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Summary

The proportional hazards model (PH) is currently the most popular regression model for analyzing 

time-to-event data. Despite its popularity, the analysis of interval-censored data under the PH 

model can be challenging using many available techniques. This paper presents a new method for 

analyzing interval-censored data under the PH model. The proposed approach uses a monotone 

spline representation to approximate the unknown nondecreasing cumulative baseline hazard 

function. Formulating the PH model in this fashion results in a finite number of parameters to 

estimate while maintaining substantial modeling flexibility. A novel expectation-maximization 

(EM) algorithm is developed for finding the maximum likelihood estimates of the parameters. The 

derivation of the EM algorithm relies on a two-stage data augmentation involving latent Poisson 

random variables. The resulting algorithm is easy to implement, robust to initialization, enjoys 

quick convergence, and provides closed-form variance estimates. The performance of the proposed 

regression methodology is evaluated through a simulation study, and is further illustrated using 

data from a large population-based randomized trial designed and sponsored by the United States 

National Cancer Institute.
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1. Introduction

Originally proposed by Cox (1972), the proportional hazards (PH) model has been widely 

used for the purposes of analyzing time-to-event data, with its gain in popularity being 

attributed to its interpretability and ability to model right-censored data. Unfortunately, the 

development of techniques that allow for the analysis of interval-censored data under 

semiparametric variants of this model can prove to be quite challenging. These difficulties 

are encountered because of the underlying structure of interval-censored data; i.e., the event 

times of interest are never observed. In particular, data of this form typically consist of left-, 

right-, and interval-censored observations corresponding to the situation in which the event 

times occur before the first, after the last, or between two observation times, respectively. 

Interval-censored data is ubiquitous among social, behavioral, epidemiological, and medical 

studies (Sun, 2006), and therefore modeling techniques that allow for the valid analysis of 

interval-censored data need to be developed, along with the necessary statistical software to 

carry out these analyses.

The regression analysis of interval-censored data under the PH model is a well studied 

problem. This problem was first addressed by Finkelstein (1986), who proposed a method of 

jointly estimating the regression parameters and the baseline hazard function using a 

Newton-Raphson based algorithm. Focusing solely on the estimation of the regression 

parameters, Satten (1996) proposed a marginal likelihood approach and Goggins et al. 

(1998) developed a Monte Carlo expectation maximization algorithm. Even though these 

methods avoid estimating the baseline hazard function they remain computationally 

expensive because they require the imputation of all possible rankings of the failure times 

that are consistent to the observed data. For interval-censored data without covariates, 

Turnbull (1976) developed an algorithm based on the idea of self consistency, Groeneboom 

and Wellner (1992) presented an iterative convex minorant algorithm, and Zhang and 

Jamshidian (2004) proposed a generalization of the Rosen algorithm (Rosen, 1960) for 

efficiently computing the nonparametric maximum likelihood estimate of the distribution 

function of the event/failure time. Pan (1999) reformulated the iterative convex minorant 

algorithm proposed by Groeneboom and Wellner (1992) as a generalized gradient projection 

method which allowed for the incorporation of regression parameters. Pan (2000) developed 

a semiparametric alternative, based on multiple imputation, to the existing nonparametric 

methods. Goeteghebeur and Ryan (2000) developed an expectation-maximization (EM) 

algorithm with an M-step that updates estimates of the regression parameters by maximizing 

a Cox partial likelihood and estimates the baseline hazard function using the Breslow 

estimator. Betensky et al. (2002) presented local likelihood techniques for fitting the PH 

model which results in a smooth and interpretable estimate of the baseline hazard as well as 

an assessment of global covariate effects. Using penalized likelihood methods Cai and 

Betensky (2003) modeled the log-hazard function with a piecewise-linear spline. Zhang, 

Hua, and Huang (2010) extended the earlier work of Zhang and Jamshidian (2004) by 

allowing for covariate effects and by using monotone B-splines to model the cumulative 

baseline hazard function. Shao et al. (2014) proposed a semiparametric varying-coefficient 

model for interval-censored data with a cured proportion. For a comprehensive review of the 
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recent work relating to the analysis of interval-censored data, see Sun (2006), Zhang and 

Sun (2010), and Li and Ma (2013).

