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SUMMARY

A clinical trial with a 2 × 2 factorial design involves randomization of subjects to treatment A or 

and, within each group, further randomization to treatment B or . Under this design, one can 

assess the effects of treatments A and B on a clinical endpoint using all patients. One may 

additionally compare treatment A, treatment B, or combination therapy AB to . With multiple 

comparisons, however, it may be desirable to control the overall type I error, especially for 

regulatory purposes. Because the subjects overlap in the comparisons, the test statistics are 

generally correlated. By accounting for the correlations, one can achieve higher statistical power 

compared to the conventional Bonferroni correction. Herein, we derive the correlation between 

any two (stratified or unstratified) log-rank statistics for a 2 × 2 factorial design with a survival 

time endpoint, such that the overall type I error for multiple treatment comparisons can be 

properly controlled. In addition, we allow for adjustment of prognostic factors in the treatment 

comparisons and conduct simultaneous inference on the effect sizes. We use simulation studies to 

show that the proposed methods perform well in realistic situations. We then provide an 

application to a recently completed randomized controlled clinical trial on alcohol dependence. 

Finally, we discuss extensions of our approach to other factorial designs and multiple endpoints.
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1. Introduction

Factorial designs are commonly used in clinical trials to evaluate the effects of multiple 

treatments on potentially censored survival time or times to other clinical events. For 

example, the Physicians’ Health Study adopted a 2 × 2 factorial design to investigate the 

effects of aspirin and beta-carotene on cardiovascular mortality and incidence of cancer 

among 22,000 male physicians aged 40–84 years (Stampfer et al., 1985). As a second 

example, the Women’s Health Initiative employed a partial factorial design to study the 
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effectiveness of dietary modification, hormone therapy, and calcium/vitamin D 

supplementation in preventing coronary heart disease, breast and colorectal cancer, and hip 

fracture among 68,132 postmenopausal women (Prentice and Anderson, 2007). Recently, we 

were involved in two clinical trials with factorial designs:

The COMBINE Study

The Combined Pharmacotherapies and Behavioral Interventions (COMBINE) study was 

conducted between January 2001 and January 2004 to evaluate the efficacy of medication, 

behavioral therapy, and their combination for treatment of alcohol dependence among 1,224 

recently alcohol-abstinent volunteers (Anton et al., 2006). Patients were randomized to 

receive medical management with 16 weeks of naltrexone (100 mg daily) or placebo, with or 

without a combined behavioral intervention (CBI) under a factorial design; see Table 1. The 

investigators were interested in assessing the effects of each intervention as a mono-therapy, 

as well as the combined effect of the two interventions, on time to the first day of heavy 

drinking and other endpoints.

The APOLLO Trial

The Aliskiren Prevention of Later Life Outcomes (APOLLO) trial was designed to 

investigate the impact of aliskiren, alone or in combination with other drugs, on clinical 

outcomes in elderly patients with hypertension (Teo et al., 2014). Participants were 

randomized to aliskiren 300 mg daily or placebo and also to an additional antihypertensive 

drug (amlodipine 5 mg daily or HCTZ 25 mg daily) or placebo under a factorial design; see 

Table 2. There were two primary objectives in this study: one was to determine whether 

treatment with an aliskiren-based regimen reduces the risk of major cardiovascular events 

(i.e., death, myocardial infarction, stroke, and significant heart failure) when compared to a 

non-aliskiren based regimen; and the second was to determine whether intensified therapy 

with aliskiren plus an additional antihypertensive drug will reduce the risk of major 

cardiovascular events when compared to double placebo. The planned sample size was 

11,000, with 2,750 patients for each of the four treatment combinations, but the trial was 

terminated for non-scientific reasons after enrollment of 1,759 patients (Teo et al., 2014).

