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Abstract

Motivation: DNA methylation plays an important role in many biological processes and cancer pro-

gression. Recent studies have found that there are also differences in methylation variations in dif-

ferent groups other than differences in methylation means. Several methods have been developed

that consider both mean and variance signals in order to improve statistical power of detecting dif-

ferentially methylated loci. Moreover, as methylation levels of neighboring CpG sites are known to

be strongly correlated, methods that incorporate correlations have also been developed. We previ-

ously developed a network-based penalized logistic regression for correlated methylation data, but

only focusing on mean signals. We have also developed a generalized exponential tilt model that

captures both mean and variance signals but only examining one CpG site at a time.

Results: In this article, we proposed a penalized Exponential Tilt Model (pETM) using network-

based regularization that captures both mean and variance signals in DNA methylation data and

takes into account the correlations among nearby CpG sites. By combining the strength of the two

models we previously developed, we demonstrated the superior power and better performance of

the pETM method through simulations and the applications to the 450K DNA methylation array

data of the four breast invasive carcinoma cancer subtypes from The Cancer Genome Atlas (TCGA)

project. The developed pETM method identifies many cancer-related methylation loci that were

missed by our previously developed method that considers correlations among nearby methyla-

tion loci but not variance signals.

Availability and Implementation: The R package ‘pETM’ is publicly available through CRAN: http://

cran.r-project.org.

Contact: sw2206@columbia.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Epigenetic alterations in association with promoter CpG islands are

among the most common molecular alterations in human neoplasia.

Promoter hypermethylation leads to long-term silencing of key genes

involved in DNA repair, cell cycle control, apoptosis, angiogenesis

and metastasis, thereby contributing to initiation and progression of

cancer (Marsit et al., 2009). Such promoter hypermethylation is

found in virtually every type of human neoplasm and is as common
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as mutations in classic tumor-suppressor genes in human cancers

(Baylin and Ohm, 2006; Jones and Baylin, 2002; Shen et al., 2013).

For epigenome-wide association studies (EWAS) with high-

dimensional DNA methylation data, methods that take into account

correlations among sites in a gene or among genes in a pathway

have shown to perform better than methods that analyze DNA

methylation sites one at a time (Jiao et al., 2014; Ruan et al., 2016;

Sun and Wang, 2012, 2013; West et al., 2013). Moreover, recent

studies have observed that there are higher variations in cancer tis-

sues than in normal tissues across human cancer types (Hansen

et al., 2011) and several methods were developed that consider both

mean and variance signals (Chen et al., 2014; Ruan et al., 2016;

Teschendorff and Widschwendter, 2012; Teschendorff et al., 2014).

In our previous work, we developed a penalized logistic regres-

sion with network-based regularization, which combines quadratic

Laplacian penalty for smoothness and l1-norm penalty for sparse se-

lection for high-dimensional DNA methylation data (Sun and

Wang, 2012, 2013). This method considers correlation patterns of

CpG sites within a gene or a genetic region and performs variable se-

lection encouraging a grouping effect of CpG sites within a gene or a

genetic region. One noticeable advantage of this network-based

regularization over other group penalty regularization methods is

that it can perform individual selections within a group if there

exists causal and noncausal CpG sites rather than forcing all sites to

be selected. However, this network-based penalized method only

considers mean signals in DNA methylation data. Our group also

developed a generalized exponential tilt model which captures both

mean and variance signals in DNA methylation data with a case-

control design (Chen et al., 2014). But this generalized exponential

tilt model only examines one locus at a time. Most recently, we de-

veloped a network-assisted algorithm, NEpiC algorithm, that con-

siders both mean and variance signals and prior biological

information from the protein-protein interaction (PPI) network

(Ruan et al., 2016). This NEpiC algorithm conducts site-level tests

first combining mean and variance signals and then searches for dif-

ferentially methylated sub-networks using biological information on

gene levels. It does not consider correlation patterns among nearby

methylation sites in a gene or a genetic region.

