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SUMMARY

Gaussian graphical models are widely used to represent conditional dependencies among
random variables. In this paper, we propose a novel estimator for data arising from a group
of Gaussian graphical models that are themselves dependent. A motivating example is that of
modelling gene expression collected on multiple tissues from the same individual: here the mul-
tivariate outcome is affected by dependencies acting not only at the level of the specific tissues,
but also at the level of the whole body; existing methods that assume independence among graphs
are not applicable in this case. To estimate multiple dependent graphs, we decompose the prob-
lem into two graphical layers: the systemic layer, which affects all outcomes and thereby induces
cross-graph dependence, and the category-specific layer, which represents graph-specific varia-
tion. We propose a graphical EM technique that estimates both layers jointly, establish estimation
consistency and selection sparsistency of the proposed estimator, and confirm by simulation that
the EM method is superior to a simpler one-step method. We apply our technique to mouse
genomics data and obtain biologically plausible results.

Some key words: EM algorithm; Gaussian graphical model; Mouse genomics; Shrinkage; Sparsity; Variable selection.

1. INTRODUCTION

Gaussian graphical models are widely used to represent conditional dependencies among sets
of normally distributed outcome variables. For example, observed, and potentially dense, corre-
lations between measurements of expression for multiple genes, stock market prices of different
asset classes, or blood flow for multiple voxels in functional magnetic resonance imaging, i.e.,
fMRI-measured brain activity, can often be more parsimoniously explained by an underlying

c© 2016 Biometrika Trust



494 Y. XIE, Y. LIU AND W. VALDAR

graph whose structure may be relatively sparse. As methods for estimating these underlying
graphs have matured, a number of elaborations to basic Gaussian graphical models have been
proposed, including those that seek either to model the sampling distribution of the data more
closely, or to model prior expectations of the analyst about structural similarities among graphs
representing related datasets (Guo et al., 2011; Danaher et al., 2014; Lee & Liu, 2015). In this
paper, we propose an elaboration that seeks to model an additional feature of the sampling dis-
tribution increasingly encountered in biomedical data, whereby correlations among the outcome
variables are considered to be the by-product of underlying conditional dependencies acting at
different levels. For illustration, consider gene expression data obtained from multiple tissues,
such as liver, kidney, and brain, collected on each individual. In this setting, observed correla-
tions between expressed genes may be caused by dependence structures not only within a specific
tissue but also across tissues at the level of the whole body. We describe these distinct graphi-
cal strata respectively as the category-specific and systemic layers, and model their respective
outcomes as latent variables.

The conditional dependence relationships among p outcome variables, Y = (Y1, . . . , Yp), can
be represented by a graph G = (�, E), where each variable is a node in the set � and conditional
dependencies are represented by the edges in the set E . If the joint distribution of the outcome
variables is multivariate Gaussian, Y ∼ N(0, �), then conditional dependencies are reflected in
the nonzero entries of the precision matrix � = �−1. Specifically, two variables Yi and Y j are
conditionally independent given the other variables if and only if the (i, j)th entry of � is zero.
Inferring the dependence structure of such a Gaussian graphical model is thus the same as esti-
mating which elements of its precision matrix are nonzero.

When the underlying graph is sparse, as is often assumed, the maximum likelihood estimator
is dominated in terms of the false positive rate by shrinkage estimators. The maximum likelihood
estimate of � typically implies a graph that is fully connected, which is unhelpful for estimat-
ing graph topology. To impose sparsity, and thereby provide a more informative inference about
network structure, a number of methods have been introduced that estimate � under �1 regular-
ization. Meinshausen & Bühlmann (2006) proposed to iteratively determine the edges of each
node in G by fitting an �1-penalized regression model to the corresponding variable Y j using the
remaining variables Y− j as predictors, an approach which can be viewed as optimizing a pseu-
dolikelihood (Ambroise et al., 2009; Peng et al., 2009). More recently, numerous papers have
proposed estimation using sparse penalized maximum likelihood (Yuan & Lin, 2007; Banerjee
et al., 2008; d’Aspremont et al., 2008; Rothman et al., 2008; Ravikumar et al., 2011). Efficient
implementations include the graphical lasso algorithm (Friedman et al., 2008) and the quadratic
inverse covariance algorithm (Hsieh et al., 2014). The convergence rate and selection consistency
of such penalized estimation schemes have also been investigated in theoretical studies (Rothman
et al., 2008; Lam & Fan, 2009).

Although a single graph provides a useful representation of an underlying dependence struc-
ture, several extensions have been proposed. In the context where the precision matrix, and hence
the graph, is dynamic over time, Zhou et al. (2010) proposed a weighted method to estimate the
graph’s temporal evolution. Another extension is to simultaneously estimate multiple graphs that
may share some common structure. For example, when inferring how brain regions interact using
fMRI data, each subject’s brain corresponds to a different graph, but we would nonetheless expect
some common interaction patterns across subjects, as well as patterns specific to an individual.
In such cases, joint estimation of multiple related graphs can be more efficient than estimat-
ing the graphs separately. For joint estimation of Gaussian graphs, Varoquaux et al. (2010) and
Honorio & Samaras (2010) proposed methods using group lasso and multi-task lasso, respec-
tively. Both assume that all the precision matrices have the same pattern of zeros. To provide
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greater flexibility, Guo et al. (2011) proposed a joint penalized method using a hierarchical
penalty, and derived the convergence rate and sparsistency properties of the resulting estimators.
In the same setting, Danaher et al. (2014) extended the graphical lasso (Friedman et al., 2008)
to estimate multiple graphs from independent datasets using penalties based on the generalized
fused lasso or, alternatively, the sparse group lasso.

