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Summary

Cocaine addiction is chronic and persistent, and has become a major social and health problem in 

many countries. Existing studies have shown that cocaine addicts often undergo episodic periods 

of addiction to, moderate dependence on, or swearing off cocaine. Given its reversible feature, 

cocaine use can be formulated as a stochastic process that transits from one state to another, while 

the impacts of various factors, such as treatment received and individuals’ psychological problems 

on cocaine use, may vary across states. This paper develops a hidden Markov latent variable model 

to study multivariate longitudinal data concerning cocaine use from a California Civil Addict 

Program. The proposed model generalizes conventional latent variable models to allow 

bidirectional transition between cocaine-addiction states and conventional hidden Markov models 

to allow latent variables and their dynamic interrelationship. We develop a maximum likelihood 

approach, along with a Monte Carlo expectation conditional maximization (MCECM) algorithm, 

to conduct parameter estimation. The asymptotic properties of the parameter estimates and 

statistics for testing the heterogeneity of model parameters are investigated. The finite sample 

performance of the proposed methodology is demonstrated by simulation studies. The application 

to cocaine use study provides insights into the prevention of cocaine use.
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1. Introduction

We consider a longitudinal study on cocaine use carried out by the UCLA center for 

advancing longitudinal drug abuse research. In this study, 321 participants admitted in 1988–

89 to the West Los Angeles Veterans Affairs Medical Center were assessed at baseline, one 
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year after treatment, two years after treatment, and 12 years after treatment in 2002–03. 

Interview questionnaire covers information on the participants’ cocaine use behavior, 

treatment received, and psychological problems. Cocaine use behavior is fully measured by 

one of the questionnaire items, whereas treatment and psychological problems are 

summarized by two or more questionnaire items and are therefore regarded as latent traits. A 

primary interest of this study is to investigate the effects of latent traits, such as treatment 

and psychological problems on cocaine use behavior. We propose the use of latent variable 

model (LVM) to examine the interrelationships between the observed and latent variables. 

Moreover, unlike an irreversible and progressive event, cocaine use process often comprises 

episodic periods of addiction to, moderate dependence on, and swearing off cocaine. Thus, 

identifying latent states from continuous cocaine use and investigating its transition pattern 

is also of interest. The aim of this paper is to develop a hidden Markov model (HMM) to 

characterize the temporal latent process of cocaine use along with its latent risk factors and 

the bidirectional transition between various cocaine addiction states.

However, most existing HMMs in the literature cannot adequately address three major 

dependency structures in multivariate longitudinal data, including the correlation among 

multiple responses within the same subject, temporal dependence, and heterogeneity. See 

Cappé, Moulines and Rydén (2005) for a comprehensive review of HMMs. A basic 

assumption of HMMs is that the latent discrete process is a first-order Markov chain, and 

that occasion-specific response variables can be modeled as an independent process 

conditioning on the sequence of latent states. An initial approach has been developed by 

Vermunt et al. (1999) and further developed, in the context of multivariate data, by many 

researchers. Scott, James, and Sugar (2005) described an HMM for continuous and 

multivariate t-distributed data, whereas Altman (2007) proposed mixed-effects HMMs and 

identified a two-state Poisson model for lesion-count data. Bartolucci and Farcomeni (2009) 

and Bartolucci et al. (2009) developed dynamic logit models for analyzing longitudinal 

categorical data and investigated the conditional probability of categorical response across 

time. Maruotti (2011) further analyzed longitudinal binary and count data using a mixed 

HMM within the generalized linear random effect model framework, wherein the 

conditional model incorporates random effects but the transition model neither includes 

random effects nor depends on occasions and subjects (see the book of Bartolucci et al. 

(2013) for an overview). Recently, Chow et al. (2013) utilized a multinomial logistic 

regression model to characterize bidirectional transitions between latent classes as well as a 

LVM to identify the class-specific association structure among observed and latent variables. 

However, their transition model failed to incorporate random effects and the order of hidden 

states, and is therefore restricted to the modeling of Markovian process and incapable of 

revealing the heterogeneity of transition process as well as the ordered feature of hidden 

states.

We propose here a hidden Markov LVM (HMLVM) with two major components including a 

conditional LVM and a continuation-ratio logit transition model. If we regard latent 

variables as random effects with certain structures, our model framework is similar to that 

proposed by Altman (2007). However, differences exist between our work and Altman’s. 