The vast majority of the aforementioned work can be either too computationally intensive or 

complex for practitioners to implement. Consequently, many study investigators tend to 

ignore interval-censoring and instead opt to use the midpoint or the right end point of the 

observed interval as the exact failure time for those left- and interval-censored observations 

and then adopt the well-established partial likelihood method using coxph in R or PHREG in 

SAS (Gómez et al. 2009; Allison, 2010). Though common, this approach may result in 

biased estimation and inference as has been demonstrated by Rucker and Messerer (1988), 

Odell, Anderson, and D'Agostino (1992), among many others.

Most existing statistical packages that conduct regression analysis of interval-censored data 

primarily focus on parametric models, such as LIFEREG in SAS and survreg in R. To date 

there exist only a few publicly available packages that perform semiparametric analysis of 

interval-censored data. The R package intcox (Henschel and Mansmann, 2013) adopts the 

generalized gradient projection method of Pan (1999), but does not provide variance 

estimates and often obtains biased parameter estimates (Pan 1999; Gómez et al. 2009).

Given the omnipresent nature of interval-censored data, there exists a pressing need to 

develop flexible, accurate, computationally efficient, and easy-to-implement statistical 

methods for regression analysis of data of this form. To this end, a new method for analyzing 

interval-censored data under the PH model is presented herein. The proposed approach 

meets all of the aforementioned criteria. The methodological details of the proposed 

technique are provided in Section 2. These details include the use of monotone splines for 

approximating the cumulative baseline hazards function in the PH model, a two-stage data 

augmentation process that leads to the development of an EM algorithm that can be used to 

find the maximum likelihood estimates of all unknown parameters, and closed-form 

expressions of the asymptotic variance estimates. The performance of the proposed approach 

is illustrated in Section 3 through an extensive simulation study. In Section 4 the proposed 

method is used to analyze data from a large population-based randomized trial designed and 

sponsored by the United States National Cancer Institute. Section 5 provides a summary 

discussion. As a companion to this work, an R package that implements the proposed 

methodology has been developed and is freely available from the Comprehensive R Archive 

Network (CRAN).

2. The proposed method

2.1 Data, model, and observed likelihood

Let F(·|x) denote the cumulative distribution function (CDF) of the event/failure time of 

interest given the covariate vector x. Under the PH model the failure time distribution for 

individuals with covariates xi is given by , where xi = 

(xi1, …, xip)' is a p × 1 vector of time-independent covariates, β = (β1, …, βp)' is the 

corresponding vector of regression parameters, and Λ0(·) is the cumulative baseline hazard 

function. It is assumed throughout that, conditional on the covariates, the failure time is 

independent of the observational process. This assumption is common in the survival 
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literature; see e.g., Liu and Shen (2009) and Zhang and Sun (2010) among others. Under this 

assumption, the likelihood given the observed data  is

where Li and Ri denote the left and right bounds of the observed interval for the ith subject, 

respectively, with Li < Ri. Note, Li = 0 (Ri = ∞) indicates that the ith subject's failure time is 

left (right) censored. Distinguishing between the three types of censoring, one can rewrite 

the observed data likelihood in the following form

(1)

where δi1, δi2, and δi3 are censoring indicators for the ith subject denoting left-, interval-, and 

right-censoring, respectively, subject to the constraint δi1 + δi2 + δi3 = 1.

2.2 Modeling Λ0(·) with monotone splines

The unknown parameters in the observed data likelihood include the regression coefficients 

and the cumulative baseline hazard function. It is well known that for right-censored data, 

partial likelihood methods allow one to consistently estimate β, without having to estimate 

Λ0(·), under the PH model. However, partial likelihood techniques are not well suited for 

interval-censored data. Moreover, the use of counting processes and martingale theory, 

which work elegantly for right-censored data, do not appear to be directly applicable in the 

analysis of interval-censored data due to its complex structure (Sun, 2006).