In this paper, we propose the pETM method, a penalized

Exponential Tilt Model that detects both mean and variance signals

with the network-based regularization considering correlations

among CpG sites in a gene or a genetic region in case-control de-

signs. We have previously demonstrated that the generalized expo-

nential tilt model can identify differentially methylated loci when

cases and controls are different in methylation means only, methyla-

tion variances only or in both (Chen et al., 2014). The proposed

pETM method aims to effectively combine the generalized exponen-

tial tilt model with a network-based penalty function such that it

can detect both mean and variance signals when inducing a grouping

effect of correlated CpG sites within a gene or a genetic region.

We conducted simulation studies to show the performance of the

proposed pETM method comparing to our previously developed

penalized logistic regression method with network-based regulariza-

tion that does not use variance signals. We applied the pETM to the

case-control type of 450K DNA methylation datasets of four sub-

types of breast invasive carcinoma (BRCA) from The Cancer

Genome Atlas (TCGA) project as well as the same ovarian cancer

27K DNA methylation data we previously examined as a compari-

son. The results show that the proposed pETM method that con-

siders correlations among CpG sites and both mean and variance

signals at each CpG site identifies more cancer-related loci than

method that does not consider both pieces of information.

2 Materials and methods

We denote the methylation levels of the ith individual by

xi ¼ ðxi1; . . . ;xipÞT; i ¼ 1; . . . ; n, where p is the total number of CpG

sites and n is the total number of individuals considered. Similarly,

we denote the m covariates such as age and gender by

ti ¼ ðti1; . . . ; timÞT. The exponential tilt model in logistic regressions

(Chen et al., 2014; Qin, 1998) is defined as

log
pðxi; tiÞ

1� pðxi; tiÞ
¼ b0 þ tT

i aþ h1ðxiÞTb1 þ h2ðxiÞTb2; (1)

where pðxi; tiÞ is the probability that the ith individual is a case

based on his/her DNA methylation levels xi and covariate in-

formation ti. The functions h1ð�Þ and h2ð�Þ are pre-specified.

For example, h1ðxÞ ¼ x and h2ðxÞ ¼ x2 if the underlying dis-

tribution of xi is a Gaussian distribution, and h1ðxÞ ¼ �log ðxÞ and

h2ðxÞ ¼ �log ð1� xÞ if the underlying distribution of xi is a Beta dis-

tribution. In this model, we are interested in estimating the intercept

b0, the regression coefficients for covariates a ¼ ða1; . . . ; amÞT and

the regression coefficients b ¼ ðbT
1 ; b

T
2 Þ ¼ ðb1; . . . ; bp;bpþ1; . . . ;b2pÞT

for all CpG sites.

In an exponential tilt logistic regression framework, we can test

H0 : bj ¼ bpþj ¼ 0 to test if there are mean and variance differences

in DNA methylation at the jth CpG site, j ¼ 1; . . . ; p. We previously

proposed a composite likelihood based test statistic to test H0 (Chen

et al., 2014). However, this method only considers one CpG site at a

time and does not incorporate correlations among nearby CpG sites.

To consider correlation patterns among CpG sites within a gene or a

genetic region together with covariate effects, here we combine the

exponential tilt logistic regression with a network-based penalty

function and develop the penalized Exponential Tilt Model (pETM).

The pETM model based on a logistic likelihood can be written as:

�1

n

Xn

i¼1

yi log pðxi; tiÞ þ ð1� yiÞ log ð1� pðxi; tiÞÞf g þ PðbÞ; (2)

where Pð�Þ is a penalty function for regularization, and the response

yi is 0 for controls and 1 for cases. The parameters b0, a and b can

be estimated by minimizing the penalized likelihood function (2).

We previously developed a network-based regularization penalty

function (Sun and Wang, 2012, 2013), which is expressed as:

PðbÞ ¼ k1kbk1 þ k2b
TLb

¼ k1

X2p

j¼1

jbjj þ k2

X2p

u¼1

X
u�v

buffiffiffiffiffi
du

p � bvffiffiffiffiffi
dv

p !2

where k � k1 is a l1 norm, and u � v indicates the index set of all

linked CpG sites to the uth site. The Laplacian matrix L ¼ fluvg rep-

resents a network graph among CpG sites, defined as

luv ¼

1 if u ¼ v and du 6¼ 0

�ðdudvÞ�
1

2 if u and v are linked with each other

0 otherwise ;