First, the random effects in Alman (2007) mainly address the dependency of observations 

and are not of primary interest, whereas the latent variables in our model represent latent 
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traits (e.g., psychological problems) that have specific meanings but cannot be characterized 

by a single observed variable. What’s more, our conditional model reveals the effect of such 

latent traits on the outcome of interest. Second, given that cocaine-addiction conditions 

usually have a natural order from bad to good, our transition model for examining the 

bidirectional transition from one state to another is a continuation-ratio logit rather than a 

multinomial logit model. Third, Altman’s computation method is not directly applicable to 

this study because our model involves additional latent quantities such as latent traits and 

missing data. Integrating them out leads to a prohibitively complex observed-data likelihood 

and infeasible computational burden.

We develop a Monte Carlo expectation-conditional-maximization (MCECM) procedure 

along with an efficient MCMC algorithm for parameter estimation. The asymptotic 

properties of parameter estimators are investigated. In addition, we take into account an 

important issue of testing the invariance of parameters across latent states, which is 

particularly relevant to the present study of cocaine use when we are interested in checking 

how the impacts of treatment and psychological problems on cocaine use vary across 

different cocaine-addiction conditions. However, to the best of our knowledge, no study has 

ever been conducted on the proposed model or on the associated theoretical developments.

The outline of this article is as follows. Section 2 introduces the HMLVM. Section 3 

develops a MCECM procedure for estimation. The asymptotic properties of the parameter 

estimators and test statistics for checking the invariance of parameters are investigated. 

Section 4 presents simulation studies to examine the empirical performance of the proposed 

method. In Section 5, an application to the cocaine use data set is reported. Section 6 

concludes the paper. Technical details are provided in Web Appendices.

2. Model Description

The model consists of two parts. In the first part, discussed in Section 2.1, the latent variable 

ωit allows for correlation within a given subject’s response at a given time point. In the 

second part, discussed in Section 2.2, the latent state variable zit allows for autocorrelation in 

a subject’s responses over time. A graphical model presented in Figure 1 depicts the 

relations among the observed variables, latent factors, and the latent states associated with 

covariates and random effects under consideration. Here, the rectangles enclose observed 

variables and ellipses enclose latent factors and hidden states.

2.1 Conditional latent variable model

Consider the repeated measurements from N subjects across T occasions. Let yitj denote the 

response of subject i at occasion t on the jth questionnaire item, ωit be a p × m vector of 

latent variables (factors), and zit be categorical latent states taking values in a finite set  = 

{1, ⋯, S}, where S is assumed known and fixed. The conditional LVM assumes a 

measurement model as follows:

(1)
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where yit = (yit1, ⋯, yitp)⊤ is a p × 1 vector of observed variables, μs is a p × 1 vector of 

intercepts, Λs is a p × m factor loading matrix, and  is a p × p diagonal matrix with 

diagonal elements , k = 1, ⋯, p. The extension consisting in incorporating observed 

predictors into (1) is straightforward. The state-specific μs and  allow for heterogeneity in 

grouping latent variables via observed variables over time. To examine the interrelationships 

among latent variables, we partition ωit into an m1 × 1 outcome latent vector ηit and an m2 × 

1 explanatory latent vector ξit (m1 + m2 = m). A structural equation is defined by

(2)

where Bs is a m1 × m1 matrix of regression coefficients with the main diagonal elements 

being zero, Γs is a m1 × m2 matrix of regression coefficients,  is a m1 × m1 diagonal 

matrix with diagonal elements , j = 1, ⋯, m1, and Φs is a m2 × m2 covariance matrix. It is 

assumed that the processes of {ξit} and {ζit} are independent.

In the conditional LVM defined by (1) and (2), the elements in ηit and ξit can be either latent 

factors or observed variables. When m1 = 1, ηit = yit1 implies that ηit is measured by 

(centralized) yit1 without error, and that appropriate constraints on μs, Λs, and  should be 

imposed. For instance, in the cocaine use study in Section 5, ηit (cocaine use) is measured 

by yit1 without error. Thus, , where  is the mean of yit1 at state s, and the 

factor loading  and the error variance  are set to 1 and 0, respectively.