The above methods for estimating multiple Gaussian graphs focus on the settings in which
data collected from different categories are stochastically independent. In some applications,
however, data from different categories are more naturally considered as dependent. In each of
two studies considered here, gene expression data have been collected on multiple tissues in
multiple mice. For each mouse we have expression measurements for p genes in each of K
different tissues, that is, K different categories, represented by the p-dimensional vectors Yk (k =
1, . . . , K ). In this setting, the gene expression profiles of different mice may have arisen from the
same network structure, but they are otherwise stochastically independent; in contrast, the gene
expression profiles of different tissues within the same mouse are stochastically dependent. For
such data, increasingly common in biomedical research, the above methods are not applicable.

To explore the gene network structure across different tissues, and to characterize the depen-
dence among tissues, we consider a decomposition of the observed gene expression Yk into two
latent vectors. In our model, we define

Yk = Z + Xk, (1)

where Z , X1, . . . , X K are mutually independent. Because cov(Yk, Yl) = var(Z) for any k |= l, Z
represents dependence across different tissues. Letting � j denote the precision matrix of X j for
tissue j , and defining var(Z) = �−1

0 , we aim to estimate �k (k = 0, . . . , K ) from the observed
outcome data on {Y1, . . . , YK }. To accomplish this joint estimation of multiple dependent net-
works, we propose a one-step method and an EM method.

In the above decomposition, Z can be viewed as representing systemic variation in gene
expression, that is, variation manifesting simultaneously in all measured tissues of the same
mouse, whereas Xk represents category-specific variation, that is, variation unique to tissue k.
An important property of this two-layer model is that sparsity in the systemic and category-
specific networks can produce networks for the outcome variable Y that are highly connected.
Conversely, highly connected graphs for the outcome Y can easily arise from relatively sparse
underlying dependencies acting at two levels. This phenomenon is illustrated in Fig. 1, which
depicts category-specific networks �1 and �2 for two categories C1 and C2, which might cor-
respond to, for example, liver and brain tissue-types, and a systemic network �0, which reflects
relationships affecting all tissues at once, for example, gene interactions that are responsive to
hormone levels or other globally acting processes. Although all three underlying networks, �0,
�1 and �2, are sparse, the precision matrix of observed variables within each tissue, that is, the
aggregate network �Yk = (�−1

0 + �−1
k )−1 following (1), is highly connected. Existing meth-

ods aiming to estimate a single sparse network layer are therefore ill-suited to this problem
because they impose sparsity on the aggregate network rather than on the two simpler layers
that generate it.

2. METHODOLOGY

2·1. Problem formulation

The following notation is used throughout the paper. We denote the true precision and covari-
ance matrices by �∗ and �∗. For any matrix W = (ωi j ), we denote the determinant by det(W ), the
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Fig. 1. Illustration of systemic and category-specific networks using a toy example with two categories, C1 and C2,
and p = 10 variables. (a) Category-specific network for C1. (b) Category-specific network for C2. (c) Systemic
network affecting variables in both C1 and C2. (d) Aggregate network �Y1 = (�−1

1 + �−1
0 )−1 for category C1. (e)

Aggregate network �Y2 = (�−1
2 + �−1

0 )−1 for C2.

trace by tr(W ) and the off-diagonal entries of W by W −. We further denote the j th eigenvalue of
W by φ j (W ) and the minimum and maximum eigenvalues of W by φmin(W ) and φmax(W ). The
Frobenius norm, ‖W‖F, is defined as

∑
i, j ω2

i j ; the operator/spectral norm, ‖W‖2, is defined as
φmax(W W T); the infinity norm, ‖W‖∞, is defined as max|wi j |; and the elementwise L1-norm,
|W |1, is defined as

∑
i, j |ωi j |.

In the problem we address, measurements are available on the same p outcome variables in
each of K distinct categories on each of n individuals. Some dependence is anticipated among
outcomes both at the level of the category and at the level of the individual: dependence at the
level of the category is described as category-specific, and dependence at the level of the indi-
vidual is described as systemic, that is, modelled as if affecting outcomes in all categories of the
same individual simultaneously. Our primary example is the measurement of gene expression
giving rise to transcript abundance readings on p genes in K tissues, such as liver, kidney and
brain, in n laboratory mice.

Letting Yk,i be the i th data vector for the kth category, we model

Yk,i = Xk,i + Zi (i = 1, . . . , n; k = 1, . . . , K ), (2)

where Zi is the random vector corresponding to the shared systemic random effect, and
Xk,i is the random vector corresponding to the kth category. We assume that Xk,i and Zi

(i = 1, . . . , n; k = 1, . . . , K ) are independent and identically distributed p-dimensional random
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vectors with mean zero and covariance matrices �k and �0 respectively. We further assume that
Xk,i and Zi are independent of each other and each follows a multivariate Gaussian distribution.

For the i th sample in the kth category, we observe the p-dimensional realization of Yk,i ,
vector yk,i = (yk,i,1, . . . , yk,i,p)

T. Without loss of generality, we assume that these observa-
tions are centred, i.e.,

∑n
i=1 yk,i, j = 0 ( j = 1, . . . , p; k = 1, . . . , K ). Let y·,i be the combined

data vector with y·,i = (yT
1,i , . . . , yT

K ,i )
T, such that y·,i follows a Gaussian distribution with

covariance �Y = {d�k} + J ⊗ �0 = {�Y (l,m)}1�l,m�K , where {d ·} is a block-diagonal matrix,
J is a square matrix with all 1s as the entries, ⊗ is the Kronecker product, and �Y (l,m) is
the covariance matrix between Yl and Ym . We denote the n × Kp dimensional data matrix by
y = (y·,1, . . . , y·,n)T, and let �k = (�k)