8>><>>:
where du is the total number of links of the uth CpG site, and it is

often called a degree of the vertex u in graph theory. The tuning par-

ameters k1 and k2 control the amount of regularization for sparsity

and smoothness, respectively. We used ring or fully connected net-

work graphs for the Laplacian matrix of the penalized logistic re-

gression (Sun and Wang, 2012). In the ring network, only adjacent

CpG sites and the first and the last CpG sites within a gene are con-

nected with each other so that all CpG sites in a gene have two links.
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In the fully connected network, any two CpG sites within a gene are

connected with each other so that each CpG site has s – 1 links

where s is the number of CpG sites in the gene. Both network graphs

basically assume that sites within a gene or a genetic region are

linked with each other so that the Laplacian penalty can induce a

grouping effect on these sites. Our work and others have demon-

strated that the selection using the network-based regularization

outperforms that of other regularization methods (Li and Li, 2010;

Sun and Wang, 2012, 2013; Sun et al., 2014).

In the proposed pETM method when both mean and variance

signals from the same site are examined, we need to consider 2p re-

gression predictors. The first p predictors h1ðxiÞ are for mean signals

and the second p predictors h2ðxiÞ are for variance signals when the

two sets of p-dimensional predictors represent the same set of p-di-

mensional CpG sites. Therefore, we impose an additional link be-

tween the mean and variance predictors from the same sites in the

Laplacian matrix. For example, for the uth CpG site, the uth pre-

dictor h1ðxiuÞ for the mean and the ðuþ pÞ th predictor h2ðxiuÞ for

the variance are linked with each other for u 2 f1; 2; . . . ; pg.
Therefore, for two CpG sites u 6¼ v that are linked, it implies that h1

ðxiuÞ is connected with h1ðxivÞ, with h2ðxiuÞ, and with h2ðxivÞ. This

implementation allows the selection of CpG sites with either differ-

ential means or variances and at the same time takes into account

the fact that the two signals are from the same CpG site.

Although the closed form solution of ðb0; a;bÞ does not exist, the

estimates ðbb0;ba;bbÞ that minimize the penalized exponential tilt

model (2) can be obtained via convex optimization algorithms. One

of the most popular algorithms with high-dimensional sparse data is

a cyclic coordinate descent algorithm that provides the pathwise so-

lution to b along with a fine grid of tuning parameter values for k1

and k2 (Friedman et al., 2010; Simon et al., 2011; Sun and Wang,

2012, 2013). We apply this algorithm to obtain a solution of the

proposed pETM method, where we have a total of 2pþmþ 1 re-

gression parameters with mþ1 parameters being excluded from the

regularization. More specifically, to apply the cyclic coordinate des-

cent algorithm, we first replace the logistic likelihood of the

2pþmþ 1-dimensional predictors by a quadratic approximation

using the Taylor expansion, and then use weighted least squares to

iteratively solve for each bj, j ¼ 1; . . . ; 2p and each al, l ¼ 1; . . . ;m,

(Sun and Wang, 2012, 2013). When we solve for al, we need to set

k1 ¼ k2 ¼ 0 since this parameter is not penalized. Once we get the

solution of ðba; bbÞ, the intercept parameter bb0 can be naturally ob-

tained. The algorithm iteratively updates each parameter until a con-

vergence criterion is met. The computational time to get the

solutions depends mainly on the number of CpG sites and the num-

ber of grids for the two tuning parameters k1 and k2.

Cross-validation is generally used to find the optimal tuning par-

ameter values of k1 and k2 after the pathwise solutions of ðb0; a; bÞ
along with different values of k1 and k2 are obtained. Therefore, the

final selection results of CpG sites that are associated with an out-

come rely on the tuning parameter values selected by cross-

validation.