Let , where Im1 is the m1-dimensional identity matrix. Based on the model 

assumptions and conditional on zit, ωit has zero mean and covariance matrix

Through (1), the dependency among observed variables is explained by a substantially 

lower-dimensional latent vector ωit. The correlation coefficient between yitk and yitl, given 

zit, is
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2.2 Continuation-ratio logit transition model

Let zi = (zi1, ⋯, ziT)⊤ be the state sequence of subjects across the latent state space over 

time. A standard assumption in most HMMs assumes that {zit} follows the first order 

Markov chain with the transition probability given by

(3)

where qitrs is the transition probability from state zi,t−1 at occasion t − 1 to state zit at 

occasion t for individual i.

Let Qit be the S × S stochastic matrix with elements qitrs. From (3), the joint distribution of 

zi depends only on transition probabilities and the marginal distribution of the initial state. 

We assume that the initial distribution of zi1 is multinomial with ν = (ν1, ⋯, νS)⊤ such that 

νr ⩾ 0 for r = 1, …, S and . Here, ν1, ⋯, νS can be treated as fixed if the panel 

length is large enough or estimated simultaneously with other model parameters. Alternative 

of initial distribution can be chosen as the limit (stationary) distribution of zit provided that 

zit is stationary or taken as a point mass δz0(·) for some preassigned value z0. This paper 

allows for heterogeneity of the transition probability of the hidden Markov chain by 

incorporating subject- and/or occasion-specific fixed and random effects.

Assuming that the states {1, ⋯, S} in  are ordered, the transition probabilities can then be 

modeled through the following continuation-ratio logit model (Agresti, 2002; Ip et al., 

2013). Specifically, for t = 2, ⋯, T and s = 1, ⋯, S − 1, we have

(4)

where αrs is a state-specific intercept, wit and vit are, respectively, κ1 × 1 and κ2 × 1 vectors 

of covariates for individual i at occasion t, β is a κ1 × 1 vector of common fixed effects 

coefficients, and bi ~ N(0, Σb) is a κ2 × 1 vector of subject-specific random effects. The 

parameterization in (4) is intended to facilitate interpretation of transition to a state rather 

than a better one. Let ϖitrs = p(zit = s|zit ⩾ s, zi,t−1 = r), the continuation-ratio logits in the 

left-hand side of (4) can be written as log[ϖitrs/(1 − ϖitrs)] = logit(ϖitrs) (Agresti, 2002, p.

289). Thus, β and other parameters in (4) can be interpreted similarly as those in the logit 

model. By introducing random effects into (4), the hidden process is no longer Markovian.

2.3 Model identifiability

There are two model indeterminacies in the proposed HMLVM. One is from the invariance 

of the covariance matrix of latent factors under orthogonal transformation in the 

measurement equation (1). We follow the common practice in LVM literature to fix 

appropriate elements of the factor loading matrix at preassigned values to solve this 

problem. The other is related to label switching, which causes a difficulty in parameter 
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estimation because the resulting likelihood will be multi-modal. We use the method 

proposed by Scott et al. (2005) to implement our algorithm without constraint but use cross-

validation methods to explore the initial values of estimates (see Section 5).

3. Statistical Inference

3.1 ML estimation via MCECM

For i = 1, ⋯, N, let  be a (Tp) × 1 vector of observations across T 

occasions for subjects i and  be a (Tm) × 1 vector of latent factors that 

are associated with yi. The observed-data log-likelihood function is

(5)

where θ is the vector of all unknown parameters, and μT (A) = ∑z∈A δz is the counting 

measure on the product space T =  × ⋯ × .

Latent factors ωi involved in li(θ) can be integrated out in the context of linear LVM. 

Nevertheless, direct maximization of l(θ) is still computationally infeasible because it also 

involves a complicated high-dimensional integration with respect to latent states zi and 

random effects bi. Altman (2007) suggested a MCEM algorithm, of which the E-step was 

implemented by drawing observations from the prior distribution of random effects and the 

M-step was carried out via numerical maximization. However, Altman’s method is not 

directly applicable here because our study involves additional latent quantities such as latent 

factors and missing questionnaire data.