−1 = (ωk(i, j)) and �Y = (�Y )−1. Our goal is to estimate
�k (k = 0, . . . , K ). Although Xk and Z are latent variables, we can show that �k is identifiable
under the model set-up in (2) with K � 2. More details can be found in the Supplementary Mate-
rial. For simplicity, we write � and � for {�k}K

k=0 and {�k}K
k=0 respectively in the following

derivation.
The loglikelihood of the data can be written as

L(�; y) = −npK

2
log(2π) + n

2

{
log det(�Y ) − tr(�̂Y �Y )

}
, (3)

where

�̂Y = n−1
n∑

i=1

y·,i yT
·,i = {�̂Y (l,m)}1�l,m�K

is the K p × K p sample covariance matrix. In our setting,

L(�; y) ∝
K∑

k=1

{
log det(�k) − tr(�̂Y (k,k)�k)

} + log det(�0)

− log det(A) +
K∑

l,m=1

tr
(
�l�̂Y (l,m)�m A−1),

where A =∑K
k=0 �k ; see the Supplementary Material for details.

A natural way to obtain a sparse estimate of � is to maximize the penalized loglikelihood

�̂ = arg max
�	0

P(�; y) = arg max
�	0

L(�; y) − λ1

K∑
k=1

|�−
k |1 − λ2|�−

0 |1. (4)

Because the likelihood is complicated, direct estimation of the precision matrices in (4) is diffi-
cult. Estimation can proceed directly, however, given the values z of the latent outcome vector
Z . Therefore, we first estimate �0 and then the other parameters. In § § 2·2 and 2·3, we consider
estimation of these multiple dependent graphs using a one-step procedure and a method based
on the EM algorithm.

2·2. One-step method

The idea behind our one-step method is to generate a good initial estimate for � and then
obtain estimates for � by one-step optimization. Because var(Z) = cov(Yl , Ym) for any m |= l, it
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is natural to use the covariance matrix �Y (l,m) between all pairs of Yl and Ym to estimate �0 by

�̂0 = 1

K (K − 1)

∑
m |= l

�̂Y (m,l) = 1

K (K − 1)n

∑
m |= l

n∑
i=1

(
ym,i yT

l,i

)
. (5)

Using the fact that var(Xk) = var(Yk) − var(Z), we can then obtain an estimate for �k as

�̂k = �̂Y (k,k) − �̂0 = 1

n

n∑
i=1

(
yk,i yT

k,i

) − �̂0. (6)

Although �̂k is symmetric, it may not be positive semidefinite, but this can be ensured using
projection (Xu & Shao, 2012). For any symmetric matrix �̂k (k = 0, . . . , K ), the positive-
semidefinite projection is

�̂′
k = arg min

��0
‖� − �̂k‖∞. (7)

Lastly, we estimate � by minimizing K + 1 separate functions,

Wk(�k) = tr(�̂′
k�k) − log det(�k) + λ|�−

k |1 (k = 0, . . . , K ), (8)

where λ = λ2 when k = 0 and λ = λ1 otherwise. The minimization of (8) can be solved efficiently
by algorithms such as the graphical lasso (Friedman et al., 2008) or by the quadratic inverse
covariance algorithm (Hsieh et al., 2014). We refer to this approach as the one-step method and
later compare its performance with the EM method defined next.

2·3. Graphical EM method

The one-step method provides an estimate of �. In the spirit of the classic EM algorithm
(Dempster et al., 1977), this estimate of � can be used to obtain a better estimate of �, which in
turn can be used to obtain a better estimate of �. This procedure is iterated until the estimates of
� converge, leading to a graphical EM algorithm, described below.

First, we rewrite the sampling model as⎛
⎜⎜⎜⎝

Z
Y1 − Z

...

YK − Z

⎞
⎟⎟⎟⎠∼ N

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

0
0
...

0

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

�0 0 . . . 0
0 �1 . . . 0
...

...
. . .

...

0 0 . . . �K

⎞
⎟⎟⎟⎠
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

and the loglikelihood given Y = y and Z = z = (z1, . . . , zn)
T as

L(�; y, z) ∝ log det(�0) − tr

(
�0

n∑
i=1

zi z
T
i /n

)

+
K∑

k=1

[
log det(�k) − tr

{
�k

n∑
i=1

(yk,i − zi )(yk,i − zi )
T/n

}]
. (9)

Expression (9) cannot be calculated directly because zi and zi zT
i are unobserved. However, we can

replace them with their expected values conditional on � and y, and develop the EM algorithm
with the following steps:
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Step 1 (E-step). Update the expectation of the loglikelihood conditional on � using

Q(�; �(t)) = EZ |�(t){L(�; y, z)}

∝ log det(�0) − tr

{
�0 EZ |�(t)

(
n∑

i=1

zi z
T
i /n

)}
+

K∑
k=1

log det(�k)

−
K∑

k=1

tr

[
�k EZ |�(t)

{
n∑

i=1

(yk,i − zi )(yk,i − zi )
T/n

}]

=
K∑

k=0

{
log det(�k) − tr

(
�k�̇

(t)
k

)}
.