Estimating Λ0(·) is challenging from both a theoretical and computational perspective 

because of its infinite dimension. To reduce the number of unknown parameters which need 

to be estimated while also maintaining adequate modeling flexibility, in this paper Λ0(·) is 

modeled using I-splines (Ramsay, 1988), following the earlier work of Cai, Lin, and Wang 

(2011) and McMahan, Wang, and Tebbs (2013). This approach leads to the following 

representation

(2)

where the bl(·)'s are integrated spline basis functions, each of which is nondecreasing from 0 

to 1, and the γl's are nonnegative coefficients which ensure that Λ0(·) is nondecreasing.

To construct the integrated spline basis functions, one needs to specify the degree of the 

basis splines and choose an increasing sequence of knots within a time range (Ramsay, 

1988). The degree controls the overall smoothness of the basis functions; e.g., specifying 

degree to be 1, 2, or 3 corresponds to the use of linear, quadratic, or cubic basis functions, 
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respectively. The placement of knots determines the overall modeling flexibility, with more 

knots in a region equating to greater modeling flexibility in that region. Once the degree and 

placement of knots are specified, the k spline basis functions are fully determined, where k 
is equal to the number of interior knots plus the degree (Ramsay, 1988). The calculation of 

these basis functions is a simple task and an R function is available in the companion R 

package (see Section 5 below).

In general, the specification of the degree and knot placement has the potential to influence 

parameter estimation, more so for the former rather than the latter. Larger knot sets generally 

results in attaining more modeling flexibility at the cost of additional computational burdens 

and potential over-fitting problems; for further discussion see Cai et al. (2011) and Lin and 

Wang (2010). Ramsay (1988) recommended using a small number of strategically placed 

interior knots, e.g., placing knots at the median or quartiles. Using penalized Bayesian 

methods, Lin and Wang (2010), Wang and Dunson (2011), and Wang and Lin (2011) 

recommended using approximately 10∼30 equally spaced knots for their application of 

monotone splines under various survival models for analyzing interval-censored data. When 

the observation times are sparse in certain regions of the observed time range, the former 

strategy may be more appropriate when compared to the latter, but the findings presented 

herein suggest that both knot placement schemes perform well in application; e.g., see 

Sections 3 and 4. Consequently, following the recommendations of the aforementioned 

authors, one could use either equally spaced knots within the observed time range or knots 

placed at the quantiles of the finite end points of the observed intervals. Further, adequate 

smoothness can usually be attained by specifying the degree of the basis splines to be either 

2 or 3. For a particular data set, the proposed method should be applied with several different 

knot placement schemes, to include varying the number of knots, thus resulting in several 

candidate models. The final model can then be chosen according to a model selection 

criteria, e.g., Akaike's information criterion (AIC). Similar strategies for determining knot 

placement are commonly used in the literature; e.g., see Rosenberg (1995) and McMahan et 

al. (2013).

2.3 Data augmentation for the EM algorithm

Section 2.4 presents an EM algorithm that can be used to find the maximum likelihood 

estimate of θ, where θ = (β′, γ′) and γ = (γ1, …, γk)'. The derivation of the algorithm is based 

on a two-stage data augmentation involving latent Poisson random variables that exploits the 

relationship between the PH model and a nonhomogeneous Poisson process.

In what follows, motivation and justification for the proposed data augmentation is provided. 