In the Physicians’ Health Study, the primary hypothesis pertains to the effect of aspirin on 

cardiovascular mortality and the secondary hypothesis pertains to the effect of beta-carotene 

on incidence of cancer. These are two distinct scientific questions. Likewise, the three 

questions considered in the Women’s Health Initiative are scientifically distinct. There is no 

need to adjust for multiple testing in such studies (Cook and Farewell, 1996).

In the COMBINE and APOLLO studies, the same set of subjects is used to assess the effects 

of interventions with similar mechanisms or purposes on the same endpoint. In such cases, it 

may be necessary to adjust for multiple comparisons, especially when they allow different 

ways to make a positive claim for the benefit of an investigational treatment. Since the 

subjects overlap in the comparisons, the test statistics are generally dependent. By 

accounting for this dependence, we can achieve higher statistical power compared to the 

conventional Bonferroni correction. For the survival endpoint, each treatment comparison is 

carried out by a (stratified or unstratified) log-rank test. Because log-rank statistics are not 
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sums of independent random variables, it is not straightforward to determine the correlation 

of two log-rank statistics with overlapping subjects.

Although there is some statistical literature on 2 × 2 factorial survival experiments, no 

methods are available to calculate the correlations of the log-rank statistics for the types of 

comparisons performed in the COMBINE and APOLLO studies. The most relevant work is 

that of Slud (1994), who adopted the proportional hazards (PH) model (Cox, 1972) with two 

treatment indicators and their product as independent variables. Akritas and LaValley (1996) 

considered the accelerated failure time model (Kalbfleisch and Prentice, 2002, p. 44) instead 

of the PH model and proposed an extension of the Hodges-Lehmann estimator. Akritas and 

Brunner (1997) constructed nonparametric tests based on the Kaplan-Meier estimators for 

the four treatment combinations.

In this paper, we derive the correlation between any two (stratified or unstratified) log-rank 

statistics under the 2 × 2 factorial design, such that the overall type I error of multiple 

treatment comparisons can be properly controlled. Actually, our work goes beyond this 

derivation by allowing for adjustment of prognostic factors and by performing simultaneous 

estimation in addition to simultaneous testing. We assess the accuracy of the proposed 

correlation formulas in simulation studies. In addition, we apply the proposed methods to 

data derived from the COMBINE study. Finally, we discuss extensions of our approach to 

other factorial designs and multiple endpoints.

2. Methods

Consider the 2 × 2 factorial design, and let A and B denote the two treatments. Subjects are 

randomly assigned to A or  and B or  such that there are four possible treatment arms, as 

shown in the following table:

AB

A major advantage of this design is that one can assess the effects of treatments A and B on 

survival time using all subjects. That is, one can assess the overall effect of treatment A by 

comparing the two columns in the above table or the overall effect of treatment B by 

comparing the two rows. One may additionally evaluate the simple effect of combination 

therapy AB (i.e., the comparison of the two cells on the main diagonal) or the simple effects 

of A and B (i.e.,  versus  and  versus ). Note that we use the term “overall 

effect” to refer to the effect of one intervention on survival time across the levels of the other 

intervention and the term “simple effect” to refer to the effect of one or two interventions on 

survival time compared to double placebo or standard care.

To test the null hypothesis that the overall effect of treatment A is zero, it is natural to 

employ the stratified log-rank statistic by stratifying subjects as to whether they receive 

treatment B or not (Peto, 1978). The stratified log-rank statistic compares A and  among 
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subjects who receive B and separately among those who receive  and then combines the 

evidence from the two strata. By contrast, the unstratified log-rank statistic compares all 

subjects who receive A with all subjects who receive  regardless of whether they receive B 
or . To test the null hypothesis that a simple effect is zero, we employ the unstratified log-

rank statistic (since we are comparing two cells only). To quantify the treatment effect or to 

adjust for covariates, we appeal to the (stratified or unstratified) PH model. It is sufficient to 

focus on the PH model because the log-rank statistic is the score statistic under the PH 

model with the treatment indicator as the only independent variable. Our main task is to 

derive the joint distribution of the score statistics and the corresponding parameter 

estimators under two (possibly stratified) PH models with overlapping subjects.