Step 2 (M-step). Update � that maximizes

�(t+1) = arg min
�	0

−Q(�; �(t)) + λ1

K∑
k=1

|�−
k |1 + λ2|�−

0 |1, (10)

where �(t) denotes the estimates from the t th iteration, EZ |�(t) (·) denotes the conditional expec-

tation with respect to Z given �(t), and

�̇
(t)
k = EZ |�(t)

{
n∑

i=1

(yk,i − zi )(yk,i − zi )
T/n

}

= �̈Y (k,k) −
K∑

l=1

(
�̈Y (k,l)�

(t)
l

)
(A(t))−1 − (A(t))−1

K∑
l=1

(
�

(t)
l �̈Y (l,k)

)

+ (A(t))−1
K∑

l,k=1

(
�

(t)
l �̈Y (l,k)�

(t)
k

)
(A(t))−1 + (A(t))−1 (k = 1, . . . , K ), (11)

�̇
(t)
0 =

n∑
i=1

EZ |�(t)

(
zi z

T
i /n

)= (A(t))−1 + (A(t))−1
K∑

l,k=1

(
�

(t)
l �̈Y (l,k)�

(t)
k

)
(A(t))−1, (12)

where �̈Y = �̂Y is an estimator for �∗
Y , the true covariance matrix of Y . Therefore, problem (10)

is decomposed into K + 1 separate optimization problems:

�
(t+1)
k = arg min

�k	0

{
tr
(
�k�̇

(t)
k

) − log det(�k) + λ|�−
k |1

}
(k = 0, . . . , K ), (13)

where λ = λ2 when k = 0 and λ = λ1 otherwise. We can then use the graphical lasso (Friedman
et al., 2008) to solve (13).
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We summarize the proposed EM method in the following algorithm.

Algorithm 1. The graphical EM algorithm.

(Initial value). Initialize �̂′
0 and �̂′

k (k = 1, . . . , K ) using (3), (5)–(7).
(Updating rule: the M-step). Update �k (k = 0, . . . , K ) by (13) using the graphical
lasso.
(Updating rule: the E-step). Update �̇k using (11) and (12).
Iterate the M- and E-steps until convergence.

Output �̂k (k = 0, . . . , K ).

The next proposition demonstrates convergence of our graphical EM algorithm.

PROPOSITION 1. With any given n, p, λ1 > 0, and λ2 > 0, the graphical EM algorithm solving
(4) has the following properties:

Property 1. The penalized loglikelihood in (4) is bounded above.

Property 2. For each iteration, the penalized loglikelihood is nondecreasing.

Property 3. For a prespecified threshold δ, after a finite number of steps, the objective func-
tion in (4) converges in the sense that

∣∣P(�(t+1); y) − P(�(t); y)
∣∣< δ.

2·4. Model selection

We consider two options for selecting the tuning parameter λ = (λ1, λ2), minimization of the
extended Bayesian information criterion (Chen & Chen, 2008) and crossvalidation. The extended
Bayesian information criterion is quick to compute and takes into account both goodness of fit
and model complexity. Crossvalidation, by contrast, is more computationally demanding and
focuses on the predictive power of the model.

In our model, we define the extended Bayesian information criterion

BICγ (λ) = −2L({�̂k}K
k=0; y) + ν(λ) log n + 2γ log τ {ν(λ)},

where {�̂k}K
k=0 are the estimates with the tuning parameter set at λ, L(·) is the loglikelihood

function, the degrees of freedom ν(λ) is the sum of the number of nonzero off-diagonal elements
in {�̂k}K

k=0, and τ {ν(λ)} is the number of models with size ν(λ), which equals a!/{b!(a − b)!}
where a = K p(p − 1)/2 and b = ν(λ). This criterion is indexed by a parameter γ ∈ [0, 1]. The
tuning parameter λ is selected as λ̂ = arg min{BICγ (λ) : λ1, λ2 ∈ (0, ∞)}.

In describing the crossvalidation procedure, we define the predictive negative loglikelihood
function as F(�, �) = tr(��) − log det(�). To select λ using crossvalidation, we randomly
split the dataset equally into J groups, and denote the sample covariance matrix from the j th
group by �̂Y ( j,λ) and the precision matrix estimated from the remaining groups by �̂Y (− j,λ).
Then we choose

λ̂ = arg min
λ

⎧⎨
⎩

J∑
j=1

F(�Y ( j,λ), �̂Y (− j,λ)) : λ1, λ2 ∈ (0, ∞)

⎫⎬
⎭ .

The performance of these two selection methods is reported in § 4.
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3. ASYMPTOTIC PROPERTIES

We introduce some notation and the regularity conditions. Let {�∗
k}K

k=0 be the true preci-
sion matrices with �∗

k = (ω∗
k(i, j)), Tk = {(i, j) : i |= j, ω∗

k(i, j) |= 0} the index set corresponding
to the nonzero off-diagonal entries in �∗

k , qk = |Tk | the cardinality of Tk , and q =∑K
k=0 qk . Let

{�∗
k }K

k=0 be the true covariance matrices for Z and {Xk}K
k=1, and �∗

Y = {�∗
Y (l,m)}1�l,m�K be the

true covariance matrices for Y . We assume that the following regularity conditions hold.

Condition 1. There exist constants τ1 and τ2 such that 0 < τ1 < φmin(�
∗
k) � φmax(�

∗
k) < τ2 <

∞ (k = 0, . . . , K ).

Condition 2. There exist constants a and b such that a{(log p)/n}1/2 � λ j � b{(1 +
p/q)(log p)/n}1/2 ( j = 1, 2).

Condition 1 bounds the eigenvalues of �∗
k and guarantees the existence of its inverse. Condi-

tion 2 is needed to facilitate the proof of consistency. The following theorems discuss estimation
consistency and selection sparsistency of our methods.

THEOREM 1 (Consistency of the one-step method). Under Conditions 1 and 2, if (p +
q)(log p)/n = o(1), then the solution {�̂one

k }K
k=0 of the one-step method satisfies

K∑
k=0

∥∥�̂one
k − �∗

k

∥∥
F = Op

[{(p + q) log p

n

}1/2]
.

We next present a corollary of Theorem 1 which gives a good estimator of �∗
Y .