Consider a nonhomogeneous Poisson process N(t) having a cumulative intensity function 

Λ0(t) exp(x′β). Let T denote the time of the first jump of the counting process; i.e., T = 

inf{t : N(t) > 0}. To show that T indeed follows the PH model with a cumulative distribution 

function F(t|x) = 1 – exp{–Λ0(t) exp(x′β)}, note for any t that pr(T > t) = pr{N(t) = 0} = 

exp{–Λ0(t) exp (x′β)} = 1 – F(t|x) because N(t) is a Poisson random variable with mean 

parameter Λ0(t) exp(x′β). Using this relationship, an augmented data likelihood is 

constructed below, using a latent nonhomogeneous Poisson process.
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Let Ni(t) denote the latent Poisson process for subject i, which has cumulative intensity 

function , for i = 1, …, n. Define Zi = Ni(ti1), where ti1 = Ri1(δi1=1)+Li1(δi1=0). 

Similarly, when δi1 = 0 define Wi = Ni(ti2) – Ni(ti1), where ti2 = Ri1(δi2=1) + Li1(δi3=1). Thus, 

Zi and Wi are Poisson random variables with mean parameters  and 

, respectively. Further, note that Zi and Wi are independent 

when δi1 = 0. Under this construction, if Ti is left-censored then 

. If Ti is 

interval-censored, pr(ti1 < Ti ≤ ti2) = pr{Ni(ti1) = 0, Ni(ti2) > 0} = pr(Zi = 0, Wi > 0) = F(Ri|

xi) – F(Li|xi). Similarly, it is easy to show in the case of right-censoring that

Based on the latent variables Zi and Wi, the augmented likelihood can be expressed as

(3)

where A(·) denotes the probability mass function associated with the random variable A. It 

is easy to see that one can obtain (1) by integrating the  and  out of (3).

To exploit the monotone spline representation of Λ0(·) in (2), a second stage of data 

augmentation is considered. In particular, for each i, both Zi and Wi are decomposed as sum 

of k independent Poisson random variables,  and , where Zil and 

Wil, for l = 1, …, k, are Poisson random variables having mean parameters 

and , respectively. The augmented likelihood associated with 

the second level of data augmentation is given by

(4)

where Zi > 0 if δi1 = 1, Zi = 0 and Wi > 0 if δi2 = 1, Zi = 0 and Wi = 0 if δi3 = 1, 

, and . Again, it is relatively easy to see that by integrating the 

 and  out of (4) one can obtain (3). Consequently, the augmented data likelihood (4) 

can be viewed as the complete data likelihood with all the , , , and  being 

regarded as missing data.

2.4 The EM algorithm

The derivation of the EM algorithm begins by considering the expectation of the logarithm 

of the complete data likelihood (4) with respect to the latent variables ( , , , and 
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) conditional on the observed data  and the current parameter estimate θ(d) = (β(d)′, 

γ(d)′)'. This yields Q(θ, θ(d)) = E[log{Lc(θ)}| , θ(d)], which can be expressed as

(5)

where L(θ(d)) is a function of θ(d) but is free of θ. The derivation of (5) is provided in Web 

Appendix A. Noting that the conditional distribution of Zil (Wil) given Zi (Wi) is binomial, 

and by applying the law of iterated expectations, one can obtain the following conditional 

expectations

where . Similarly, it can be shown based on the augmented likelihood 

(3) that Zi (Wi) conditionally follows a truncated Poisson distribution given the observed 

data. Therefore, the expected values of Zi and Wi, given  and θ(d), can be expressed as

Note δi3E(Wil| , θ(d)) = 0 for all i and l, and these terms are therefore ignored henceforth.

The next step in the EM algorithm finds θ(d+1) = arg maxθ Q(θ, θ(d)). To this end, consider 

the partial derivatives of Q(θ, θ(d)) with respect to θ, which are given by

Clearly, θ(d+1) is a solution to the system of equations given by ∂Q(θ, θ(d))/∂β = 0 and ∂Q(θ, 

θ(d))/∂γl = 0, for l = 1, …, k. By directly solving ∂Q(θ, θ(d))/∂γl = 0 for γl, a closed-form 

expression for  in terms of β(d+1) and the observed data for each l can be obtained. 