Since the unstratified PH model is a special case of the stratified PH model with a single 

stratum, it suffices to consider the stratified PH model. Suppose that, for the first treatment 

comparison, there are K strata with nk subjects in the kth stratum. In our case, K = 1 (for 

unstratified analysis) or 2 (for stratified analysis). For k = 1, …, K and j = 1, …, nk, let Tkj 

denote the survival time for the jth subject of the kth stratum, and let Xkj denote the 

corresponding set of independent variables, including the treatment indicator (e.g., indicator 

of A versus  or indicator of AB versus ) and baseline covariates (e.g., age, gender, and 

clinical center). The stratified PH model takes the form

(1)

where β is a set of regression parameters pertaining to log hazard ratios, and λk0(·) (k = 1, 

…, K) are arbitrary baseline hazard functions.

For assessing the overall effect of A, it is desirable to stratify on B (Peto, 1978). Under the 

stratified PH model, the effects of A are assumed to be the same for subjects receiving B and 

for those receiving  while the difference between B and  is completely unspecified. 

Although the assumption of a common effect of A between the two strata may not hold 

(under alternatives), the stratified model is well defined and does not depend on the 

proportion of subjects receiving B (as opposed to ). (It is possible to allow the effects of A 
to be different between the two strata, but then one would effectively be fitting two separate 

models.) Under the unstratified PH model, the baseline hazard function is a mixture of the 

hazard functions for  and , and thus its value depends on the proportion of subjects 

receiving B. Indeed, if the proportion of subjects receiving B is random (due to sampling or 

noncompliance), then the baseline hazard function and the regression effects are random 

quantities.

Let Ckj denote the censoring time for Tkj such that we observe  and Δkj 

≡ I(Tkj ≤ Ckj), where I (·) is the indicator function. Define
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where a⊗0 = 1, a⊗1 = a, and a⊗2 = aaT. We estimate β by maximizing the partial likelihood 

function

The corresponding score function is

and the corresponding information matrix is

Denote the maximum partial likelihood estimator of β by . For large samples,  is 

multivariate normal with mean β and covariance matrix  (Andersen and Gill, 1982).

For the second treatment comparison, we consider the following stratified PH model

(2)

where  pertains to the treatment indicator for this comparison and baseline covariates, γ 

is a set of regression parameters, and  are arbitrary baseline hazard 

functions. Estimation of model (2) proceeds in the same manner as that of model (1). Let 

denote the maximum partial likelihood estimator of γ, and let  and  denote the 

score function and information matrix, respectively.

To derive the joint distribution between  and , we approximate U(β) and  by sums of 

independent terms. Specifically, U(β) is approximated by  where wkj(β) 

is a random vector that involves only the data on the jth subject of the kth stratum; see 

equation (A.2) in the Appendix. Likewise, . Replacing the 

unknown quantities in wkj(β) by their sample estimators yields
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(3)

Likewise, we obtain the empirical counterpart of , denoted by . Let n0 be the 

number of subjects that are used in fitting both models (1) and (2). For i = 1, …, n0, let 

Wi(β) be the value of Wkj(β) for the ith subject, and let  be the value of  for 

the same subject. For large samples, the joint distribution of  and  is approximately 

multivariate normal, and the covariance matrix between  and  can be estimated by 

, where  is the estimated 

covariance matrix between U(β) and .

Remark 1

If one is only interested in simple effects with a common set of covariates, then one can fit a 

single (unstratified) PH model with appropriate treatment indicators and obtain the 

covariance matrix of the estimated effects from standard statistical software.

