 + K̃n−rν/2 = K̃η2, for any lw(θ, Oξ) − 

lw(θn0, Oξ) ∈ ℱη.

Following the calculations in Shen & Wong (1994, p. 597), we can establish that for 0 < ε < 

η, log N[](ε,ℱη, L2(P)) ≤ K̃N log(η/ε) with N = m + 1. Moreover, some algebraic 

manipulations yield that P(lw(θ, Oξ) − lw(θn0, Oξ))2 ≤ K̃η2 for any lw(θ, Oξ) − lw(θn0, Oξ) 

∈ ℱη. Under Conditions (C1) – (C5), it is easy to see that ℱη is uniformly bounded. 

Therefore, by Lemma 3.4.2 of van der Vaart & Wellner (1996), we obtain

where . This yields ϕn(η) 

= N1/2η + N/n1/2. It is easy to see that ϕn(η)/η is decreasing in η, and 

; where rn = N−1/2n1/2 = n(1−ν)/2.

Finally note that Pn{lw(θ̂n, Oξ) − lw(θn0, Oξ) ≥ 0 and d(θ̂n, θn0) ≤ d(θ̂n, θ0) + d(θ0, θn0) → 
0 in probability. Thus by applying Theorem 3.4.1 of van der Vaart & Wellner (1996), we 

have n(1−ν)/2d(θn, θn0) = Op(1). This together with d(θn0, θ0) = O(n−rν/2) yields that d(θ̂n, 

θ0) = Op(n−(1−ν)/2 + n−rν/2) and the proof is completed.

Proof of Theorem 2

Now we will prove the asymptotic normality of β̂n. Note that w = ξ/πq(Δ1, Δ2) is bounded 

and does not depend on the parameters (β, Λ), and E{w|O} = 1. Following the proof of 

Theorem 2 in Zhang et al. (2010), one can obtain that

where l*(β, λ; O) and I(β), the efficient score and information for β based on O = {U, V, Δ1, 

Δ2, Z}, are defined as in Zhang et al. (2010, p. 344) with our parameters (β, Λ) 

corresponding to theirs (θ, exp(ϕ)). Note that

Thus, we have
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in distribution, where

This completes the proof of Theorem 2.
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