COROLLARY 1. Under the assumptions of Theorem 1 and with �̂one
k (k = 0, . . . , K ) being the

one-step solution, �̌k = (�̂one
k )−1 satisfies

∥∥�̌k − �∗
k

∥∥
F = Op

[{(p + q) log p

n

}1/2]
.

To study our EM estimator, we need an estimator for �∗
Y that satisfies the following condition.

Condition 3. We assume there exists an estimator �̃Y such that

‖�̃Y − �∗
Y ‖F = Op

[{(p + q) log p

n

}1/2]
.

The rate in Condition 3 is required to control the convergence rate of the E-step estimating �∗
k

and thus the consistency of the estimate from the EM method. Under the conditions in Theorem 1,
we can use the one-step estimator �̂one

k (k = 0, . . . , K ) to obtain �̃Y = J ⊗ �̂−1
0 + {d�̂−1

k },
where {d ·} is a block-diagonal matrix. The resulting �̃Y satisfies Condition 3 by Corollary 1.

THEOREM 2 (Consistency of the EM method). If Conditions 1–3 hold and (p +
q)(log p)/n = o(1), then after a finite number of iterations, the solution {�̂EM

k }K
k=0 of the

EM method satisfies

K∑
k=0

∥∥�̂EM
k − �∗

k

∥∥
F = Op

[{(p + q) log p

n

}1/2]
.

THEOREM 3 (Sparsistency of the one-step method). Under the assumptions of Theorem 1, if
we further assume that the one-step solution {�̂one

k }K
k=0 satisfies

∑K
k=0 ‖�̂one

k − �∗
k‖ = Op(ηn)
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for a sequence ηn → 0, and if {(log p)/n}1/2 + ηn = O(λ1) = O(λ2), then with probability
tending to 1, ω̂one

k(i, j) = 0 for all (i, j) ∈ T c
k (k = 0, . . . , K ).

For sparsistency we require a lower bound on the rates of λ1 and λ2, but for consistency we need
an upper bound for λ1 and λ2 to control the biases. In order to have consistency and sparsistency
simultaneously, we need the bounds to be compatible, that is, we need {(log p)/n}1/2 + ηn =
O(λ1, λ2) = {(1 + p/q) log p/n}1/2. From the inequalities ‖W‖2

F/p � ‖W‖2 � ‖W‖2
F , there

are two extreme scenarios describing the rate of ηn , as discussed in Lam & Fan (2009). In
the worst case, where

∑K
k=0 ‖�̂k − �∗

k‖ has the same rate as
∑K

k=0 ‖�̂k − �∗
k‖F, we achieve

both consistency and sparsistency only when q = O(1). In the most optimistic case, where∑K
k=0 ‖�̂k − �∗

k‖2 =∑K
k=0 ‖�̂k − �∗

k‖2
F/p, we have η2

n = (1 + q/p) log p/n, and the compat-
ibility of the bounds requires q = O(p).

THEOREM 4 (Sparsistency of the EM method). Under the assumptions of Theorem 2, if we
further assume the EM solution {�̂EM

k }K
k=0 satisfies

∑K
k=0 ‖�̂EM

k − �∗
k‖ = Op(ζn) for a sequence

ζn → 0, and if {(p + q)(log p)/n}1/2 + ζn = O(λ1) = O(λ2), then with probability tending to 1,
ω̂EM

k(i, j) = 0 for all (i, j) ∈ T c
k (k = 0, . . . , K ).

Similar to the discussion above for the EM algorithm, we have both consistency and sparsis-
tency when q = O(1). See the Supplementary Material.

4. SIMULATION

4·1. Simulating category-specific and systemic networks

We assessed the performance of the one-step and EM methods by applying them to simulated
data generated by two types of synthetic networks: a chain network and a nearest-neighbour net-
work as shown in Fig. 2. Twelve simulation settings were considered. These varied the base archi-
tecture of the category-specific network, the degree to which the actual structure could deviate
from this base architecture, and the number of outcome variables.

Under each of the 12 simulation conditions, samples were independently and identically dis-
tributed, with systemic outcomes generated as Zi ∼ N(0, �−1

0 ), category-specific outcomes as
Xk,i ∼ N(0, �−1

k ), and observed outcomes as yk,i = xk,i + zi , for K = 4 and n = 300. The fol-
lowing architectures were considered for the five networks {�k}4

k=0:
(I) the K category-specific networks are chain-networks and the systemic network is a nearest-

neighbour network with the number of neighbours m = 5 and 25 for p = 100 and 1000;
(II) the K category-specific networks and the systemic network are all nearest-neighbour net-

works with m = 5 and 25 for p = 100 and 1000 respectively.
Chain and nearest-neighbour networks were generated using the algorithms in Fan et al. (2009)

and Li & Guo (2006). The structures of network (I) are shown in Figs. 2(a) and (d). Simulated
networks were allowed to deviate from their base architectures by a specified degree ρ, through
a random addition of edges following the method of Guo et al. (2011). Specifically, for each �k

(k = 0, 1, . . . , K ) generated above, a symmetric pair of zero elements is randomly selected and
replaced with a value generated uniformly from [−1, −0·5] ∪ [0·5, 1]. We repeat this procedure
ρT times, with T being the number of links in the initial structure and ρ ∈ {0, 0·2, 1}.

We compared the performance of the one-step and EM methods by examining the average
false positive rate, average false negative rate, average Hamming distance, average entropy loss

EL = 1

K + 1

K∑
k=0

{
tr
(
�∗−1

k �̂k
) − log det

(
�∗−1

k �̂k
)} − p,
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Fig. 2. Network topologies generated in the simulations. Panels (a)–(c) show chain networks with noise ratios
ρ = 0, 0·2, and 1. Panels (d)–(f) show nearest-neighbour networks with ρ = 0, 0·2, and 1.

and average Frobenius loss

FL = 1

K + 1

K∑
k=0

‖�∗
k − �̂k‖2

F

‖�∗
k‖2

F

.