The above results allow us to make joint inference on β and γ. Without loss of generality, 

assume that the first components of β and γ, denoted by β1 and γ1, respectively, correspond 

to the treatment effects. Let  and  denote the maximum partial likelihood estimators of 

β1 and γ1, and let  denote the (estimated) covariance matrix of 

. To test jointly the null hypotheses H0 : β1 =0 and  we can use the 

quadratic form, , which is referred to the chi-squared distribution 

with 2 degrees of freedom. The values of β1 and γ1 such that 

 form a joint (1 − α) confidence region 

for β1 and γ1, where  is the (1 − α) 100th percentile of the chi-squared distribution with 

2 degrees of freedom.

Define  and  A multiple testing procedure with an overall type I error 

of α is to reject H0 if |Z| ≥ c and reject  if , where c satisfies the equation

(4)
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We evaluate this probability through multivariate normal integration, treating  as 

bivariate zero-mean normal with unit variances and covariance . The 

confidence intervals for β1 and γ1 based on c have the joint coverage probability of (1 − α).

Remark 2

We have implicitly assumed that the overall type I error is split equally between the two 

comparisons. One may spend more type I error on one hypothesis than the other by using 

different critical values for Z and  as long as the overall rejection probability satisfies 

equation (4).

Remark 3

We have assumed that the primary analysis involves two treatment comparisons. However, 

the aforementioned joint inference procedures can be easily extended to three or more 

comparisons since the correlation matrix is determined by the pairwise correlations.

We now consider the special case of treatment comparisons without covariate adjustment. 

For the first comparison, we use the stratified (weighted) log-rank statistic

where  and Qk(·) is a possibly data-

dependent weight function. The variance of U is estimated by

Let and  be the values of U and V, respectively, for the second comparison. For the 

unweighted log-rank statistics (i.e., Qk(·) = 1), U = U(0) and , such that the 

covariance between U and  can be estimated by R(0, 0). For non-constant weight 

functions, we replace Δkj and Δkl in (3) by  and , respectively, 

before evaluating R(0, 0). Let Z = U/V1/2 and . Under H0 and ,  is 

approximately bivariate zero-mean normal with unit variances and covariance 

. This bivariate normal distribution can be used to determine the critical 

value c in equation (4).

It is desirable to determine the critical value c analytically, especially in the design stage. 

Suppose that the treatments do not affect the survival time or censoring time and that the 

treatment assignment ratios are 1:1 for both A versus  and B versus . We derive in the 

Appendix the actual values of the correlation between U and  under various scenarios. 
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Specifically, for assessing the overall effect of A and the simple effect of AB, the correlation 

is approximately . It then follows from equation (4) that c ≈ 2.1782 for α = 0.05. Thus, 

the overall type I error rate will be 0.05 if we use the nominal significance level of 0.0294 

for each of the two tests. By contrast, the commonly used Bonferroni correction would entail 

the nominal significance level of 0.025, which is > 15% smaller than 0.0294.

Remark 4

Slud (1994) considered the PH model: , where IA and 

IB are indicators for treatments A and B, respectively. He obtained a closed-form expression 

for the covariance matrix of the maximum partial likelihood estimators of (β1, β2, β3) under 

simplifying conditions. Note that β1 and β2 correspond to the simple effects of A and B, 

respectively, while β3 corresponds to the interaction between A and B.

The knowledge of the critical value for each test is very useful when designing a factorial 

study. After the study is completed, we can obtain a more accurate value of c by empirically 

estimating the correlation of U and  from the observed data, although the value of c 
calculated at the design stage is often accurate enough for practical purposes.

3. Simulation Studies

We conducted simulation studies to assess the performance of the proposed methods. We let 

the total sample size n range from 150 to 900 and randomly assigned subjects to A versus 

with a 1:1 or 2:1 ratio and to B versus  with a 1:1 ratio. We generated the survival time T 
from the standard exponential distribution and the censoring time C from the uniform (0, 

1.6) distribution such that the censoring rate is approximately 50%. We focused on the 

estimation of correlation for two sets of comparisons: (1) the overall effect of A and the 

simple effect of AB, and (2) the simple effect of A and the simple effect of AB. We 

investigated the accuracy of the proposed correlation estimators between the two log-rank 

statistics or the two maximum partial likelihood estimators. We considered both the 

unweighted log-rank test and the weighted log-rank test with the Kaplan-Meier estimator as 

the weight function.