We propose the use of MCECM algorithm to obtain the estimation of model parameters. The 

E-step is implemented by drawing observations from the joint posterior distribution of the 

latent quantities, and the M-step combines the conditional maximization and Newton-

Raphson algorithm. Let Y = {y1, ⋯, yN}, Z = {z1, ⋯, zN}, Ω = {ω1, ⋯, ωN}, and B = {b1, 

⋯, bN}. We treat {Z, Ω, B} as hypothetical missing data and augment them with Y to 

approximate the conditional expectation in the E-step. The Gibbs sampler is implemented to 

sample from p(Z, Ω, B|Y, θ) iteratively through (a) generating Z from p(Z|Y, Ω, B, θ), (b) 

generating Ω from p(Ω|Y, Z, B, θ), and (c) generating B from p(B|Y, Z, Ω, θ). For notational 

simplicity, we do not incorporate missing questionnaire data here. The proposed procedure 

can be extended to accommodate missing questionnaire data without difficulty. In the 

extension, the likelihood function involves the observed data and the missing indicators, 

resulting in a joint likelihood. The details of the MCECM algorithm and the extension 

consisting in incorporating missing questionnaire data are described in Web Appendix A.
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An important issue regarding the convergence of EM algorithm is that it may converge to a 

local maxima or even to a saddle point. We thus adopt the method proposed by McLachlan 

and Peel (2000) to choose the maximum likelihood (ML) estimate that results in the highest 

log-likelihood among all non-spurious solutions obtained via using the MCECM algorithm 

with different starting values of parameters. In the present study, three groups of different 

starting values are used in the numerical studies. Let θ̂N be the ML estimate of θ obtained 

using the MCECM algorithm. Theorem 1 in Web Appendix B investigates the asymptotic 

properties of θ̂N. The asymptotic covariance matrix of θN̂ is given by the inverse of

3.2 Model selection and hypothesis test

In the proposed HMLVM, determining the number of latent states, S, is fundamental and 

should be taken into consideration. Information criteria, such as Akaike information criteria 

(AIC) and Bayesian information criteria (BIC), have been widely used for model selection, 

especially in the context of non-nested models. In this study, we use AIC and BIC to 

compare HMLVMs with different numbers of latent states. The computation of AIC and 

BIC is provided in Web Appendix A.

After the number of latent states is determined, test of heterogeneity in model parameters 

across different latent states is likewise of interest. For LVM, a common test is made on the 

invariance of the factor loadings. Consider the following hypotheses:

(6)

We propose the Wald and Score test statistics to perform the hypothesis testing. Theorem 2 

in Web Appendix B presents their asymptotical Chi-square distributions. This result can be 

easily extended to test the invariance of others parameters, such as μs and Γs in LVM, or to 

test whether some elements of γ are equal to zero in the transition model. Notably, for the 

variance parameter σ (⩾ 0) [see Equation (10) below], the test of H0 : σ = 0 is a boundary 

problem, and thus the standard Wald test is not valid in this case. One can instead conduct a 

model comparison between a random effect model (σ > 0) and a fixed effect model (σ = 0).

4. Simulation Study

In this section, we conduct a simulation study to assess the empirical performance of the 

proposed methodology described in Section 3.

4.1 Simulation 1

We first investigate the finite sample performance of the estimation procedure under 

different choices of N and T. Let yit = (yit1, ⋯, yit9)⊤, ωit = (ηit, ξit1, ξit2)⊤, and  = {1, 2, 
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3}. The measurement equation is defined by (1) with p = 9, m = 3, m1 = 1, m2 = 2, 

,

where the ones and the zeros are fixed to identify the model. The structural equation is given 

by  with . The true population values of the 

unknown parameters are presented in Table 1.

For the transition model, we assume that the initial distribution is ν = (1, 0, 0)⊤. Consider 

the continuation-ratio logit model

(7)

where  is a vector of fixed covariates, wit1 and wit2 are, independently, 

drawn from Bernoulli distribution with success probability 0.3, and bi is generated from N(0, 

σ2) with σ2 = 1.0, and υit = 1.0. The covariates wit1 and wit2 are then held constant over the 

subsequent MCECM iterations. The true values of the parameters are presented in Table 1.

The MCECM algorithm is implemented for parameter estimation. We chose the starting 

values through disturbing the true values of the unknown parameters in θ by adding 1.0 to 

the intercept and regression parameters and by multiplying 1.5 to the variance parameters. In 

the use of MCMC methods for approximating conditional expectations, we collected 200 

observations after deleting 200 samples as the burn-in at the first 10 EM iterations and then 

increased the sample size by 50 times for the latter iterations. The adaptive Metropolis 

rejection algorithm was employed for the sampling of bi. At each iteration, the one-step 

Newton-Raphson algorithm was implemented for updating the parameters in the transition 

model. The convergence of the MCECM algorithm was monitored via a plot of the 

observed-data log-likelihood function against the number of iterations.