We also examined receiver operating curves for the two methods.

4·2. Estimation of category-specific �k and systemic networks �0

As shown in Fig. 1, existing methods are designed to estimate the aggregate networks �Yk

instead of category-specific �k and systemic �0 networks. In this subsection, we focus only on
our proposed one-step and EM methods.

Results of the simulations are reported in Table 1. Summary statistics are based on 50 repli-
cate trials under each of the 12 conditions, and given for model fitting under both the extended
Bayesian information criterion with γ = 0·1 and crossvalidation. In general, the one-step method
under either model selection criterion resulted in higher values of entropy loss, Frobenius loss,
false positive rates and Hamming distance. For both methods, crossvalidation tended to choose
models with more false positive links but fewer false negative links, leading to a denser graph. For
model selection, a rule of thumb is to use crossvalidation when p > 500, and to use the extended
Bayesian information criterion otherwise.

Receiver operating curves for the one-step and EM methods are plotted in Fig. 3; each is based
on 100 replications with the constraint λ1 = λ2. Under all settings, the EM method outperforms
the one-step method, yielding greater improvements as the structures become more complicated.
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Table 1. Summary statistics reporting performance of the EM and one-step methods inferring
graph structure for different networks. The numbers before and after the slash are the results

based on the extended Bayesian information criterion and crossvalidation, respectively

Network
p architecture ρ Method EL FL FP (%) FN (%) HD (%)

100 (I) 0 One-step 12·1/10·0 0·24/0·16 5·5/20·9 4·2/0·9 5·5/20·4
0 EM 6·7/4·7 0·15/0·08 4·2/15·8 3·4/0·6 4·2/15·4
0·2 One-step 10·6/8·6 0·22/0·15 5·4/19·4 3·7/0·9 5·3/18·8
0·2 EM 6·4/4·8 0·15/0·09 4·9/14·3 3·5/0·6 4·8/ 14·0
1 One-step 12·6/9·9 0·24/0·17 7·3/23·3 9·5/2·9 7·5/22·3
1 EM 8·3/6·0 0·17/0·11 6·7/15·3 5·3/1·6 6·6/14·6

(II) 0 One-step 12·1/9·6 0·27/0·19 3·4/19·6 22·0/7·6 4·1/19·1
0 EM 7,9/6·0 0·20/0·14 3·8/13·5 12·4/4·2 4·1 13·4
0·2 One-step 12·5/9·7 0·26/0·18 4·6/21·0 23·0/7·8 5·5/20·4
0·2 EM 8·7/6·1 0·19/0·12 4·5/15·2 14·1/3·2 5·0/14·6
1 One-step 16·3/12·6 0·27/0·17 8·7/30·4 24·0/8·8 9·9/28·7
1 EM 11·3/7·6 0·20/0·11 8·1/22·9 13·7/2·7 8·6/21·4

1000 (I) 0 One-step 276·7/240·6 0·44/0·36 0·6/5·5 52·1/34·6 0·9/5·6
0 EM 120·3/94·9 0·22/0·16 0·5/2·5 48·9/35·7 0·8/2·7
0·2 One-step 201·5/162·3 0·35/0·27 0·2/5·0 64·3/37·9 0·6/5·3
0·2 EM 117·7/88·5 0·19/0·13 0·2/2·2 57·8/39·8 0·6/ 2·5
1 One-step 171·6/146·0 0·28/0·22 0·0/5·3 100/54·1 1·2/5·9
1 EM 147·1/108·1 0·20/0·14 0·0/2·3 99·2/56·5 1·2/2·9

(II) 0 One-step 301·0/234·4 0·43/0·33 0·1/6·7 83·5/53·7 2·0/7·7
0 EM 206·7/160·9 0·29/0·23 0·2/2·6 73·8/56·4 1·9/3·8
0·2 One-step 349·8/257·5 0·44/0·31 0·1/8·4 89·2/52·9 2·5/9·6
0·2 EM 275·0/190·8 0·32/0·23 0·2/3·9 82·7/53·8 2·4/5·2
1 One-step 325·4/268·8 0·41/0·29 0·0/10·1 99·9/64·3 4·4/12·5
1 EM 301·6/232·6 0·31/0·23 0·0/4·8 99·8/68·2 4·4/ 7·6

EL, the average entropy loss; FL, the average Frobenius loss; FN, the average false negative rate; FP, the average false
positive rate; HD, the average Hamming distance; ρ, the noise ratio.

4·3. Estimation of aggregate networks �Yk

Although our goal is to estimate the two network layers, we can also use our estimators of �k

(k = 0, . . . , K ) to estimate the aggregate network �Yk = (�−1
k + �−1

0 )−1 as a derived statistic.
Doing so allows us to compare our method with methods that aim to estimate the aggregate
network �Yk , as these methods are otherwise incomparable.

