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Abstract

Microfabrication technology offers the potential to create biological platforms with customizable 

patterns and surface chemistries, allowing precise control over the biochemical microenvironment 

to which a cell or group of cells is exposed. However, most microfabricated platforms grow cells 

on impermeable surfaces. This report describes the co-fabrication of a micropatterned epoxy 

photoresist film with a chitosan film to create a freestanding array of permeable, hydrogel-

bottomed microwells. These films possess optical properties ideal for microscopy applications, 

and the chitosan layers are semi-permeable with a molecular exclusion of 9.9 ± 2.1 kDa. By 

seeding cells into the microwells, overlaying inert mineral oil, and supplying media via the bottom 

surface, this hybrid film permits cells to be physically isolated from one another but maintained in 

culture for at least 4 days. Arrays co-fabricated using these materials reduce both large-molecular-

weight biochemical crosstalk between cells and mixing of different clonal populations, and will 

enable high-throughput studies of cellular heterogeneity with increased ability to customize 

dynamic interrogations compared to materials in currently available technologies.

1. Introduction

Microfabricated platforms allow the study of biological systems with unparalleled control of 

the physical and chemical microenvironment to which a cell or group of cells is exposed. 

Such technology permits precise customization of the shape, size, and surface chemistry of 

the area used for cell growth [1-4]. By achieving such control, researchers gain the ability to 

interrogate the mechanisms and regulation of fundamental cellular processes and to create 

novel bio-inspired platforms [5-9]. To date, numerous types of microscale platforms have 
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been developed for the high-throughput analysis of cells, but several limitations to these 

technologies exist. Droplet microfluidics can rapidly assay large numbers of isolated cells, 

but long-term culture of cells in droplets is difficult due to reduced delivery of oxygen and 

nutrients [10-11]. In addition, analytical reagents must be pre-loaded into the droplet with 

the cells and analyses subsequent to the initial screening are technically difficult to set up 

[12]. Micropallet or microraft arrays, consisting of a large number of individual pedestal 

elements, can be used as substrates on which cells can be grown. However, biochemical 

crosstalk (in the form of secreted paracrine signaling molecules distributed by the culture 

medium) and cell migration from one pedestal to another can lead to confounded data and 

mixing of clonal cell populations [11, 13]. Additionally, such platforms can be problematic 

for nonadherent cells [11, 14-15]. Microwell arrays can be used to array cells at low density 

into physically separate wells. However, confounding biochemical crosstalk and intermixing 

of clonal cell populations can nonetheless pose a problem for these platforms as well, since 

maintenance of cells beyond several hours necessitates that cells be exposed to a relatively 

large common media reservoir. While certain techniques, such as overlaying a physical 

barrier onto microwells seeded with cells, can reduce biochemical crosstalk and cell 

migration, cell survival and viability can be compromised over the long term as cells quickly 

consume the small quantities of culture media with which they are seeded, a consequence of 

the solid, impermeable substrates, such as PDMS or glass, upon which microwell arrays are 

generally fabricated [16].

Therefore, a platform that allows for user-customized interrogation of discrete numbers of 

cells, isolated so as to ensure the independence of measured responses, and yet still arrayed 

in a fashion that permits high-throughput study, would be a useful tool for cellular analyses. 

Our lab recently developed and characterized freestanding photoresist films [17]. Given the 

ease with which such films could be micropatterned, we sought to combine this approach 

with a hydrogel-based support that would yield arrays of microscale wells, each with a 

permeable bottom.

Chitosan is a cationic polysaccharide derived from chitin that has begun to see increased use 

in a number of biologically-relevant applications [18-21]. Many of the chemical and 

physical properties of chitosan have been well characterized [22-32]. Chitosan has been 

shown to be biocompatible to a number of cell types, including endothelial, hepatic, bone, 

and peripheral nerve cells [33-37]. Chitosan can be manipulated to form hydrogels, porous 

scaffolds, and dry films [21, 30, 38]. Studies have shown that capsules and films prepared 

from chitosan are permeable at the microscale and may have a potential role in drug and 

gene delivery systems [39-43]. A key feature of chitosan is the free amine group in its 

molecular structure, which protonates in a pH-dependent manner and induces swelling of the 

chitosan matrix and an increase in its network pore size. In addition to being responsible for 

chitosan's pH-dependent solubility, the amine group also allows the conjugation of 

exogenous molecules to the polysaccharide chain [20, 44-45]. Recently several research 

groups have devised strategies to pattern chitosan at the microscale, including on surfaces 

for bioreactor applications and as a semi-permeable microscaffold in a microfluidic device 

for the study of bacterial biofilms [20, 44, 46-47]. Due to its biocompatibility, pH-dependent 

solubility, and demonstrated use in certain microscale platforms, chitosan presented 

potential.
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This report describes the co-fabrication of the biocompatible materials chitosan and 1002F 

epoxy photoresist to create a freestanding, two-layer hybrid film of permeable, hydrogel-

bottomed microwell arrays. Several material properties of these films, including optical 

characteristics, surface chemistry, and permeability are analyzed. Finally, the application of 

these hybrid films to studies of cellular heterogeneity is described. Platforms co-fabricated 

from chitosan and epoxy photoresist can be used to reduce both high-molecular weight 

biochemical crosstalk between cells and mixing of different clonal populations, and will 

enable high-throughput cellular studies with increased ability to customize dynamic 

interrogations when compared to the materials in currently available technologies.

2. Materials and methods

2.1 Materials

Chitosan (medium molecular weight), γ-Butyrolactone (GBL), photoresist developer 

(propylene glycol methyl ether acetate, PGMEA), toluidine blue, FITC-dextrans (average 

molecular weights 4, 10, 20, 40, and 70 kDa), rhodamine B-dextran (70 kDa), 

glutaraldehyde (70% v/v), and mineral oil were purchased from Sigma-Aldrich (St. Louis, 

MO). EPON resin 1002F photoresist was obtained from Miller-Stephenson (Sylmar, CA). 

UVI-6976 photoinitiator (triarylsulfonium hexafluoroantimonate salts in propylene 

carbonate) was purchased from Dow Chemical (Torrance, CA). Polydimethylsiloxane 

(PDMS) was obtained from Dow Corning (Midland, MI). Chrome photolithography masks 

were designed using TurboCAD software and printed by FineLine Imaging (Boulder, CO). 