To evaluate the finite sample performance of the ML estimates, we considered four scenarios 

with (N, T) = (300, 4), (1000, 4), (300, 10), and (1000, 10), respectively. For each scenario, 

the simulation is conducted on the basis of 100 replications. We first conducted a few test 

runs to get a rough idea about the number of iterations at convergence. The pilot study 

showed that the MCECM algorithm converged within 30 iterations for all scenarios. To be 

conservative, we took 35 iterations in each replication. The result obtained under (N, T) = 

(300, 4) is reported in Table 1. The values of root mean square error (RMS) and average 

approximate standard error (SE) are close to zero. Most of the coverage rates of the 

estimators are slightly higher than the nominal level (95%), implying that the standard errors 

of the estimators tend to be slightly overestimated in this case. The performance of 

parameter estimates, their standard error estimates, and the coverage rates is improved as the 

sample size and/or the panel length increase. The details are reported in Web Appendix C.
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4.2 Simulation 2

To assess the finite sample performance of the information criteria in determining the 

number of latent states, we generated four data sets based on the same LVM as defined in 

Simulation 1 but the transition model with 1-state, 2-state, 3-state, and 4-state, respectively. 

The four scenarios in Simulation 1 are again considered. The transition model is defined by 

(7) except that when S = 2, ν = (0.2, 0.8)⊤, α1s = 0.3, and α2s = 0.5 for s = 1; when S = 3, ν 
= (0.2, 0.1, 0.7)⊤, α1s = 0.3, α2s = 0.5, and α3s = 0.7 for s = 1, 2; and when S = 4, ν = (0.2, 

0.1, 0.3, 0.4)⊤, α1s = 0.3, α2s = 0.5, α3s = 0.7, and α4s = 0.9 for s = 1, 2, 3. The MCECM 

algorithm is implemented to obtain the ML estimates of the model parameters under each 

setting. To compute the observed-data log-likelihood function, we use the Gaussian-

quadrature numerical method with 100 knots to approximate the integrals involved. Table 2 

reports the results based on 100 replications, indicating that AIC and BIC generally perform 

satisfactorily and their performance improves as N or T increases. To examine whether other 

factors such as the Monte Carlo sample size in the E-step and the number of knots in the 

Gaussian-quadrature approximation of the M-step might affect the distribution of the 

estimators as well as the values of AIC and BIC, we disturb the Monte Carlo sample size 

from 200 to 1000 and the number of knots from 100 to 50. The estimation and model 

selection results are similar and not reported.

In summary, a size of (N, T) = (300, 4) provides reasonable estimation and model selection 

results. The increase of N and/or T would reduce the values of RMS and SE, improve the 

coverage rates of the estimators, and enhance the performance of AIC and BIC. This study 

uses 200 Monte Carlo samples and 100 knots in Gaussian quadrature method in each of the 

scenarios considered. The increase of these factors does not significantly improve the finite 

sample performance of the MCECM algorithm.

The computing time for obtaining the results of Tables 1 and 2 in each replicate takes 30 

minutes using visual C++ for window 7 with cpu clock speed at 2.93Hz. The computer code 

is available online. We conduct Simulation 3 to examine the empirical performance of the 

test statistics proposed in Theorem 2. The details are provided in Web Appendix C.

5. A Longitudinal Study of Cocaine Use

In this section, we use the proposed method to analyze the cocaine use data set described in 

the Introduction. The data set was collected from 321 patients at baseline, one year, two 

years, and 12 years after treatment (t = 0, 1, 2, 3), in which some patients were confirmed to 

be deceased (8.7%), some declined to be interviewed, and some were either out of the 

country or too ill to be interviewed. Consequently, there is a large amount of missing 

questionnaire data in this longitudinal data set. The questionnaire items include y1 =Days of 

cocaine use per month (CC), y2 = Times per month in formal treatment (outxfreq), y3 = 