Alternatively, selection probability of each CpG site can be com-

puted through a finite number of resampling of samples

(Meinshausen and Bühlmann, 2010). It has been shown that selec-

tion probabilities provide much more stable selection results than

cross-validation. Moreover, selection of a set of optimal tuning par-

ameter values is not required to obtain the selection probability for

each CpG site. A few different values of tuning parameters are

enough to rank selected CpG sites by frequency. The computational

cost can thus be drastically reduced, which is essential in analyzing

high-dimensional data. In the proposed pETM model, selection

probabilities of CpG sites are computed based on specified values of

tuning parameters with k ¼ k1 þ 2k2 and a ¼ k1=ðk1 þ 2k2Þ, where

k > 0 controls the amount of regularization and a 2 ½0; 1� controls

the proportion of l1-norm penalty against the Lapacian penalty. If we

denote Ik as the index set of the kth random subsample of f1; . . . ; ng
with the size bn=2c, the selection probability of the uth CpG site is

defined as the following for a given values of ðk; aÞ:

SPðuÞ ¼ max
k;a

1

K
#fk � K : ðbbk;a

u ðIkÞ 6¼ 0Þ [ ðbbk;a

uþpðIkÞ 6¼ 0Þg;

where K is the total number of resamplings and bbk;a

u ðIkÞ is the solu-

tion of bu in the proposed pETM model using the subsample Ik. For

each resampled data, we select nonzero regression coefficients and

the corresponding CpG sites. The selection frequency of each CpG

site from a finite number of resamplings is then computed. That is,

the selection probabilities measure relative selection frequencies of

CpG sites which can be used for ranking purposes. Although tuning

parameter values can affect the magnitude of selection probabilities,

the ranking results should not be affected as selection probabilities

are relative measures. We set the total number of resampling at

K¼100 in both simulation studies and real data applications.

3 Simulation studies

We conducted simulation studies to investigate the performance of

the proposed pETM method that considers both mean and variance

signals and takes correlations among CpG sites into account in a

penalized regression framework. We compared the performance of

pETM with that of penalized logistic regression (plog) we previously

developed (Sun and Wang, 2012).

We simulated methylation b-values similarly as in Sun and Wang

(2012), where multivariate normal values were generated for each

gene and an inverse logit transformation was applied so that methy-

lation data can lie between 0 and 1. The methylation measures were

simulated on gene level where for each gene, the methylation b-val-

ues of the ith individual were generated as:

xi ¼
exp ðtiÞ

1þ exp ðtiÞ
; where ti �

ffiffi
s
p

Nðl;DTRDÞ;

and the scale parameter s¼4 allows the methylation levels to be en-

riched at 0 and 1, mimicking the distribution of real methylation

measures. Here the mean vector l ¼ ðl1; l2; . . . ; l5ÞT controls mean

differences and the diagonal matrix D ¼ diagð
ffiffiffiffiffi
d1

p
;
ffiffiffiffiffi
d2

p
; . . . ;

ffiffiffiffiffi
d5

p
Þ

controls variance differences between case and control groups. The

covariance matrix R is defined as an AR(1) matrix such that

Ruv ¼ qju�vj, where we set q ¼ 0:5 as the correlation among CpG

sites in a gene.

We generated 1000 genes, each having 5 CpG sites. We then se-

lected 8 genes out of 1000 genes and set 4 to have 3 causal CpG sites

out of the 5 sites and the other 4 to have 2 casual sites. That is, there

are 20 causal sites out of 5000 sites. If the jth CpG site is causal and

the mean is different between case and control groups, we then set

lj ¼ 0:5; 0:75, or 1 for cases and lj ¼ 0 for controls. If the jth CpG

site is causal and the variance is different between case and control

groups, we then set dj ¼ 2; 3 or 4 for cases and dj ¼ 1 for controls. If

the jth CpG site is noncausal, we set lj ¼ 0 and dj ¼ 1 for both case

and control groups. We set the sample size to be 50 cases and 50

controls. We examined the corresponding mean and variance effect

sizes of the original methylation b-values empirically and found that

the averaged mean differences of b-values between case and control

groups are 0.148, 0.215 and 0.275 when l is set at 0.5, 0.75 and
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1.0, respectively. Similarly, the averaged ratio of variances of b-val-

ues between case and control groups are 1.342, 1.518 and 1.638

when d is set at 2, 3 and 4, respectively. We also considered two

covariates, one continuous and one binary. The continuous covari-

ate follows a normal distribution with a mean of 0.5 and a variance

of 1 for cases and a mean of 0 and a variance of 1 for controls. The

binary covariate follows a Bernoulli distribution with a probability

0.7 for cases and 0.2 for controls.