RPMI 1640 medium, fetal bovine serum (FBS), penicillin/streptomycin, Dylight 488-NHS 

ester, and tetramethylrhodamine-conjugated BSA were obtained from Life Technologies 

(Grand Island, NY). Ba/F3 cells carrying the BCR-Abl fusion gene were a kind gift from Dr. 

Brian Druker at Oregon Health Sciences University. Transwell™ polystyrene cassettes were 

obtained from Corning Life Sciences (Tewksbury MA).

2.2 Co-fabrication of freestanding 1002F:chitosan films

Chitosan was dissolved in 0.5% (w/w) acetic acid to a concentration of 2% (w/w). Dry films 

of chitosan were obtained by spin coating dissolved chitosan at 2000 rpm onto pre-cleaned, 

air plasma oxidized glass slides and baking at 95°C for 1 h. Micropatterned films of 1002F 

negative photoresist were fabricated atop the dry chitosan films following a 2-min air 

plasma treatment as described previously [17]. Briefly, EPON resin 1002F negative 

photoresist, dissolved in GBL and mixed with UVI-6076 photoinitiator, was spin-coated 

atop the dry chitosan films to a desired thickness of 40-50 μm and soft-baked at 95°C to 

remove organic solvent. After exposure to UV light through a patterned chrome photomask, 

the hybrid film was given a post-exposure bake, first at 95°C and then at 120°C, and then 

developed in PGMEA to remove unpolymerized photoresist. The resulting micropatterned 

hybrid film was hard-baked to solidify the photoresist layer. After affixing a polystyrene 

cassette pre-cut with a hollow center 12 mm in diameter using a PDMS mortar, the chitosan 

layer was neutralized and the hybrid film released via incubation in 0.1% (w/w) aqueous 

NaOH for 48 h. Precise process conditions for hybrid films with a photoresist layer ∼50 μm 

thick are otherwise identical to those previously reported [17]. Immediately after release, the 
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hybrid films were gently washed with deionized water and the chitosan hydrogel layer was 

immersed in phosphate buffered saline (PBS) pH 7.4 for at least 12 h before use.

2.3 Imaging

Critical point-dried hybrid films were imaged using an FEI Quanta 200 FEG scanning 

electron microscope (SEM), operated at 0.38 torr (Chapel Hill Analytical and 

Nanofabrication Laboratory (CHANL)). High-resolution images of the chitosan layer at the 

bottom of microwells in critical point-dried hybrid films were obtained using a Hitachi 

S-4700 Cold Cathode Field Emission scanning electron microscope (CHANL).

A Nikon Eclipse TE2000-U inverted fluorescence microscope, controlled by NIS Elements 

software (Nikon, Melville, NY), was used to image films for optical property measurements, 

during diffusion and protein conjugation experiments, and for daily cellular analyses. Time-

lapse live-cell imaging was accomplished using an IX-81 inverted microscope (Olympus, 

Center Valley, PA) equipped with an MS-2000 robotic xy stage (Applied Scientific 

Instrumentation, Eugene, OR). All brightfield and fluorescence micrographs were recorded 

with a cooled CCD camera (Photometrix Cool Snap fx, Roper Scientific, Tucson, AZ). 

Fluorescence micrographs were analyzed using Image J (NIH, Bethesda, MD).

2.4 Measurement of 1002F:chitosan film optical properties

Glass coverslips were deposited into a multiwall polystyrene plate, and background 

absorbance spectra from 300-800 nm were obtained using a SpectraMax M5 microplate 

reader (Molecular Devices, Sunnyvale, CA). Dry films of chitosan were prepared above the 

same coverslips by spin-coating chitosan at 500 rpm and baking for 1 h at 95°C. The films 

were then neutralized in 0.1% (w/w) NaOH for 30 min and rehydrated in 1× PBS at pH 7.4 

for 1 h. Chitosan absorbance was obtained by measuring absorbance for the spin-coated 

coverslips and subtracting out the background absorbance of the coverslip alone. Results 

from six replicates were averaged to give an absorbance spectrum.

The fluorescence of chitosan was measured and compared to that of glass coverslips and to 

the negative photoresists 1002F and SU-8. Chitosan, 1002F, and SU-8 were spin coated at 

2000 rpm onto clean glass coverslips and baked to remove solvent, after which the chitosan 

was neutralized by immersion into 0.1% (w/w) NaOH and blown dry with nitrogen gas, 

while the 1002F- or SU-8-coated coverslips were exposed to UV light without a photomask, 

post-exposure baked, developed, and hard-baked as described above. Films were imaged via 

fluorescence microscopy using UV (ex 340-380 nm / em 435-485 nm), GFP (ex 465-495 

nm / em 515-555 nm), Texas Red (ex 522-592 nm / em 584-664 nm), and Cy5 (ex 588-668 

nm / em 652-732 nm) Nikon filter sets. Fluorescence of the chitosan and photoresist layers 

in each wavelength set was quntified using ImageJ to calculate the mean pixel intensity for 

each material. Clean glass coverslips not spin-coated with any material were measured in 

parallel. Three spin-coated slides were measured for each of the three materials listed, as 

well as for the glass blanks. Two regions per slide were analyzed.
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2.5 Covalent protein conjugation

1002F:chitosan hybrid films and glass-bottomed 1002F through-hole arrays, each 

micropatterned with 100-μm diameter wells, were fabricated, affixed to polystyrene 

cassettes as described above, treated with an air plasma for 2 min, immersed in PBS, and 

imaged to obtain background fluorescence micrographs. Films were patterned with protein 

via a covalent coupling strategy using the homobifunctional crosslinker glutaraldehyde. 

Glutaraldehyde was prepared as a 4% (v/v) solution in PBS, after which 500 μL was 

deposited atop each of the films named above and incubated for 4 h at room temperature. 

Films supplied with PBS only served as controls. After removing glutaraldehyde solution 

and washing five times with PBS, activated films were imaged to measure autofluorescence 

and then incubated with 250 μL of BSA-tetramethylrhodamine (0.1 mg/mL) for 2 h at room 

temperature in the dark. After aspirating away the protein solution and washing five times 

with PBS, films were imaged via fluorescence microscopy. Fluorescence within the 

microwell spaces and atop the microwell walls was quantified using Image J to analyze 

fluorescence micrographs. Three films were used for each experimental group.