We have shown in the Appendix that, under the treatment assignment ratios of 1:1 for A 
versus  and B versus , the correlation between the two log-rank statistics or the two 

maximum partial likelihood estimators for assessing the overall effect of A and the simple 

effect of AB is asymptotically  and the correlation for assessing the simple 

effect of A and the simple effect of AB is asymptotically 1/2. By extending the arguments 

given in the Appendix, we can show that these two correlations are  and 2/3, 

respectively, when the treatment assignment ratio for A versus  is changed to 2:1 while that 

of B versus  remains at 1:1.

The results of the simulation studies are summarized in Table 3. For both the log-rank 

statistics and the maximum partial likelihood estimators, the empirical correlations are close 

to the aforementioned theoretical values. The means of the correlation estimators are slightly 
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below the empirical values for small n but approach the empirical values as n increases. 

Thus, the proposed correlation estimators are accurate enough for practical use.

4. COMBINE Study

Alcohol dependence is a leading preventable cause of morbidity and mortality and a major 

contributor to health care costs (Anton et al., 2006). Most patients with alcohol use disorders 

are never treated in primary care settings and do not receive specialty care. Although 

naltrexone was approved to treat alcoholism, evidence of its efficacy was based on small 

single-site studies using specialist models of treatment. It was of interest whether naltrexone 

is efficacious without specialist intervention and whether its efficacy can be improved by 

adding behavior therapy.

The COMBINE study was designed to assess the efficacy of naltrexone, with or without 

CBI, in treating alcoholism. After baseline assessment and attainment of 4 days of 

abstinence, 1,226 eligible alcohol-dependent individuals were randomly assigned to medical 

management with 16 weeks of naltrexone (100 mg daily) or placebo and were also randomly 

selected to receive CBI. The protocol specified percentage of days abstinent and time to first 

heavy drinking day (≥ 5 standard drinks per day for men, ≥ 4 for women) as two co-primary 

endpoints. Baseline percentage of days abstinent (within 30 days prior to the participant’s 

last drink) and research site were prespecified covariates for both the linear and PH models. 

A Bonferroni-corrected significance level of 0.025 was set a priori to adjust for the two co-

primary endpoints.

It is particularly important to know whether the sole act of taking naltrexone is effective 

given that most problem drinkers are seen in health care settings rather than in specialist 

treatment programs. It is also of interest whether efficacy can be improved by combining 

naltrexone with CBI. To assess the efficacy of naltrexone, we may combine the evidence 

between those who receive CBI and those who do not receive CBI or just focus on the latter 

group. Thus, we consider the overall effect of naltrexone, the simple effect of naltrexone, 

and the simple effect of naltrexone plus CBI.

Table 4 displays the results of the three comparisons. The correlation matrix for the three 

estimates of the log hazard ratios is

To control the overall type I error at the prespecified level of 0.025, the critical value for the 

three tests is approximately 2.573. Thus, the simple effect of naltrexone is significant 

whereas the overall effect of naltrexone and the simple effect of naltrexone plus CBI are not. 

By contrast, the Bonferroni threshold for the three p-values is 0.025/3 ≈ 0.0083, which 

implies that none of the three tests would be significant.
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The Kaplan-Meier curves shown in Figure 1 help to explain the results reported in Table 4. 

The use of naltrexone without CBI has the lowest likelihood of relapse. The combination 

therapy of naltrexone plus CBI is considerably less efficacious than the sole use of 

naltrexone. Thus, the overall effect of naltrexone is less significant than its simple effect. 

The difference between the estimates of the simple and overall effects is 0.161, with an 

estimated standard error of 0.10. The conclusion that the sole act of taking naltrexone is the 

most efficacious intervention has important clinical implications.