Months in formal treatment (outTXmon), y4 = beck inventory (BI), y5 = depression (DEP), 

and y6 = anxiety (AN). Among them, y1 reects the participants’ cocaine use severity, which 

measures the outcome variable η without error; {y2, y3} are all related to treatment received 

by participants, and are therefore grouped into a latent trait “treatment (ξ1)”; and {y4, y5, 

y6} all characterize mental health-related condition, and are therefore grouped into another 

latent trait “psychological problems (ξ2)”. In these variables, y1, ⋯, y6 are observed, ξ1 and 
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ξ2 are latent, and η = y1. Based on the questionnaire, {y4, y5, y6} are continuous, and {y1, 

y2, y3} take integer values in the ranges of [0, 30], [0, 30], and [0, 12], respectively. Given 

their relatively large ranges, {y1, y2, y3} are regarded as continuous as well. The main goal 

of this study is to investigate the effects of treatment (ξ1) and psychological problems (ξ2) 

on cocaine use (η) and simultaneously examine the change patterns of these effects during 

different episodic cocaine-addiction periods.

We considered the measurement equation defined in (1) with the factor loading matrix

(8)

where the ones and the zeros were treated as fixed parameters. Given that η corresponds to a 

single observed variable ‘CC’, we fixed  at 1.0 and the corresponding unique error  at 

zero. To examine the effects of treatment and psychological problems on cocaine use, we 

considered a linear structural equation

(9)

Given the reversible feature of cocaine use, it is pertinent to conceptualize it as a stochastic 

process transitioning between different cocaine-addiction states (zit = 1, ⋯, S) that have a 

natural order from bad to good. Unlike the continuous cocaine use variable η in (9), zit is a 

discrete latent variable, representing hidden states that cocaine addicts may go through over 

time. We adopted mixed continuation-ratio logit model (4) to examine the bidirectional 

transition between various cocaine-addiction states over time. A baseline measurement 

“currently employed at intake (wi)” (1 – unemployment, 0 – otherwise) was included as a 

covariate. To take into account the effect of unequally spaced time intervals on transition 

probabilities, we incorporated the time intervals into (4) as follows:

(10)

where bi ~ N(0, σ2), and υit = 0, 1, 2, and 12. Here, the random effect bi explains the 

dependence of repeated measurements for patient i at different occasions, and the time-

varying covariate υit raises such dependence over time. The rationale behind this assumption 

is that the transition pattern would be increasingly dependent on patient-specific 

characteristics rather than on the baseline employment status over time.

Because of the existence of missing data, we first determine an appropriate missing data 

mechanism between missing at random (MAR) and missing not at random (MNAR). In the 

presence of missing data, we use the idea of data augmentation by augmenting the observed 

data with latent quantities including latent state variables, random effects, latent factors, and 

missing data. Logistic regressions 
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 and 

 are used to model 

the missing probability of yitj under MNAR or MAR, respectively, where ritj is a missing 

indicator variable taking value 1 if yitj is missing and 0 otherwise, φ = (φ11, ⋯, φ1p, ⋯, φT1, 

⋯, φTp)⊤, and yi,obs includes the observed elements of yi. Although the two missing data 

models result in distinct conditional distributions of missing data, the associated observed-

data likelihood functions both involve observations in yi and the corresponding missing 

indicators. Thus, the likelihood-based criteria can be used to compare the proposed MNAR 

and MAR mechanisms. Notably, the log-likelihoods in the 1-state and s-state (s > 1) models 

are not computed on exactly the same observed data because the latter involves data 

augmentation using additional covariates wi and υit. Thus, instead of using AIC and BIC, we 

examined the existence of heterogeneity by plotting the histograms and estimated predictive 

distributions of the observed variables. Figure 2 presents the histograms of y1, y2, and y3, 

and their predictive densities estimated in the 1-state and 2-state models. Apparently, the 

predictive densities estimated in the 2-state model captured the patterns of the histograms 

but those estimated in the 1-state model did not. Thus, the 1-state model is inadequate and 

should not be considered in this study. Then, we used AIC and BIC to compare 2-state, 3-

state, and 4-state models with MAR or MNAR assumption. When fitting the data set with a 

4-state model, we found many heywood cases (i.e.,  for some j and s). This 

phenomenon usually occurs when data contain outliers or sample size is not large enough 

(Lee and Xia, 2006). In the present study, a possible reason for heywood cases occurrence is 

that the insufficient samples make certain states lack observations, thereby leading to the 