2.6 Measurement of diffusion

1002F:chitosan hybrid films micropatterned with 900 wells (100-μm diameter) were 

fabricated, affixed to 12-mm diameter polystyrene cassettes, plasma oxidized for 2 min, and 

released as described above. The films where then placed into a 12-well plate, suspended by 

the cassette approximately 1 mm from the well bottom. PBS was supplied into the cassette 

(upper) and the dish (lower) compartments at volumes (0.5 and 1.5 mL, respectively) 

recommended by the plate manufacturer to give an equal height between the two 

compartments. Either toluidine blue dye (MW 270 Da), Dylight 488-glucosamine conjugate 

(MW 1074 Da), or one of several FITC-dextrans (average molecular weights 4, 10, 20, and 

40 kDa) was supplied into the upper fluid compartment as bolus solutions in PBS to a final 

concentration of either 0.01% (w/w)(toluidine blue), 10 μM (Dylight 488-glucosamine), or 

200 μg/mL (FITC-dextrans). Dylight 488-glucosamine conjugate was prepared in-house by 

reacting 10 mg/mL of Dylight 488-NHS ester dissolved in anhydrous DMF with a 10 mM 

solution of glucosamine dissolved in PBS. Rhodamine B-conjugate dextran (70 kDa) at a 

concentration of 200 μg/mL was supplied as a high-MW, slow-transit negative control 

across the several experiments. Plates were covered to prevent evaporation, and incubated at 

room temperature. At regular time points, 60 and 15 μL samples were taken from the bottom 

and top (respectively) fluid compartments for analysis using a SpectraMax M5 microplate 

reader (Molecular Devices, Sunnyvale, CA). Seven different devices, representing four 

different fabrication batches of films, were tested in this manner. Commercially-available 

track-etch membranes with pores 400 nm in diameter (Corning Life Sciences, Tewksbury 

MA) were used as positive controls for dye diffusion. Toluidine blue concentrations were 

measured via absorbance at 633 nm, while Dylight 488-glucosamine conjugate and FITC-

dextran concentrations were measured via fluorescence (ex 490 nm / em 520 nm). 

Rhodamine B-dextran fluorescence was also measured (ex 545 nm / em 580 nm) for each 

sample.

Calculation of the diffusion constant (also known as the diffusivity) was achieved by 

modeling the plate wells in which the 1002F:chitosan hybrid films were incubated during 
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each diffusion experiment as a closed, two-compartment system, separated by a membrane 

of fixed thickness h and permeable area A in a manner similar to a model described by Lee 

et al. [48]. Volumes of each compartment are based on the volumes of fluid supplied to 

them at the initiation of the diffusion experiment. The source compartment initial 

concentration is the concentration of dye supplied to it, while the initial concentration of the 

sink compartment is assumed to be zero. Theoretical equilibrium concentration (Ceq) for 

each hybrid film tested was defined to be the mean steady-state dye concentration in the 

bottom compartment of the positive diffusion controls. The value of h is the thickness of the 

chitosan layer. Diffusivities for each of the solutes studied were calculated through a 

linearization scheme according to the model[48].

2.7 Expansion of nonadherent cells entrapped in medium micropockets

Ba/F3 cells carrying the BCR-Abl fusion gene were maintained in RPMI 1640 medium 

supplemented with penicillin/streptomycin and 10% fetal bovine serum. 1002F:chitosan 

hybrid films micropatterned with 900 wells (100-μm diameter) were fabricated, affixed to 12 

mm-diameter polystyrene cassettes, and released as described above. After a 2 min plasma 

oxidation and ethanol sterilization, films were placed into 12-well plates filled in the bottom 

compartments with RPMI 1640 medium. Ba/F3 cells were deposited into the cassette 

compartment at a density of 2.0 × 104 cells / cm2 in 500 μL of media. After 20 min, 

microarrays were inspected via brightfield microscopy to confirm that cells had settled into 

the chitosan-bottomed microwells, at which point the media in the upper compartment was 

carefully aspirated away and 350 μL of filter-sterilized mineral oil was overlaid in order to 

trap the cells in medium droplets in the microwells. Cells were also seeded at the same 

density into two additional sets of chitosan-bottomed microwell arrays fabricated with a 

design identical to that described above but not released from the glass fabrication surface 

(so as to yield dead-ended microwells). After cell seeding and removal of the cell seeding 

media, one array set was gently refilled with culture medium, while a second array set was 

overlaid with 250 μL of sterile mineral oil. All arrays were imaged daily with brightfield 

microscopy to assess cell morphology and proliferation.

2.8 Time-lapse video imaging of nonadherent cell proliferation

Ba/F3 BCR-Abl cells were centrifuged and resuspended in serum-free RPMI 1640 medium 

and incubated for 12 h, after which cells were again centrifuged and then resuspended in 

RPMI growth medium with serum. Cells were then seeded into the cassette compartment of 

1002F:chitosan hybrid films fabricated as described in the above paragraph at a density of 

2.0 × 104 cells / cm2, allowed to settle, and confined to microwells using a mineral oil 

overlay. Two films were placed into a single 12-well plate, and the plate was transferred into 

a sealed live imaging microscopy enclosure, custom-built and maintained at 37°C with 60% 

humidity and 5% CO2. Both microwell arrays (total 1800 microwells) were imaged every 15 

min for a period of 60 h. The final number of cells present in each well that began the 

experiment with a single cell was manually counted using the resulting micrographs, and the 

times at which cell division occurred were noted for five microwells representative of the 

range of final cell number; these cell division times were used to construct a lineage tracing 

for each representative cell.
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2.9 Statistical testing

Unless otherwise stated, all statistical analyses performed utilized the student t-test. 

Statistical significance was defined as p < 0.05.

3. Results and Discussion

3.1 Co-fabrication of freestanding 1002F:chitosan films

Freestanding 1002F:chitosan hybrid films were fabricated and micropatterned using the 

strategy depicted in Fig. 1A and described in detail in the Methods section. Briefly, dry 

chitosan films were prepared on glass by spin coating and baking. After an air-plasma 

treatment, 1002F photoresist was spin-coated atop the dry chitosan films and micropatterned 

via UV photolithography. The resulting hybrid films, featuring an array of microwells 

patterned into the 1002F film and bottomed by a layer of chitosan, were plasma-treated and 

released from the glass substrate by incubation in dilute NaOH. By affixing a polystyrene 

cassette and placing into a 6- or 12-well plate the films adopted a setup similar to 

commercially available Transwell™ permeable supports, in which a membrane (here, the 

chitosan layer) separates two compartments (Fig. 1B): an “upper” compartment that 

interfaced with the photoresist film and the microwells patterned into it, and the “lower” 

compartment that lay beneath the chitosan layer.