5. Discussion

The 2 × 2 factorial design allows one to answer multiple questions about two treatments 

within the same study. If the effects of one treatment are similar among patients who receive 

the other treatment and those who do not, then the 2 × 2 design will be efficient; otherwise, 

the design will reveal the complicated truth (Peto, 1978). In the COMBINE study, the effect 

of the sole use of naltrexone would have been estimated with more precision had we omitted 

CBI from the design. The factorial design, however, provided us with the opportunity to 

answer the question about the efficacy of combination therapy and would have provided 

high power to assess the overall effect of naltrexone had the effects of naltrexone been 

similar among patients who did or did not receive CBI.

Some literature reserves the term “factorial designs” for trials where A is tested against 

placebo stratifying by the level of B and B is tested against placebo stratifying by the level 

of A. We have defined factorial designs by the structure of the design — i.e., subjects 

randomly assigned to all combinations — regardless of the planned inference strategy, 

although we have focused on factorial designs that involve at least one stratified comparison.

Under factorial designs, which comparisons should be subject to type I error correction may 

be uncertain or controversial. In general, the decision depends on particular aspects of a trial, 

such as how scientifically distinct the comparisons are, whether they use the same endpoint, 

whether more than one primary hypothesis relates to the use of a single investigational 

treatment, and how regulatory agencies view the strategy of study sponsors. In the APOLLO 

trial, regulatory input was received indicating that control of the type I error across the 

study’s two primary hypotheses was required.

The 2×2 factorial design can be extended to the 3×3 design if each factor has three levels or 

to the 2 × 2 × 2 design if there are three factors of two levels each. The COMBINE study 

actually employed a 2 × 2 × 2 design to include a second pill, acamprosate (3 g daily), which 

turned out to be totally ineffective. (For the purposes of illustrating a 2 × 2 design, we did 

not consider the use of acamprosate in this paper.) Our general covariance formulas can be 

applied to any factorial design, and the arguments given in the second and third paragraphs 

of the Appendix can be used to obtain the specific expressions for the correlations under 

similar conditions.

For simplicity, we restricted our formulas to time-independent covariates. The proposed 

methods can be extended to time-dependent covariates in a straightforward manner. 

Specifically, we replace Xkj in model (1) and in  by Xkj(t), replace Xkj in L(β) and 
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U(β) and in the first term of Wkj(β) given in (3) by , and replace Xkj in the second 

term of Wkj(β) by .

In some factorial studies, there are multiple primary endpoints. As mentioned in the previous 

section, there were two co-primary endpoints in the COMBINE study. Because we 

approximated the partial likelihood score function by a sum of independent terms, the joint 

distribution of test statistics for any two endpoints follows from the multivariate central limit 

theorem. Had we accounted for the correlation between the two endpoints in the COMBINE 

study, we would have been able to use a less stringent nominal significance level than the 

Bonferroni threshold of 0.025 for each endpoint and thus to make a stronger claim about the 

efficacy of naltrexone.

The main contribution of this work lies in the derivation of the correlation between two 

treatment comparisons with overlapping subjects. The correlation is determined by the 

“influence function” wkj, which is the same ingredient for calculating the covariance matrix 

of the maximum partial likelihood estimators for multivariate failure time data (Wei et al., 

1989). One can obtain Wkj in R, SAS, or STATA and perform the remaining calculations 

according to the formulas provided in Section 2. We have posted on our website (http://

dlin.web.unc.edu/software/) a software program that estimates the correlation between any 

two (possibly stratified) log-rank statistics or two maximum partial likelihood estimators 

under (possibly stratified) PH models from the raw data. The actual values of the 

correlations for various scenarios derived in the Appendix are useful in the design stage and 

may also be accurate enough for the analysis of actual data.