Thus, by replacing γl in ∂Q(θ, θ(d))/∂β = 0 by the expression for , for l = 1, …, k, and 

solving for β one can obtain β(d+1), which then allows for the direct calculation of γ(d+1).

Wang et al. Page 7

Biometrics. Author manuscript; available in PMC 2016 April 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In what follows, the EM algorithm is succinctly summarized. First set d = 0 and initialize 

θ(d) = (β(d)′, γ(d)′)'. Then repeat the following two steps until convergence:

1. Obtain β(d+1) by solving the following system of p equations

Where

2. Let  and increase d by 1.

Solving the system of equations in the first step of the algorithm can be accomplished using 

standard root finding routines, available in practically all existing statistical software 

packages. The second step of the algorithm is a simple updating of γ(d) in closed form. Thus, 

the implementation of the EM algorithm is straightforward and computationally inexpensive. 

Moreover, it can be shown that θ(d+1) is the unique global maximizer of Q(θ, θ(d)); a proof of 

this assertion is provided in Web Appendix B. Let θ̂ = (β̂′, γ̂′)' denote the value of θ(d) at 

convergence of the EM algorithm. It can be shown that θ̂ solves the score equations based on 

the observed likelihood (1).

2.5 Asymptotic properties and variance estimation

In this section the asymptotic properties of the proposed estimator are discussed. These 

properties could be studied under two different assumptions: (S1) the number and position 

of the knots are known a priori and do not depend on the sample size n; or (S2) that the 

cardinality of the knot set grows with the sample size (as in Zhang et al. 2010). Proceeding 

under (S1) implicitly implies that Λ0(·) can be expressed as a linear combination of 

integrated spline basis functions, whereas (S2) allows for the consistent estimation of Λ0(·) 

under less stringent assumptions. Under (S1) the general theory of maximum likelihood 

estimation provides, under the standard regularity conditions, that, as n → ∞,

where (θ) denotes the usual Fisher information matrix. This result holds under the 

assumption that Λ0(·) can be expressed as (2). If this assumption is in fact invalid, an 

asymptotic bias may be introduced, although through numerical studies it appears that this 

bias can be attenuated, and often rendered negligible, when an adequate number of knots is 

used, e.g., see Section 3.
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To derive an estimator of −1(θ), Louis's method (Louis, 1982) is adopted. The estimated 

variance-covariance matrix of θ̂ is subsequently given by I−1(θ̂), where

(6)

The details pertaining to the calculation of the two terms on the right hand side of (6) are 

provided, in closed-form, in Web Appendix C. These expressions make the variance 

estimates easy to compute, which is another appealing characteristic of the proposed 

approach.

3. Simulation study

A series of simulation studies were conducted to assess the characteristics and performance 

of the proposed methodology across a variety of settings. In particular, three studies were 

performed which considered (I) low, (II) high, and (III) medium right-censoring rates.

3.1 Simulation study I

This study considers the following true distribution of the failure time Ti,

(7)

where xi = (xi1, xi2)', Λ0(t) = log(1 + t) + t1/2, xi1 ∼ Bernoulli(0.5), and xi2 ∼ N(0, 0.52), for 

i = 1, …, n. The sample size was specified to be n = 200 and all possible combinations of β1 

∈ {−1, 0, 1} and β2 ∈ {−1, 0, 1} were considered, resulting in 9 parameter configurations. 

Each Ti was generated by solving F(t|xi) = ui numerically, where ui ∼ (0,1). The number of 

observation times for each subject was generated according to 1 plus a Poisson random 

variable having mean parameter 6. Proceeding in this fashion ensured that each subject has 

at least one observation time, but allowed the number of observation times to vary from 

subject to subject. The gap times between adjacent observations were sampled according to 

an exponential distribution with mean 0.5. Subsequently, the observation times were given 

by the cumulative sums of the gap times. The observed interval for the ith subject was then 

determined to be the two consecutive observation times whose interval contained Ti, with 

the convention that if Ti was less (greater) than the smallest (largest) observation time then 

the lower (upper) bound of the observed interval was 0 (∞). For the purposes of this study, 

500 data sets of the form  were generated for each considered parameter 

configuration. The average rate of right-censoring varied from 3% to 21% across all 

configurations; see Table 1.