Scanning electron micrographs of the resulting released hybrid films, shown in Fig. 2A-B, 

confirm that the thin chitosan layer formed a bottom to the microwells patterned from the 

photoresist layer. The chitosan layer, as shown in Fig. 2C, was revealed to be a uniform film 

approximately 400 nm thick composed of entangled chitosan polysaccharide chains with 

tortuous pores of irregular shape and diameters on the order of tens of nanometers. Fig. 2D 

reveals the chitosan layer to have a pebbled, irregular surface, again showing pores of 

irregular shape and diameters on the order of tens of nanometers. While tears can form in the 

chitosan layer during the release process, this was nearly always found to occur in cases in 

which the incubation in dilute NaOH was less than 48 h.

Chitosan proved to be a useful material due to the ability to adjust its solubility by varying 

the pH of the solution. By employing an acidic medium, chitosan could be made soluble, 

after which its concentration could be adjusted to yield a solution viscous enough for spin-

coating. Using profilometry, the thickness of dry films spin-coated at various speeds was 

measured. The thickness of the dry films ranged from 179-799 nm (Fig. S1, Table S1) 

suggesting that chitosan layers of variable height can be achieved (for such considerations as 

mechanical strength) simply by varying the spin coating speed. Additional formulations 

using higher or lower concentrations of chitosan would be expected to give thicker or 

thinner films, respectively, based on identical spin-coat speeds.

These results demonstrated that the thickness of a dry chitosan film fabricated by spin 

coating at the speed typically used in the co-fabrication protocol (2000 rpm) was 349 ± 24 

nm (n=3). Comparison of this thickness to that measured by SEM (see Figure 2C) reveals 

that released and rehydrated films are 13% thicker than dry films. This increase in thickness 

is likely due to slight osmotic swelling of the chitosan hydrogel layer that occurs in a pH-

dependent manner [49].
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3.2 Optical properties

Because brightfield and especially fluorescence microscopy is anticipated to be a chief 

means of analyzing cells cultured using the 1002F:chitosan hybrid films, the absorption and 

autofluorescence of chitosan films, fabricated in a similar fashion to those described above, 

were measured. Absorbance spectra of glass coverslips spin coated with chitosan films 800 

nm thick, shown in Fig. 3A, revealed an absorbance below 0.02 (≥95.5% transmittance) at 

wavelengths above 400 nm. Because these films were thicker by a factor of ∼2 than 

chitosan layers in typically fabricated 1002F:chitosan hybrid films, absorbances of chitosan 

layers fabricated with the typical protocol are likely to be even less.

The fluorescence of films of typical fabrication thickness was measured for chitosan (800 

nm), 1002F (45 μm thick), or SU-8 (45 μm thick). Chitosan films exhibited very low 

autofluorescence and the chitosan film fluorescence was comparable to that of a glass 

coverslip (Fig. 3B). In contrast, both 1002F and especially SU-8 photoresists demonstrated 

considerable fluorescence particularly in the blue wavelengths. While there were significant 

differences in thickness between the chitosan and photoresist layers tested, the thickness of 

each layer reflects a typical thickness used for microfabrication and so provides a useful 

comparison. Overall, the low absorption and autofluorescence of chitosan across the visible 

wavelengths suggested that applications employing both qualitative and quantitative 

microscopy for cellular analysis will be compatible with 1002F:chitosan hybrid films.

3.3 Spatially controlled protein conjugation

The free amine group in the molecular structure of chitosan has been used in numerous 

applications for conjugating exogenous molecules to chitosan surfaces [20, 44-45]. 

However, the reactivity between amines and epoxides (a reactive group found in 1002F 

photoresist) is well-documented, suggesting the possibility that chitosan at the surface of the 

microwell bottoms was devoid of free, unbound amines. To investigate this, x-ray 

photoelectron spectroscopy (XPS) was used to examine dry chitosan surfaces that had been 

co-fabricated and patterned with 1002F. Qualitative and quantitative analysis of x-ray 

photoelectron spectra revealed that, in terms of the locations and areas of C 1s and N 1s 

spectral peaks and the thickness of the surface molecular layer [50], the chitosan surfaces 

co-fabricated and patterned with 1002F and subsequently treated with an air plasma 

exhibited notable differences from identical surfaces that had not received an air plasma 

treatment, but only negligible differences from films of native chitosan (Fig. S2, Table S2). 

Together, these results suggest that while the fabrication steps do result in bonding between 

free amines from surface-level chitosan and overlying 1002F, the post-fabrication plasma 

oxidation and neutralization steps typically employed in this protocol lead to the removal of 

this layer, leaving chitosan with free amines at the surface of the microwell bottoms.

Having verified that the free amine group is preserved in the chitosan layer bottoming the 

microwells, the potential to utilize the amine group to achieve material-specific and spatially 

controlled molecular patterning was explored. Chitosan:1002F films with 100-μm diameter 

wells were patterned with tetramethylrhodamine-conjugated BSA via a covalent coupling 

strategy using the homobifunctional crosslinker glutaraldehyde (Fig. 4A). As shown in Fig. 

4B, films activated with glutaraldehyde exhibited a fold increase of 14.9 ± 1.9 in average 
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fluorescence within the microwells when compared to baseline (p < 0.003), and a 1.9 ± 0.2 

fold increase over films lacking glutaraldehyde activation before incubation with labeled 

protein (p = 0.03), suggesting that activation of the chitosan surface resulted in higher 

deposition of protein onto the microwell bottoms as compared to protein adsorption onto the 

same surface. However, in 1002F microwells fabricated atop a glass substrate and thus 

lacking chitosan, fluorescence within the microwells failed to increase in a statistically 

significant manner (1.2 ± 0.3 fold, treated, vs. 1.5 ± 0.3 fold, untreated), suggesting that the 

fluorescence increase observed with glutaraldehyde treatment is specific to the chitosan 

surface. Fluorescence micrographs showing the effect of glutaraldehyde treatment are shown 

in Fig. 4C.