There is some literature on closely related problems. Pocock et al. (1987) derived the 

correlation between the logrank test and a test of proportions in the context of multiple 

endpoints. Follmann et al. (1994) considered group sequential tests for multi-armed clinical 

trials. We can easily extend our work to the group sequential setting because we have 

approximated our statistics by sums of independent terms.
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Appendix: Derivation of Theoretical Results

To derive the theoretical results, we adopt the counting-process martingale formulation. 

Write  and . Define
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It is easy to show that

By the Lenglart inequality (Andersen and Gill, 1982), U(β) is asymptotically equivalent to

(A.1)

where

(A.2)

and ek(β, t) is the limit of . Likewise,  is asymptotically 

equivalent to

(A.3)

where  is analogous to wkj(β). Both (A.1) and (A.3) are sums of independent zero-

mean random vectors. Thus, it follows from the multivariate central limit theorem that the 

joint distribution of U(β) and  is asymptotically multivariate zero-mean normal with 

covariance matrix , where wi(β) and  are, respectively, the values 

of w(β) and  for the the ith subject in the overlapping set.

We now focus on the (weighted) log-rank statistics for testing the null hypotheses H0 : β = 0 

and . It is easy to see that E1(t) ≈ E2(t) for all t under H0 and  provided that the 

treatment does not differentially affect the censoring distribution between the two strata. 

Suppose that the same type of weight function is used for the two strata, such that Q1(t) ≈ 
Q2(t). Thus, we can (approximately) express U as

where , and . Likewise,
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where , and . Suppose that the 

stratification variable does not affect the survival time such that 

 for all t under H0 and . (This is a reasonable 

approximation when designing a trial although it is theoretically possible, for example, for 

treatment B to have a non-zero effect even when treatment A and treatment AB have no 

effect.) Then simple algebraic manipulation yields

and

where

and λ0(·) is the common hazard function.

By the martingale central limit theorem (Andersen and Gill, 1982), U and  are 

asymptotically bivariate zero-mean normal. In addition,

and
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Assume that the treatment assignment ratios are 1:1 for both A versus  and B versus . 

Assume also that the treatments are independent of the survival time and censoring time. 

Then  for all t. We derive below the correlation of U and  under various 

scenarios of interest.

• If U and  pertain to the overall effect of A and the simple effect of A or 

AB, then  and  for i = 1, …, n0. Thus, 

. It follows that 

, which is  since 

.

• If U and  pertain to the overall effects of A and B, then . 

Because Xi and  are independent, we conclude that .

• If U and  pertain to two simple effects, then  and  for i 

= 1, …, n0. Thus, . It follows that 

.
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Figure 1. 
Kaplan-Meier estimates of the proportion of patients without heaving drinking for the four 

treatment groups in the COMBINE study.
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Table 1

The Factorial Design of the COMBINE Study

Naltrexone 100 mg
+

CBI
(312 patients)

Placebo for naltrexone
+

CBI
(307 patients)

Naltrexone 100 mg
+

No CBI
(302 patients)

Placebo for naltrexone
+

No CBI
(305 patients)

Biometrics. Author manuscript; available in PMC 2016 December 27.
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Table 2

The Factorial Design of the APOLLO Trial

Aliskiren 300 mg
+

Additional antihypertensive drug
(amlodipine 5 mg or HCTZ 25 mg)

(433 patients)

Placebo for aliskiren
+

Additional antihypertensive drug
(amlodipine 5 mg or HCTZ 25 mg)

(447 patients)

Aliskiren 300 mg
+

Placebo for additional antihypertensive drug
(427 patients)

Placebo for aliskiren
+

Placebo for additional antihypertensive drug
(452 patients)

Biometrics. Author manuscript; available in PMC 2016 December 27.
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Table 4

Evaluation of Naltrexone With or Without CBI in the COMBINE Study

Treatment Comparison Estimate Std Error Z-Stat p-value

Overall effect of naltrexone −0.085 0.0685 −1.237 0.216

Simple effect of naltrexone −0.252 0.0979 −2.573 0.010

Simple effect of naltrexone + CBI −0.091 0.0955 −0.956 0.339
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