The cumulative baseline hazard function was modeled using basis splines having degree 3 

and a knot set having cardinality 5 on the interval (tmin, tmax), where tmin and tmax are the 

minimum and maximum values of the set of observed interval end points excluding 0 and 

∞. The interior knots were placed at the first, second, and third quartiles of the set of 

interval end points falling between tmin and tmax. A similar simulation study (results not 

shown) considering equally spaced knots over the interval (tmin, tmax) was also performed, 
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and it resulted in the same conclusions presented herein. The initial values for the EM 

algorithm were specified to be , although numerous additional 

simulation studies (results not shown) demonstrated that the algorithm is relatively robust, in 

terms of the accuracy of parameter estimation and convergence rate, to the choice of θ(0). 

Convergence of the EM algorithm was declared when the maximum absolute change 

between successive estimates of θ was less than 0.005; i.e., , 

where  is the hth element of θ(d).

For purposes of comparisons, two competing techniques were implemented. The first 

technique fits the PH model via the ICM-algorithm (ICM) of Pan (1999), and was 

implemented using the intcox function in R (Henschel and Mansmann, 2013). The second 

technique, proposed by Zhang et al. (2010), makes use of a spline-based sieve 

semiparametric maximum likelihood (SML) approach to fit the PH model to interval-

censored data, with Λ0(·) being approximated through the use of monotone B-splines. These 

comparisons were chosen for a variety of reasons. In particular, ICM constitutes the only 

frequentist based approach that has a companion statistical package specifically designed for 

analyzing interval-censored data under the semiparametric PH model, while SML is the 

most recent contribution to the literature that is directly comparable with the proposed 

methodology. For each modeling technique, Table 1 summarizes the empirical bias and 

sample standard deviation of the 500 point estimates, the average of the 500 estimated 

standard errors, and the empirical coverage probability associated with 95% Wald 

confidence intervals for each of the regression parameters, as well as the average model 

fitting times.

From the results presented in Table 1, first note that the regression estimates obtained by the 

proposed method are all close to their corresponding true parameter values. Secondly, the 

sample standard deviation and the averaged standard errors of the 500 estimates are in 

agreement, indicating that the asymptotic approximation of the variance-covariance matrix 

obtained from Louis's method performs well for finite samples. Lastly, the empirical 

coverage probabilities for the confidence intervals for the regression parameters are 

predominantly at their nominal level, suggesting that the use of Wald-type inference may be 

appropriate for evaluating estimates obtained by the EM algorithm.

Comparing the proposed methodology to the two competing techniques, one will note that 

both in terms of parameter estimation and inferential characteristics the proposed 

methodology performed as well, if not better, than SML, across all considered 

configurations. In contrast, ICM yielded biased point estimates and does not provide 

estimated standard errors, as was pointed out in Section 1. These findings are congruous 

with the results presented in Pan (1999) regarding the performance of ICM. Though similar 

in terms of estimation and inference, the discernible advantage of the proposed methodology 

over that of SML arises in the model fitting times; i.e., SML took on average 10 to 25 times 

longer to complete model fitting when compared to the proposed methodology. This 

advantage could render the proposed approach preferable when analyzing larger data sets, as 

the model fitting times for both the proposed EM algorithm and SML increase with the 

sample size.
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3.2 Simulation study II

The following simulation study assesses the performance of the proposed methodology 

under high right-censoring rates. In this study the failure time model in (7) was again 

considered with Λ0(t) = t/10 – log(1 + t/10), xi1 ∼ Bernoulli(0.5), and xi2 ∼ N(0, 0.252), for 

i = 1, …, n. The observational process described in Section 3.1 was again used, with the 

number of observation times being determined by 1 plus a Poisson random variable having 

mean parameter 1, and the gap times between adjacent observations were sampled according 

to an exponential distribution with mean 4. For each parameter configuration, 500 data sets 

were generated with each containing n observations, where n ∈ {200, 2000}. The average 

right-censoring rate varied from 71% to 85% across the 9 parameter configurations; see 

Table 2.