Previous work has demonstrated the ability to label chitosan films through their full 

thickness with amine-reactive NHS-fluorescein [51]. We hypothesize that either the length 

of incubation time in this experiment or the network pore size of the chitosan layer was 

insufficient for the labeled BSA (larger than NHS-fluorescein) to infiltrate past the top few 

microns of the chitosan layer and would explain why only the chitosan surface within the 

microwells appeared to be labeled. This covalent conjugation scheme can likely be adapted 

to utilize other crosslinkers or amine-reactive silanes in order to allow user-defined and 

spatially-controlled surface functionalizations that are selective for the chitosan layer at the 

bottom of the microwells.

3.4 Measurement of solute diffusion across micropatterned 1002F: chitosan hybrid films

In order to determine whether solutes could diffuse across the chitosan layer at the bottom of 

the microwells in the 1002F:chitosan films, the permeability of the chitosan layer to small-

molecule solute diffusion was first measured. A general diffusion scheme is depicted in Fig. 

5A, in which freestanding chitosan:1002F hybrid films affixed to polystyrene cassettes were 

placed in a 12-well plate and PBS was supplied to the upper and lower compartments. 

Addition of a bolus of concentrated dye to the upper compartment created a gradient to drive 

solute diffusion from the “source” compartment, across the chitosan membrane, and into the 

lower “sink” compartment.

Toluidine blue dye (MW 270 Da) seeded into the upper compartment was visually observed 

to enter and disperse throughout the lower compartment (Fig. S3A). By 48 h, the dye 

concentration in the lower compartment had reached 90.8 ± 3.2% of its maximal value and 

88.9 ± 1.3% of the concentration in the top compartment, compared with 90.9 ± 0.9% and 

98.2 ± 13.4% (respectively) for unpatterned Transwell™ membranes used as positive 

controls. Fig. S3B illustrates the time course of absolute toluidine blue concentration in the 

lower compartment for 1002F:chitosan membranes and the positive controls. These data 

suggest that the chitosan membranes have comparable permeability to small molecules as 

membranes with cylindrical track-etch micropores, indicating that the chitosan hydrogel 

layer remained permeable to small molecules after the fabrication process was completed. 

Employing this same method with a high-MW FITC-conjugated dextran (MW 70 kDa) 

instead of toluidine blue dye, however, revealed that after 48 h of incubation, the 

concentration of solute in the bottom compartment was only 0.2 ± 0.1% of that in the top 

compartment, compared to a value of 31.6 ± 2.2% for a positive control (data not shown).
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Given the possibility that the chitosan layer had a molecular exclusion limit, diffusion of 

solutes in a range of molecular weights was investigated. Using the method described above, 

diffusion of FITC-conjugated dextrans of molecular weights 4, 10, 20, and 40 kDa were 

investigated. Fig. 5B shows the concentration of each dextran, relative to its theoretical 

equilibrium concentration Ceq, over the course of time. Dextrans with molecular weights 4 

and 10 kDa were shown to diffuse through chitosan membranes, reaching half-theoretical 

maximum values by 48 and 120 h, respectively (Fig. 5B). Compared to those dextrans, 

diffusion of dextran with MW 20 kDa was greatly reduced, reaching C / Ceq value of only 

0.2 after 5 days of incubation, and dextran with MW 40 kDa did not exhibit appreciable 

diffusion at all, similar to earlier data that FITC-dextran with a higher MW of 70 kDa 

exhibited no detectable diffusion across the membrane. In all samples except the positive 

controls, diffusion of 70 kDa rhodamine B-conjugated dextran was not observed, consistent 

with earlier results.

To determine the frequency and effect of any defects in the chitosan layer on solute 

diffusion, a method (described in Supplementary Materials) was devised to track and 

measure molecular diffusion in individual wells in an ensemble fashion. Data generated in 

this fashion, shown in Fig. S4, revealed that less than 0.1% of microwells exhibited 

permeability to 40 kDa FITC-dextran, the molecular weight shown above to exhibit 

negligible diffusion across chitosan:1002F films. This suggests that defects in the chitosan 

layer did not occur with sufficient frequency so as to explain the observed movement of dye 

from the top compartment into the bottom. Diffusion data generated in this fashion (Fig. S4) 

reveal permeability of the chitosan layer to 10 and 20 kDa FITC-dextran and exclusion of 40 

kDa dextran, consistent with data presented above.

Using a mathematical model based on Fick's First Law and reported by Lee et al. [48], the 

diffusion coefficient, D, through the chitosan membrane was calculated for solutes of 

varying molecular weight (Fig. 5C). D ranged in order of magnitude from 10-9 to 10-12 cm2 / 

s (Table 1) and fall within the range of previously reported values for slow solute diffusion 

within a solid [52]. Lower molecular weight solutes predictably had higher diffusion 

coefficients, and 40 kDa dextran was found to have a diffusivity a full order of magnitude 

less than that of 20 kDa dextran.

Analysis of the linear range of these data indicated that the theoretical molecular exclusion 

limit (the molecular weight at which the linear extrapolated diffusivity is zero) was 9.9 ± 2.1 

kDa for the chitosan membrane in the 1002F:chitosan hybrid films. This value and range is 

in agreement with the observed diffusion of 10 kDa-MW FITC-dextran and with the failure 

to observe diffusion of 40- and 70 kDa MW dextrans through the membrane. Because the 

calculated molecular exclusion limit is a theoretical value based on a linear extrapolation, 

solutes with molecular weights higher than the theoretical cutoff can still exhibit measurable 

diffusion, a case also found in the data of Lee et al. [48] and with the slow (though 

quantifiable) diffusion of 20-kDa FITC-dextran in our experiments.

This theoretical molecular exclusion limit, and the failure to observe diffusion of dextrans > 

40 kDa, differs from other reports describing the size of pores in chitosan microparticles or 

capsules as being 10 μm or higher [21, 37], and from data suggesting that antibodies (MW 
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150 kDa) can permeate through chitosan membranes fabricated in situ on a microfluidic 

device [46]. However, the processing conditions under which the chitosan membrane was 

formed in these other reports differ greatly from those reported here, in which chitosan 

membranes were prepared as dry films prior to photoresist spin coating and UV 

photolithography. It is hypothesized that the fabrication steps employed here, especially the 

baking steps necessary for proper polymerization of the photoresist, lead to a high degree of 

chitosan entanglement and possibly thermal crosslinking that reduce the network pore size 

and therefore lower the molecular exclusion size limit. Two early reports describing 

permeability through chitosan films that had been dried noted the exclusion of solutes with 

molecular weights above 13 kDa, while permitting passage of solutes 2.9 kDa and lighter, 

supporting the findings described here [53-54].