In analysis of DNA methylation data, Zhuang et al. (2012) pro-

posed to use methylation M-values, a logit transformed b-values

with base 2, and showed that association results are more reliable

comparing to those using methylation b-values. Therefore, in simu-

lation studies, we applied the proposed pETM method and the com-

paring penalized logistic regression plog method to both b-values

and M-values. For methylation b-values, we applied the pETM

method with a Beta distribution (pETM-B) where h1ðxiÞ ¼ log ðxiÞ
and h2ðxiÞ ¼ log ð1� xiÞ in equation (1). For methylation M-values,

we applied the pETM method based on a Gaussian distribution

(pETM-M) where h1ðxiÞ ¼ xi and h2ðxiÞ ¼ x2
i in equation (1). For

comparison, the plog method (Sun and Wang, 2012) was also

applied to both methylation b-values (plog-B) and M-values (plog-

M). We compared averaged true positive rates of the four methods

based on the top ranked 20, 40 and 80 selected CpG sites by selec-

tion probabilities from 100 simulation replications with differ-

ent values of l and d. Here the true positive rate is defined as the

number of true causal CpG sites out of the selected top ranked

CpG sites divided by the total number of true causal CpG sites

which is 20.

In Figure 1, the three plots in the left column show the averaged

true positive rates of the four comparing methods when there are

only mean signals between case and control groups, i.e. lj ¼ 0:5;

0:75 and 1, and dj ¼ 1. The three plots in the right column display

the averaged true positive rates when there are only variance signals

between case and control groups, i.e. lj ¼ 0, and dj ¼ 2;3 and 4. It

suggests that plog-B/plog-M has slightly higher true positive rates

than the proposed pETM-B/pETM-M when there are only mean sig-

nals. This is expected because plog-B/plog-M is more parsimonious

when there is no variance signal. As pETM-B/pETM-M performs

variable selection on 2�p variables, the selection performance of

the proposed pETM method may not be as good as that of plog

method due to curse of dimensionality. However, as the size of the

mean differences increases, the differences among the true positive

rates from the four comparing methods become almost negligible.

However, plog-B/plog-M can hardly detect any CpG sites that

have only variance differences between case and control groups,

even if the size of the variance differences is large. Instead, the

proposed pETM method can identify CpG sites when there are ei-

ther mean differences or variance differences between case and con-

trol groups.

Figure 2 presents results from the scenario when there are both

mean and variance differences between case and control groups.

The three plots in the left column display the true positive rates of

the four comparing methods when the mean difference is l ¼ 0:5

and the variance ratio is d ¼ 2;3 and 4. The three plots in the right

column display the true positive rates of the four comparing

methods when the mean difference is l ¼ 0:75 and the variance

ratio is d ¼ 2;3 and 4. Similar patterns can be observed as those in

Figure 1. The proposed pETM method has a better selection per-

formance than that of the comparing plog method when there are

both mean and variance signals. When comparing results using

methylation b-values and M-values, both the proposed pETM

method and the plog method have higher true positive rates using

methylation M-values, which is consistent with the findings in

Zhuang et al. (2012). Therefore, in real data application, we will

apply pETM on transformed methylation M-values.

In our simulation studies, data was first generated from a multi-

variate normal distribution to control for mean differences or vari-

ance ratios between case and control groups. We then transformed

the Gaussian data (M-values) into b-values using the inverse of a

logistic function multiplying by 1= log 2. Although we chose the par-

ameter values in the multivariate normal distribution to simulate

M-values so that the transformed methylation beta-values have an

enriched ‘0’ (unmethylated) and enriched ‘1’ (completely methy-

lated) as observed in real methylation data and simulated in our pre-

vious work (Sun and Wang, 2012), we acknowledge that for the

comparison of the two versions of the pETM model (for b-values

and M-values), this may unfairly favor the version for M-values.