We compared the performance of the EM method with two existing single-level methods for
estimating multiple graphs: the hierarchical penalized likelihood method of Guo et al. (2011)
and the joint graphical lasso of Danaher et al. (2014). As shown by simulation results reported
in the Supplementary Material, these two single-level methods tended to give similar, sparse
estimates that were very different from the true aggregate graph. The true aggregate graph
tended to be highly connected, as illustrated in Fig. 1, and under most settings was much bet-
ter estimated by the EM method. An exception was setting (II) with ρ = 0 and 0·2: here �Yk

is relatively sparse, and the best performance came from the method of Guo et al. (2011).
Sparsity in �Yk arises under this setting because when �k and �0 are chain networks �Yk has
a strong banding structure, with large absolute values within the band and small absolute values
outside.
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Fig. 3. Receiver operating characteristic curves assessing power and discrimination of graphical inference under
different simulation settings. Each panel reports performance of the EM method (solid line) and the one-step
method (dashed line), plotting true positive rates (y-axis) against false positive rates (x-axis) for a given noise
ratio ρ, network base architecture I or II, sample size n = 300, and number of neighbours m = 5 and 25 for
p = 100 and 1000 respectively. The numbers in each panel represent the areas under the curve for the two

methods.

5. APPLICATION TO GENE EXPRESSION DATA IN MICE

To demonstrate the potential utility of our approach, we apply the EM method to mouse
genomics data from Dobrin et al. (2009) and Crowley et al. (2015). In each case, we aim to
infer systemic and category-specific gene co-expression networks from transcript abundance as
measured by microarrays. In describing our inference on these datasets we find it helpful to dis-
tinguish two interpretations of a network: the potential network is the network of biologically
possible interactions in the type of system under study; the induced network is the subgraph of
the potential network that could be inferred in the population sampled by the study. The induced
network is therefore a statistical, not physical, phenomenon, and describes the dependence struc-
ture induced by the interventions, or perturbations, applied to the system.

A simple example is the relationship between caloric intake, sex, and body weight. Body
weight is influenced by both the state of being male or female and the degree of caloric con-
sumption; these relations constitute edges in the potential network. Yet in a population where
caloric intake varies but where individuals are exclusively male, the effect of sex is undefined
and the corresponding edges relating sex to body weight are undetectable; these edges are there-
fore absent in the induced network. More generally, the induced network for a system is defined
by both the potential network and the intervention applied to it: two populations of mice could
have the same potential network, but when subject to different interventions their induced net-
works could differ. Conversely, when estimating the dependence structure of variables arising
from population data, the degree to which the induced network reflects the potential network is
a function of the underlying conditions being varied and interventions at work.



506 Y. XIE, Y. LIU AND W. VALDAR

The Dobrin et al. (2009) dataset comprises expression measurements for 23 698 transcripts
on 301 male mice in adipose, liver, brain and muscle tissues. These mice arose from an F2 cross
between two contrasting inbred founder strains, one with normal body weight physiology and
the other with a heritable tendency for rapid weight gain. In a cross of this type, the analysed
offspring constitute an independent and identically distributed sample of individuals who are
genetically distinct and have effectively been subject to a randomized allocation of normal and
weight-inducing DNA variants, or alleles, at multiple locations along its genome. As a result of
this allocation, gene expression networks inferred on such a population would be expected to
emphasize more strongly those subgraphs of the underlying potential network that are related to
body weight. Moreover, since the intervention alters a property affecting the entire individual, we
might expect it to exert at least some of its effect systemically, that is, globally across all tissues
in each individual.

Using a subset of the data, we inferred the dependence structure of gene co-expression
among three groups of well-annotated genes in brain and liver: an obesity-related gene set, an
imprinting-related gene set, and an extracellular matrix, i.e., the ECM-related gene set. These
groups were chosen based on criteria independent of our analysis and represent three groups
whose respective effects would be exaggerated under very different interventions. The tissue-
specific and systemic networks inferred by our EM method are shown in Fig. 4. Each node
represents a gene, and the darkness of an edge represents the magnitude of the associated par-
tial correlation. The systemic network in Fig. 4(c) includes edges on the Aif1 obesity-related
pathway only, which is consistent with the F2 exhibiting a dependence structure induced pri-
marily by an obesity-related genetic intervention that acts systemically. The category-specific
networks in Figs. 4(a) and (b) still include part of the Aif1 pathway, suggesting that variation
in this pathway tracks variation at both the systemic and the tissue-specific level; in other ways
their dependence structures differ, with, for instance, Aif1 and Rgl2 being linked in the brain
but not in the liver. The original analysis of Dobrin et al. (2009) used a correlation network
approach, whereby unconditional correlations with statistical significance above a predefined
threshold were declared as edges; that analysis also supported a role for Aif1 in tissue-to-tissue
co-expression.

The Crowley et al. (2015) data comprise expression measurements of 23 000 transcripts in
brain, liver, lung and kidney tissues in 45 mice arising from three independent reciprocal F1
crosses. A reciprocal F1 cross between two inbred strains A and B generates two subpopulations:
the progeny of strain-A females mated to strain-B males denoted by A × B, and the progeny of
strain-B females and strain-A males, denoted by B × A. Across the two progeny groups, the set
of alleles inherited is identical, with each mouse having inherited half of its alleles from A and
the other half from B; but the route through which those alleles were inherited differs, with, for
example, A × B offspring inheriting their A alleles only from their fathers and B × A inheriting
them only from their mothers. The underlying intervention in a reciprocal cross is therefore not
the varying of genetics as such but the varying of parent-of-origin, or epigenetics, and so we
might expect some of this epigenetic effect to manifest across all tissues.

We applied our EM method to a normalized subset of the Crowley et al. (2015) data, restricting
attention to brain and liver, and removing gross effects of genetic background. Our analysis iden-
tified three edges on the systemic network as shown in Fig. 5(c) that include the genes Igf2, Tab1,
Nrk and Pde4b, all from the imprinting-related set implicated in mediating epigenetic effects.
Thus, the inferred patterns of systemic-level gene relationships in the two studies coincide with
the underlying interventions implied by the structure of those studies, with genes affecting body
weight in the Dobrin et al. (2009) data and genes affected by parent-of-origin in the Crowley
et al. (2015) data.
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Fig. 4. Topology of gene co-expression networks inferred by the EM method for the data from a population
of F2 mice with randomly allocated high-fat versus normal gene variants. Panels (a) and (b) display the esti-
mated brain-specific and liver-specific dependence structures. Panel (c) shows the estimated systemic structure

describing whole-body interactions that simultaneously affect variables in both tissues.