Previous reports describe the fabrication of microscale wells over a track-etched permeable 

membrane [55-56]. However, the co-fabrication of chitosan with 1002F as reported here 

presents certain advantages, including: (1) the use of spin-coating to achieve control over 

both the membrane thickness and the microwell depth; (2) the use of UV photolithography 

to directly fabricate microwell features, avoiding the risk of undercutting as might be found 

in a molding-based technique; and (3) the potential to tailor the membrane permeability by 

crosslinking or adjustment of chitosan entanglement. Additionally, there were no observed 

instances of delamination between the chitosan film and the 1002F layer, presumably due to 

covalent bonding between amine groups in the chitosan and epoxide moieties in the 1002F 

that served to anchor the chitosan to the 1002F layer. Polymer membranes that have been 

track-etched with cylindrical micropores to make them permeable are commercially 

available (e.g. the Transwell systems). However these track-etched membranes possess 

micropores that are generally at least 400 nm in diameter and which are therefore permeable 

to extremely large molecules.

3.5 Survival and proliferation of nonadherent cells entrapped in chitosan-bottomed 
microwells

Microwells fabricated using the most common methods and materials in use in the 

microfabrication field – namely soft lithography using polydimethylsiloxane (PDMS), 

photolithography using photoresists, and injection molding using cyclic olefin co-polymer – 

result in impermeable supports for subsequent growth of cells [57-60]. While certain 

techniques, such as overlaying a physical barrier onto microwells seeded with cells, can 

reduce biochemical crosstalk and intermixing of clonal populations, cell survival and 

viability can be compromised over the long term as cells consume the small quantities of 

culture media with which they are seeded [16]. As a consequence, maintenance of cells 

beyond several hours necessitates that cells be exposed to a relatively large media reservoir 

that can allow biochemical crosstalk and the intermixing of clonal cell populations, 

confounding subsequent inquiries.

Having established that the chitosan layer at the bottom of the 1002F microwells was 

permeable to solutes up to 20 kDa, we hypothesized that a microdevice such as the one 

depicted in Fig. 6A, would enable physical isolation of clonal cell populations without a loss 

of cell viability. By supplying culture medium to the compartment below the permeable 

Ornoff et al. Page 11

Biomaterials. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



chitosan film, nutrients and metabolites could be exchanged across the chitosan membrane 

and proliferating cells could be maintained within each microwell. In order to ensure that 

cell survival and proliferation was not affected by the chitosan or 1002F material properties, 

Ba/F3 cells were cultured on polystyrene, glass, chitosan films, or 1002F films and the cell 

number counted over time. The number of cells on the surfaces was not statistically different 

after 96 h of culture (Fig. S5) suggesting that proximity to the chitosan or 1002F did not 

impact cell growth.

To formally demonstrate the utility of this platform in physically isolating micropopulations 

of cells and preventing mixing of the cells between microwells (45 μm depth), Ba/F3 cells 

were seeded onto released hybrid platforms and isolated via oil overlay. Expansion of cells 

was compared to cells seeded onto control microwell arrays that were not released from the 

underlying glass support (yielding dead-ended microwells). In one control, cells were 

seeded, after which the media was aspirated and cells were overlaid with mineral oil; in the 

second control, cells were seeded, media removed, and the chamber was refilled with fresh 

media. The first (oil-overlay) control exhibited no clonal expansion of cells (presumably due 

to either rapid depletion of nutrients from the ∼400-pL microwell volume or poor delivery 

of oxygen) (Fig. 6B, top row). This was in sharp contrast to the second control, in which 

clonal expansion was observed. However, with this control, numerous wells empty after the 

initial cell seeding were noted to have cells present in them by 48 hours (Fig. 6B, middle 

row). These results indicate that cell migration and mixing of clonal populations was 

occurring in this control sample. Deeper wells (100 μm depth) did not eliminate cell 

movement between microwells (data not shown). Arrays of 1002F:chitosan microwells 

supplied with media via the bottom compartment and overlaid with oil, also exhibited 

heterogeneous clonal expansion (Fig. 6B, bottom row), but showed no migration of cells 

into microwells that were empty after the initial cell seeding. Repeating this experiment but 

supplying the bottom compartment with serum-negative media, however, resulted in a 

failure of cells to proliferate (Fig. S6). This observation establishes that the cell proliferation 

observed with the freestanding films was due to serum growth factors present in the media 

supplied to the bottom compartment and not growth factors present in the seeding media. 

Thus the chitosan membranes were functionally permeable to the serum growth factors 

necessary for proliferation of the cells. Altogether, these results confirm the hypothesis that 

this platform could be used to clonally expand cells but keep different clonal populations 

separate, all the while permitting each of those subpopulations to be interrogated en masse.

Serum contains a number of very high molecular weight entities required by cells which 

might have been the proximate cause of the cell-growth failure in the prior experiment. To 

show targeted blockage of a single protein of a relatively low molecular weight (39 kDa), 

murine colonoids or colon-derived organoids were cultured on the arrays. Wnt is required 

for the maintenance of stem/progenitor cells in these organoids. In the absence of Wnt, all 

cells rapidly differentiate into nondividing, terminal cell types. Colonoids originally derived 

from mice expressing DsRED under a chicken actin promoter and eGFP under a Sox9 

promoter were cultured on the chitosan-bottomed arrays. In these colonoids, DsRED is 

expressed in all cells while eGFP is expressed only in stem/transit amplifying cells. Media 

with all required constituents except Wnt was added to the upper and lower fluid 
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compartments of the arrays (Fig S7A,B). When Wnt-3A was added to the upper 

compartment, the colonoids grew robustly and displayed both DsRED and eGFP 

fluorescence at day 3 of culture suggesting the presence of stem/transit amplifying cells (Fig 

S7C). Colonoids grown with Wnt placed below the chitosan film grew poorly and did not 

possess eGFP fluorescence indicating an absence of stem/transit amplifying cells (Fig S7D). 

These data demonstrate that the transit of Wnt-3a (39 kDa) into the microwells with 

colonoids was effectively blocked by the chitosan film.

3.6 Analysis of cell division heterogeneity in entrapped, nonadherent cells

In trials of cellular entrapment and survival, it was observed that the rate of cell proliferation 

was very heterogeneous amongst cells seeded onto the microwell array, as shown in Fig. 7A. 