Table 2 summarizes the estimates of β obtained by the EM algorithm and the two competing 

methods, as well as the average model fitting times when n = 200. Web Table 1 provides the 

corresponding results when n = 2000. This summary again illustrates that the proposed 

technique performs well; i.e., the EM algorithm obtains estimates that exhibit little if any 

evidence of bias, results in accurate variance estimates, and produces confidence intervals 

that attain their nominal coverage probability. In contrast, SML encounters numerical 

instabilities which results in the algorithm terminating due to numerical error for a 

significant number (approximately 5%-10%) of the considered data sets, and this feature 

persists for larger values of n; see Web Table 1. For the data sets for which numerical 

instability was not encountered, SML continues to provide accurate estimates and reliable 

inference. In terms of computational burden the proposed method is again superior when 

compared to SML, in this setting. The estimates obtained from ICM again exhibit 

considerable bias.

3.3 Simulation summary

The results of the simulation studies presented in Section 3.1 and 3.2 demonstrate that the 

proposed methodology can be used to efficiently, accurately, and reliably analyze interval-

censored data across a broad spectrum of censoring rates. The same cannot always be said 

for the two competing procedures. In addition to the simulation results presented herein, a 

summary of the estimation of the baseline cumulative distribution function F0, and 

consequently the estimation of the cumulative baseline hazard function, is provided in Web 

Table 2, across all considered simulation configurations. Briefly, these findings indicate that 

the proposed method provides precise estimates of F0 that are comparable to the estimates 

obtained by SML, and are superior to those resulting from ICM. Further, Web Appendix D 

provides two additional simulation studies: one that considers medium right-censoring rates 

and the other compares the proposed approach and SML in terms of model fitting times for 

larger sample sizes. The results from the former study reinforce the main findings discussed 

in Section 3.1, while the results of the latter study indicate that SML is far more 

computationally burdensome when compared to the proposed method; e.g., for n = 50000 

observations the proposed approach took approximately 1 minute, on average, to complete 

model fitting which was more than 140 times faster than SML; see Web Table 3.
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4. Data application

Sponsored by the United States National Cancer Institute, the Prostate, Lung, Colorectal, 

and Ovarian (PLCO) Cancer Screening Trial was initiated in 1993 in an effort to assess the 

effect of routine screening on cancer-related mortality as well as other relevant secondary 

endpoints. Participants in this population-based randomized trial consisted of men and 

women between the ages of 55 and 74, who had no previous history of any PLCO cancer, 

and were not participating in any other cancer screening and/or primary prevention trials. At 

the time of enrollment, participants were randomized into either the control or intervention 

arm. Participants in the intervention arm received regular screenings for PLCO cancers 

during the first 6 years, and were followed for an additional 7 years. In contrast, participants 

randomized to the control arm were simply followed for 13 years after enrollment. For 

further details about the PLCO Cancer Screening Trial see Andriole et al. (2012). The data 

collected from this study consisted of screening results and various risk factors, e.g., age, 

race, etc.

This analysis considers the prostate cancer screening data collected on male participants in 

the intervention arm. In particular, this data consists of screening and follow up information 

which spans a 10 year period of time. During the first 6 years of this period, participants in 

the intervention arm were screened approximately once a year via a Prostate Specific 

Antigen (PSA) test. If abnormally high PSA levels were detected, indicating the possible 

development of prostate cancer, a prostate biopsy was performed to determine whether or 

not the participant had developed prostate cancer.