MCECM algorithm unstable or divergent. To avoid heywood cases, we fixed  in the 4-

state model. We performed the comparison on 2-state, 3-state, and 4-state models with or 

without random effect and under MAR or MNAR assumption. The results are summarized 

in Table 3. The 3-state model with random effect and MAR missing is among the best. We 

then fixed the number of hidden states at 3 and regarded the missing data as MAR. Based on 

the common knowledge about cocaine addiction process, we interpreted the 3 states as 

addiction to, moderate dependence on, and swearing off cocaine. We then focused the 

subsequent inference on (i) obtaining parameter estimates at each of the 3 states, (ii) 

examining the transition probabilities among the 3 states, and (iii) testing the invariance of 

the factor loadings and regression coefficients across the 3 states.

To obtain good starting values of parameters, we employed the permutation sampler 

(Frühwirth-Schnatter, 2001) to conduct a Bayesian analysis, and then took the Bayesian 

estimates as the starting values. Table 4 reports the parameter estimates, their standard error 

estimates (in parentheses), and the corresponding P-values in the significance test. For the 

sake of comparison, we standardized the distributions of ξ1 and ξ2 so that their variances 

equal 1 at each state, and then transformed the regression coefficients and other parameters 

accordingly. The three cocaine-addiction states and the state-specific effects of treatment and 

psychological problems on cocaine use are interpreted on the basis of transformed estimates 

as follows. State 1 represents a severe addiction state, wherein patients are dependent on 

cocaine both physically and mentally. The result of  and 
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 implies that treatment and psychological problems all influence cocaine 

use and the treatment effect seems more pronounced. More treatments and less 

psychological problems (or better mental health) would be substantially beneficial to the 

control of cocaine use. State 2 represents a moderately cocaine-dependent state, wherein 

patients depend on cocaine less physically but more mentally compared to those in state 1. 

The result of  and  indicates that the effect on cocaine 

use becomes less significant for treatment but more significant for individuals’ 

psychological problems than that in state 1. State 3 indicates a minor addiction state, 

wherein patients suffer the least from cocaine addiction. The result of 

and  shows that the effect of psychological problems on cocaine use 

becomes even stronger compared to those in states 1 and 2. Family support, friendship, and 

environment might be more important than formal treatment for cocaine-dependents in this 

state. In the mixed-effect transition model, β̂ = 0.374 (0.185) can be interpreted as follows: 

the estimated odds of transitioning from a state r at time t − 1 to a state s at time t rather than 

to a better state (zit > s) at time t for addicts unemployed at intake are exp(0.374) = 1.454 

times the estimated odds for addicts employed at intake. Thus, having a job can increase the 

probability of cocaine users transitioning from a state to a better one. The highly significant 

variance estimate σ̂2 = 0.891 (0.128) reveals great heterogeneity (or high dependence) in 

transitions from one state to another for the same subject at different occasions. We also 

conducted an analysis using a fixed-effect transition model. The result is different and not 

reported. In particular,  and  indicate that for severe or 

moderate cocaine-addicts, medical treatment would increase their cocaine use, whereas 

 implies that more psychological problems (or worse mental health) 

would lessen cocaine-addiction. These confusing results may reveal the danger of ignoring 

possible heterogeneity or dependency in modeling the transition process.

The estimated factor loadings can be interpreted as follows. In state 1,  and 

 imply that outxfreq (y2) and outTXmon (y3) significantly contribute to 

the characterization of treatment (ξ1) in the same direction but the contribution is relatively 

smaller for y3 than for y2. Similarly, , , and 

 imply that BI (y4), DEP (y5), and AN (y6) all significantly contribute to 

the characterization of psychological problems (ξ2) in the same direction but the 

contribution is relatively larger for y5 and y6 than for y4. Further, , and , 

respectively, decrease to 0.199 (0.073), 0.724 (0.089), and 0.681 (0.078) in State 2, as well 

as 0.036 (0.001), 0.637 (0.069), and 0.504 (0.068) in State 3, indicating that the associations 

between y3 and ξ1 as well as {y5, y6} and ξ2 decrease as the state transits from bad to good.