To assay the extent of cellular heterogeneity in a single population of cells, the proliferation 

of Ba/F3 cells was observed for cells in 47 separate microwells. Fig. 7B shows that the 

average number of cells per well increased to 1.6 ± 0.6 at 24 h, 2.3 ± 1.1 at 48 h, and finally 

to 5.2 ± 4.2 at 72 h for wells initially seeded with a single cell. Cells in wells with 2 cells 

initially expanded to 3.2 ± 0.9, 4.9 ± 2.3, and 11.1 ± 6.5 cells by 24, 48, and 72 h 

respectively. The high variability in the number of cells per well, especially by day 3 in 

culture, suggested that some cells were proliferating faster than others, generating greater 

numbers of daughter clone cells. Mean cell doubling times were determined to be 31.4 ± 3.9 

and 29.8 ± 3.4 hours for wells with 1 and 2 cells per well after initial seeding, respectively. 

For comparison, the mean doubling time for cells grown in dead-ended microwells (20.4 ± 

4.7 h) with a media overlay was shorter suggesting that diffusional movement of larger sized 

molecules across the membrane might impact cell growth rates in these ultra-small volume 

microwells. Alternatively optimization of oil biocompatibility may lessen this doubling time 

difference.

Suspecting that there was a large range of doubling times in the oil-overlaid, 

chitosanbottomed wells, a relative frequency histogram of cell doubling time was 

constructed (relative frequency referring to the ratio of the number of cells whose doubling 

times fell in the indicated range to the total number of cells observed). Fig. 7C shows that 

cell doubling time ranged from just over 18 to greater than 80 h, with mean and median 

doubling times of 40.1 and 32.8 h, respectively. While 36% of cells had doubling times 

between 25 and 41 h (i.e. there were not two wholly separate populations of “fast” and 

“slow” dividers that drove the average to a middle value), the presence of some apparent fast 

and slow dividers (doubling times < 22 and >60 h) was appreciated. Of note, cells could be 

maintained at least to 96 h, but beyond 72 h the number of cells in certain wells was 

sufficiently large that an accurate cell count could not be established. It is expected that by 

adjusting fabrication parameters to yield wells with larger diameters, accurate cell counts 

beyond 72 h would be possible.

To achieve a more precise description of the heterogeneity of proliferation rates in this 

population of cells, time-lapse video imaging of cell proliferation on the microwell array 

was undertaken. After serum-starvation to synchronize cell cycles, cells were seeded into 

microwells and entrapped with mineral oil as described above. After supply of media with 

serum to the bottom compartment, the array was placed into a humidified and temperature-
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controlled cabinet for automated live-cell imaging. Microwells with two or more initial cells 

were excluded from this analysis. Table 2 indicates the frequency with which a range of 

final cell numbers was observed for 256 microwells that began with a single cell. Lineage 

tracings of five cells, representative of this range of survival outcomes and proliferation 

rates, are shown in Fig. 7D.

These results provide further evidence of the growing importance of heterogeneity among 

the various cells in a biological system, a theme with applications in such fields as cancer 

biology, immunology, stem cell biology and regenerative medicine [61-68]. While a number 

of methods are currently available for analyzing cellular heterogeneity, limitations in each 

method exist [11, 69-70]. Flow cytometry is a widely-used approach that can generate a 

large amount of data, but is limited to a single interrogation time, and can also provide 

confounded data, resulting from changes in cell physiology due to the stressful nature of the 

flow cytometer apparatus [71-74]. Certain high-throughput technologies, such as microtiter 

plates and even high-throughput format Transwell® systems, can be used to assay a large 

number of cells, but do not allow the ability to discriminate between different clonal cell 

populations unless limiting dilution steps are employed to seed only and precisely one cell 

per plate well. Droplet microfluidic systems are similarly high-throughput, but long-term 

culture of cells in droplets is difficult due to issues with reduced oxygen and nutrient 

delivery, as well as the need to preload droplets with analytical reagents [10-12]. While 

droplets with an encapsulating semi-permeable film can be generated using a double-

emulsion technique, our method allows for the observation and storage of cells in 

encapsulated, fixed medium pockets that can be tracked over time, a feature not available to 

droplet-based devices without even more specialized equipment [75]. One recent report that 

specifically examined the range of doubling times in a population of hematopoietic stem 

cells utilized a microfluidic device featuring nanoliter-scale growth chambers, but media 

exchange is dependent on a series of microvalves [76]. PEG-DA hydrogels have been used 

previously in microwell fabrications via a microstamping method, in which the PEG-DA 

forms both the semi-permeable membrane and the well walls [77]. However, the use of 

PEG-DA as a material for the well walls would fail to abrogate biochemical crosstalk 

between microwells, since secreted factors could diffuse through the walls themselves, even 

if an oil overlay was used to physically confine cells to the microwells. In these regards, 

PEG-DA would prove less advantageous when compared with impermeable 1002F.

When compared with the technologies named above for analyzing cellular heterogeneity, the 

1002F:chitosan hybrid platform described here holds numerous advantages. The materials 

used in this platform are commercially available, biocompatible, and well-characterized. The 

fabrication process is rapid and allows easy tailoring of the platform's features. Cellular 

analyses conducted using the hybrid films require no other specialty equipment, namely 

continuous perfusion or droplet-generating devices, for growing cells after the devices are 

fabricated. Additionally and without the need for microscale valves to achieve correct fluid 

flow, this setup features the ability to rapidly exchange media and reagents from around the 

cells without risk of mixing of clonal subpopulations. This feature will allow users to 

customize the order and timeframe of reagent delivery and removal. Adherent cells were 

also readily cultured on the chitosan-bottomed arrays (Fig. S8).
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4. Conclusions

This microfabricated cellular analysis platform will enable high-throughput study of cellular 

heterogeneity in response to user-defined and dynamically controlled stimulations. This 

platform features an array of microscale wells, formed via the co-fabrication of chitosan 

with an epoxy photoresist to form a freestanding array of microwells bound by a semi-

permeable hydrogel layer. Through a variety of methods, we have described numerous 

material properties of this biocompatible hybrid platform. More importantly, an overlaid 

layer of inert mineral oil above the wells allows cells lying in the wells to be physically 

isolated from other wells, reducing confounding cellular migration and biochemical 

crosstalk, while maintaining chemical access to the cells for exchange of nutrients and small 

molecules supplied by the user. Use of this platform will enable future high-throughput 

studies of the diversity in cellular biochemistry and genetics.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Fabrication and release of chitosan hydrogel-bottomed microwell array films. (A) 

Fabrication and release protocol. Atop a clean glass slide (i), the chitosan layer is deposited 

via spin-coating and then baked (ii). 1002F negative photoresist is then spin-coated atop 

chitosan layer and soft-baked (iii). UV exposure through a patterned photomask (iv) and 

subsequent development yields a microwell array bottomed by a layer of chitosan (v). 