The primary focus of this analysis is to assess the association of risk factors with the time 

from randomization until the onset of prostate cancer. Due to the design of the study and the 

nature of prostate cancer, the onset times were not observable but rather were known relative 

to the screening times; i.e., they were interval-censored. In particular, of the 32720 

observations having complete covariate information, 7 (0.02%) were left-censored, 2853 

(8.7%) were interval-censored and 29860 (91.3%) were right-censored. In total, 12 

covariates were considered: age (centered) at randomization; education, with 1 indicating a 

college education; race, with categories Caucasian, African American, and other; obesity, 

with 1 indicating obesity; heart, with 1 indicating presence of heart disease; stroke, with 1 

indicating a previous stroke; diabetes, with 1 indicating diabetic; colitis, with 1 indicating a 

positive status; hepatitis, with 1 indicating a positive status; aspirin, with 1 indicating regular 

use; ibuprofen, with 1 indicating regular use; family history, with 1 indicating that an 

immediate relative had prostate cancer. For a summary of these risk factors see Web Table 4.

To analyze these data using the proposed methods, the cumulative baseline hazard function 

was modeled using basis splines having degree 3 and a candidate knot set consisting of m = 

50 interior knots, which were equally spaced over the time domain, was considered. A 

backward elimination procedure based on AIC (BIC) was used to identify the final model 

which made use of m = 28 (19) interior knots; for a summary and discussion of the model 

fits based on this procedure see Web Appendix E.
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The estimated regression coefficients obtained by the EM algorithm are summarized in 

Table 3 for the two final candidate models. For comparative purposes, the analysis was also 

attempted using SML. In each of the attempted implementations, the SML model fitting 

algorithm either terminated, due to numerical instabilities, or converged to a local extrema 

depending on the parameter initialization; see Web Appendix E for further discussion. In 

contrast, across all considered initializations and interior knot specifications, the proposed 

procedure resulted in practically identical estimates of the regression coefficients and 

inferential conclusions.

The proposed approach identified that race, family history, diabetes, and age were significant 

risk factors associated with the development of prostate cancer, while all other considered 

risk factors were insignificant. In particular, African American, family history, and age were 

found to be positively associated with the hazard of developing prostate cancer, while all 

other significant factors were negatively associated with the hazard of developing prostate 

cancer. Figure 1 provides a plot of the estimated survival function from the EM algorithm, 

when m = 28, at the different levels of race. Also included are the corresponding 

nonparametric estimates of the survival functions which were obtained according to the 

approach of Turnbull (1976). Web Figure 1 provides the analogous results for m = 19. From 

these figures, it appears that the PH model provides a good fit to these data.

5. Discussion

This paper proposes a new method for analyzing general interval-censored data under the 

proportional hazards model. Under a flexible parametric formulation of the PH model, an 

EM algorithm was developed that can be used to find the maximum likelihood estimates of 

all unknown parameters. The key step in deriving the algorithm involves expanding the 

observed data likelihood to a complete data likelihood through a two stage data 

augmentation procedure. This is achieved by linking the failure time under the PH model 

with a latent non-homogeneous Poisson process. The proposed EM algorithm is 

straightforward to implement, enjoys quick convergence, and provides simple closed-form 

variance estimates. A companion R package ICsurv has been developed and is publicly 

available from the CRAN (i.e., http://cran.us.r-project.org/); for further details see Web 

Appendix F. In summary, the proposed method provides an accurate, reliable, and 

computationally efficient approach that can be used to analyze interval-censored data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
PLCO data analysis: Estimates of the survival functions obtained by the proposed method 

(smooth gray curves) and the Turnbull estimates (black step functions) at the different levels 

of race: Caucasian (left panel), African American (center panel), and other (right panel). 

These estimates were obtained by first dividing the 32720 observations into three strata 

based on race. The Turnbull estimates were obtained within each of these strata separately. 

For the PH model, a survival curve was estimated for each observation and these estimates 

were then averaged within each strata providing the depicted estimated survival curve for the 

PH model.
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