To demonstrate the use of our method for higher-dimensional data, we examined a larger
subset of genes from Dobrin et al. (2009). Selecting the p = 1000 genes that had the largest
within-group variance among the four tissues in the F2 population, we applied our graphical EM
method, using the extended Bayesian information criterion to select the tuning parameters λ1 and
λ2. The existence of a single, nonzero systemic layer for these data was strongly supported by
significance testing, as described in the Supplementary Material. The topologies of the estimated
tissue-specific and systemic networks are shown in Figs. 6 (a)–(d), with a zoomed-in view of the
edges of the systemic network shown in Fig. 6(f). The systemic network is sparse, with 249 edges
connecting 62 of the 1000 genes in Fig. 6(e); this sparsity may reflect there being few interactions
simultaneously occurring across all tissues in this F2 population, with one contributing reason
being that some genes are expressed primarily in one tissue and not others. The systemic network



508 Y. XIE, Y. LIU AND W. VALDAR

Igf2
Peg3

Prkra

Tab1

Nrk
Pde4b

Mdk

Rab8a

Aif1
Pycard

Ctss

Psmb9

Ifi44
Rgl2

H2 Eb1

HCK

Ltbp1
Ptrf

Col1A2

Cdh11

Dcn
Fbln5

Bgn

Brain(a) (b)

(c)

Obesity-related

Imprinted

ECM

Igf2
Peg3

Prkra

Tab1

Nrk
Pde4b

Mdk

Rab8a

Aif1
Pycard

Ctss

Psmb9

Ifi44
Rgl2

H2–Eb1

HCK

Ltbp1
Ptrf

Col1A2

Cdh11

Dcn
Fbln5

Bgn

Liver

Igf2
Peg3

Prkra

Tab1

Nrk
Pde4b

Mdk

Rab8a

Aif1
Pycard

Ctss

Psmb9

Ifi44
Rgl2

H2–Eb1

HCK

Ltbp1
Ptrf

Col1A2

Cdh11

Dcn
Fbln5

Bgn

Systemic network

Weight

0

0·2

0·3

0·5

0·6

Fig. 5. Topology of gene co-expression networks inferred by the EM method for the data from a population of
reciprocal F1 mice. Panels (a) and (b) display the estimated brain-specific and liver-specific dependence struc-
tures. Panel (c) shows the estimated systemic structure describing whole-body interactions that simultaneously

affect variables in both tissues.

also includes a connection between two genes, Ifi44 and H2-Eb1, that are members of the Aif1
network of Fig. 4. To characterize more broadly the genes identified in the systemic network,
we conducted an analysis of gene ontology enrichment (Shamir et al., 2005), in which the dis-
tribution of gene ontology terms associated with connected genes in the systemic network was
contrasted against the background distribution of gene ontology terms in the entire 1000-gene
set; this showed that the systemic network is significantly enriched for genes associated with
immune and metabolic processes, which accords with recent studies linking obesity to strong
negative impacts on immune response to infection (Milner & Beck, 2012; Lumeng, 2013). The
original study of Dobrin et al. (2009) also showed the enrichment of inflammatory response pro-
cesses in co-expression from liver and adipose, again using unconditional correlations.
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Fig. 6. Topology of co-expression networks inferred by the EM method applied to measurements of the 1000
genes with highest within-tissue variance in a population of F2 mice. Panels (a)–(d) show category-specific
networks estimated for adipose, hypothalamus, liver and muscle tissue. Panel (e) shows the structure of the
estimated systemic network, describing across-tissue dependencies, with panel (f) showing a zoomed-in view

of the connected subset of nodes in this graph.

6. DISCUSSION

In this paper we consider joint estimation of a two-layer Gaussian graphical model that is dif-
ferent from, but related to, the single-layer model. In our setting, the single-layer model estimates
an aggregate graph �Yk by imposing sparsity on �Yk directly. Our model, by contrast, estimates
the two graphical layers that compose the aggregate, namely �k and �0, and imposes sparsity on
each. This can imply an aggregate graph �Yk that is less sparse; but this is appropriate because
in our setting �Yk is a by-product and, as such, is a secondary subject of inference. Importantly,
our two-layer model includes the single-layer model as a special case, since in the absence of an
appreciable systemic dependence, when �Z = 0, the two-layer model reduces to a single layer.

Our model lends itself to several immediate extensions. First, we currently assume that the
systemic graph affects all tissues equally, but, as suggested by one reviewer, we can extend our
model to allow the influence of the systemic layer to vary among tissues. For example, since
muscle and adipose tissue are both developed from the mesoderm, we might expect them to be
more closely related to each other as compared with the pancreas, which is developed from the
endoderm. We can accommodate such variation in our model as

Yk,i = Xk,i + αk Zi (k = 1, . . . , K ; i = 1, . . . , n),

where αk quantifies the level of systemic influence in each tissue k. Our EM algorithm can also
be modified to calculate αk and �k . More details can be found in the Supplementary Material.
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Second, we can extend the �1-penalized maximum likelihood framework to other nonconvex
penalties such as the truncated �1-function (Shen et al., 2012) and the smoothly clipped absolute
deviation penalty (Fan & Li, 2001). Furthermore, we believe it would be both practicable and
useful to extend these methods beyond the Gaussian assumption (Cai & Liu, 2011; Liu et al.,
2012; Xue & Zou, 2012).
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