Soaking in dilute NaOH allows hydration of the chitosan layer and release from the glass 

substrate, yielding a freestanding chitosan: 1002F hybrid film (vi). (B) Attachment of a 

polystyrene cassette to the film creates a two-compartment cell culture system. The upper 

and lower compartments are separated by the chitosan hydrogel layer (note the purple sheen 

of the submicron chitosan layer).
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Fig. 2. 
Imaging of released chitosan-bottomed microwell array films. (A-B) Scanning electron 

micrographs of released, freestanding 1002F:chitosan films imaged from above (A) and 

below (B) the 1002F layer. Each film features 75 μm-diameter microwells 45 μm deep. (C-

D) Scanning electron micrograph of chitosan hydrogel layer cross-section (C) and surface 

(D). (C) shows the area marked by the blue box in (A), while (D) shows the area marked by 

the blue box in (C). Scale bars: (A) 100 μm; (B) 400 μm; (C) 1 μm; (D) 500 nm.
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Fig. 3. 
Optical properties of chitosan films. (A) Absorbance spectrum of hydrated chitosan films 

800 nm in thickness. Spectrum is based on mean absorbance from n = 6 films. (B) 

Autofluorescence of a glass coverslip or chitosan, 1002F, and SU-8 in co-fabricated films. 

Data presented are as mean ± SD, n ≥ 3 films each.
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Fig. 4. 
Spatially-selective covalent modification of chitosan surfaces. (A) Covalent conjugation 

scheme. Use of the homobifunctional crosslinker glutaraldehyde allows functionalization of 

the chitosan surface via its amine moiety for covalent attachment of macromolecules with 

free amines. (B) Quantification of fluorescence fold change over baseline of chitosan- or 

glass-bottomed 1002F microwell arrays incubated with BSA-tetramethylrhodamine after 

treatment with either PBS or glutaraldehyde. * p < 0.05, ** p < 0.01, n = 3 films each. (C-D) 

Fluorescence micrographs of chitosan-bottomed 1002F microwell arrays incubated with 

BSA-tetramethylrhodamine after treatment with either PBS (C) or glutaraldehyde (D). Scale 

bars: 100 μm.
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Fig. 5. 
Permeability of micropatterned 1002F:chitosan films. (A) Workflow diagram for testing 

solute diffusion through chitosan-bottomed microwell arrays. After seeding concentrated 

dye into the upper compartment of freestanding micropatterned films, dye solute will diffuse 

across the chitosan layer and into the bottom compartment. Samples are taken at regular 

intervals from each compartment to determine solute concentration in the compartments. (B) 

Quantitation of the ratio of FITC-dextran concentration C to its theoretical equilibrium value 

Ceq for four different molecular weights of dextran diffusing across a chitosan-bottomed 

1002F microwell array. Data are presented as mean ± SD for each time point, n = 7 films. 

(C) Determination of the theoretical molecular exclusion limit of chitosan films in the 

1002F:chitosan hybrid devices via extrapolation in a plot of diffusivity vs log(MW). The 

theoretical molecular weight exclusion limit is the extrapolated x-intercept of a line fitted to 

the linear region of the D vs log (MW) plot.
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Fig. 6. 
Entrapment of highly proliferative, non-adherent cells in culture medium micropockets. (A) 

Design schematic for entrapping and maintaining nonadherent cells within micropockets of 

culture medium. Seeding cells into chitosan-bottomed microwells and aspirating excess 

media off discontinuously de-wets the upper compartment. Overlay of mineral oil entraps 

cells in the microwells. (B) Physical isolation of clonal cell populations in microwell 

medium pockets. Cells were seeded into unreleased (dead-ended, top two rows) or released 

(freestanding, bottom row) 1002F:chitosan microwell arrays and imaged daily over 48 

hours. Dead-ended microwell arrays were either overlaid with mineral oil or culture 

medium, while freestanding microwell arrays were overlaid with mineral oil in the upper 

compartment and supplied with culture medium was supplied to the bottom compartment. 

Scale bar (lower right): 100 μm.
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Fig. 7. 
Quantitation and heterogeneity of cell proliferation in isolated microwell medium pockets. 

(A) Several adjacent microwells illustrate the heterogeneity of cell proliferation within a 

bulk population of cells. (B) Measurement of number of cells per microwell over time, 

stratified by the initial number of cells in each microwell. Data are shown as mean ± SD for 

256 microwells. (C) Relative frequency distribution of cell doubling time, calculated and 

aggregated based on number of cells present within a given microwell, was determined for 

256 separate microwells. (D) Time-lapse imaging analysis of single cells in 256 microwells 

permits lineage tracing of clonally-expanding individual cells. Lineage tracing of 5 cells 

representative of the heterogeneity in proliferation rates is shown.
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Table 1

Comparison of diffusivity constants to solute molecular weight for chitosan membranes in 1002F:chitosan 

hybrid films.

MW (Da) log MW D (cm2 / s) Error in D

270 2.431364 4.46 × 10-9 1.32 × 10-10

1074 3.031004 2.57 × 10-9 2.44 × 10-10

4000 3.60206 7.36 × 10-10 3.54 × 10-11

10000 4 2.81 × 10-10 1.02 × 10-11

20000 4.30103 9.68 × 10-11 2.27 × 10-12

40000 4.60206 3.42 × 10-12 1.36 × 10-13
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Table 2

Distribution of final cell number from clonally expanding single cells clonally expanding in chitosan-

bottomed 1002F microwells. n = 256 microwells, each with a single cell.

Final number of cells Percentage of microwells

0 (apoptosis) 8.6%

1 16.8%

2 13.7%

3 7.8%

4 34.4%

5 5.1%

6 6.6%

7 3.5%

8 2.3%

9 0.0%

10 0.4%

11 0.4%

12 0.4%
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