Figure 3 depicts the optimal state sequence for each individual. Let Yobs and Ymis be the sets 

of the observed and missing questionnaire data, respectively. The optimal path of transition 

for subject i is defined as , in which 

the maximization is taken in the state space with 34 = 81 points for each subject, and the 
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expectation is taken with respect to p(Ymis, Ω, B|Yobs, θ̂). We used Monte Carlo method to 

compute the involved probabilities via drawing 10,000 observations of {Ymis, Ω, B} from 

p(Ymis, Ω, B|Yobs, θ̂) with 10,000 burn-ins deleted. The frequencies of State 1, 2, and 3 at 

time 1, 2, 3, and 4 are {0.91, 0.0, 0.19}, {0.36, 0.14, 0.50}, {0.45, 0.04, 0.51}, and {0.26, 

0.02, 0.72}, respectively. This implies the following transition tendency of the underlying 

states. At baseline, a majority (91%) and minority (19%) of patients are in states 1 and 3, 

respectively. After one year’s treatment, apparent transitions from state 1 to states 2 and 3 

result in 45% reduction but 14% and 31% addition of patients in States 1, 2, and 3. This 

tendency is not as that significant thereafter. In one year to two years, most patients’ states 

keep unchanged except for a slight rebound from State 2 to 1. After 12 years treatment, the 

proportion of patients decreases to 26% for State 1 and increases to 72% for State 3.

Finally, we tested the invariance of the factor loadings and regression coefficients in LVM 

using the proposed Wald test statistics( ) and Score test statistics( ). The null 

hypothesis is specified as H0 : Λ1 = Λ2 = Λ3, Π1 = Π2 = Π3. The values of  and  are 

equal to 132.43 and 32.67, respectively, demonstrating a strong evidence (at 0.05 level of 

significance) of heterogeneity in factor load matrix Λs and regression coefficient matrix Πs.

6. Discussion

In this paper, a HMLVM has been proposed to analyze multivariate longitudinal data. We 

have developed a ML procedure, coupled with the MCECM algorithm, to carry out 

statistical inference. We have proposed hypothesis testing approach to test the invariance 

among parameters across different states. Although the existing softwares, such as Mplus 

(Muthén, 2013), can be used to analyze dynamic LVMs, they are not directly applicable to 

this study because of the inclusion of additional latent quantities in the proposed model.

The present work has limitations. First, the proposed model assumes that the serial 

correlation in y is modeled by the latent state z only. This assumption may be restrictive in 

practice and could be released by incorporating other components into the conditional 

model. Second, the amount of parameters involved is in general huge compared to the 

amount of data and may seriously limit the model assets on these data. Thus, the proposed 

method should be used with caution in the case of small sample size. Third, the convergence 

of MCECM algorithm was monitored via the plot of log-likelihoods against the number of 

iterations. Compared to the complexity of the proposed model and possibly flat areas of the 

log-likelihood, this criterion may be weak. An alternative approach is to monitor 

convergence by computing the relative error of parameter estimates (Lee and Song, 2004). 

Fourth, in the real application of Section 5, the time intervals between different occasions 

are unequally spaced: the time interval between t = 2 and t = 3 is 10, whereas those between 

other adjacent occasions are 1. We considered the use of 10-step transition probabilities to 

describe transitioning between t = 2 and t = 3, but the computer program broke down due to 

lack of sufficient data. Thus, great caution should be exercised in the presence of completely 

unbalanced data because models too complex may easily become unidentifiable or 

intractable. Finally, the proposed model assumes linear LVM and continuous responses, an 

extension to accommodate nonlinear LVM and discrete data is of great interest. These 
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extensions raise theoretical and computational challenges and further investigation is 

needed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Path diagram of the proposed HMLVM: The rectangles represent the observed responses or 

fixed covariates, and the ellipses denote the unobserved latent factors or random effects. The 

arrows identify the direct effect or transition between two random quantities.
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Figure 2. 
The histograms and estimated predictive densities of CC (y1), Outxfreq (y2), and OutTXmon 

(y3) at baseline. From top to bottom, Column 1: the histograms of y1, y2, and y3; Column 2: 

the estimated predictive densities of y1, y2, and y3 in a 1-state model; and Column 3: the 

estimated predictive densities of y1, y2, and y3 in a 2-state model. The middle solid curves 

represent the means, and the upper and lower dashed curves represent the 95%-pointwise 

confidence intervals.

Song et al. Page 16

Biometrics. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Estimated frequency of optimal states of patients in cocaine use study: (a) t = 1; (b) t = 2; (c) 

t = 3; and (d) t = 4.
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