Also, we found that the mean signal and variance signal may not be

completely separated due to the transformation. For example, if

only mean signals are designed in the M-values, there will be both

mean and variance signals in b-values after the transformation. We

conducted additional simulation studies to investigate these associ-

ation due to the transformation and included simulation results in

Supplementary Materials Figures S1–S4.

Although results from hypothesis testing and variable selection

are difficult to compare, we conducted additional simulation studies

to compare the performance of the pETM method with that of uni-

variate analysis with two-sample t-test for mean differences and

F-test for variance differences. We ranked genome-wide CpG sites
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Fig. 1. Averaged true positive rates of the top ranked 20, 40 and 80 CpG sites

selected by the plog method using methylation b-values (plog-B), the plog

method using methylation M-values (plog-M), the pETM method using methy-

lation b-values (pETM-B) and the pETM method using methylation M-values

(pETM-M) are displayed when l and d are different between case and control

groups (Color version of this figure is available at Bioinformatics online.)
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by p-values from the t-test or F-test and selected the same number of

top ranked CpG sites by p-values and by selection probabilities from

the pETM model and compared the true positive rates. As the

pETM model (1) takes correlations among CpG sites into account,

and (2) considers both mean and variance signals in DNA methyla-

tion data, we also adapted the existing lasso and elastic-net methods

(which do not consider correlations) adding variance terms and

named them as lasso-var and enet-var and compared their perform-

ance to that of the pETM model to examine the contribution of con-

sidering correlation patterns when both mean and variance signals

are used.

In this simulation study comparing performance of the two uni-

variate methods and lasso-var and enet-var to that of the pETM

method, we considered different effect sizes in means and variances.

Specifically, for all 20 causal CpG sites, lj was randomly generated

from a uniform distribution U(0,1) and dj was randomly generated

from a uniform distribution either U(1,1.5) which is considered as

small effect size or U(1,2) which is considered as moderate effect

size. We also considered different number of selected top ranked

CpG sites and two different samples sizes n¼100 and 200. We

examined the true positive rates of the five comparing methods and

summarized results in Supplementary Materials Figure S5. We no-

tice that only when the number of selected top ranked sites is small

(<100), sample size is small (sample size¼100) and effect size is

small, the univariate t-test or F-test has a better performance than

that of the proposed pETM method. In all other scenarios, the

pETM method performs better. In all scenarios considered, pETM

has a better performance than that of lasso-var and enet-var

methods.

4 Real data applications

We applied the proposed pETM method to the 450K DNA methyla-

tion array data of the four BRCA cancer subtypes from TCGA and

the 27K DNA methylation data from a case control study with ovar-

ian cancer patients and healthy controls to which we previously

applied the plog method (Sun and Wang, 2012). We transformed

methylation b-values into M-values as suggested by our simulation

studies.

The original TCGA BRCA data has DNA methylation measures

on 485 577 CpG sites for 797 tumor samples and 97 normal sam-

ples, among which there are breast cancer subtype information for

192 tumor samples. Within the 192 tumor samples, 31 are the

Basal-like subtype, 12 are the Her2 subtype, 99 are the LumA sub-

type, 45 are the LumB subtype and 5 are the Normal-like subtype.

In addition, 59 out of the 97 normal samples are from independent

subjects from the 192 tumor samples. Thus after further excluding

the 5 normal-like tumor samples, we ended up with 187 tumor sam-

ples and 59 independent normal samples forming a dataset with a

case-control design. We then conducted standard quality control

steps where we removed sites on sex chromosomes and sites overlap

with known single nucleotide polymorphisms (SNPs). We also

removed sites with missing values, and ended up with 317 487 CpG

sites over 19 296 genes for 187 tumor samples and 59 independent

normal samples. We then corrected for the type I/II probe bias using

the ‘wateRmelon’ package (Pidsley et al., 2013).

For each BRCA subtype, we summarized the top ranked 500

CpG sites based on the selection probabilities using the proposed

pETM method and the plog method. We plotted the overlapping

sites selected by both methods and the unique sites selected by either

pETM only or plog only using a Venn diagram. This comparison en-

sures a fair comparison because there are equal number of sites

uniquely identified by each method. We then plotted the sample

standard deviation (SD) ratios against the scaled sample mean differ-

ences for the overlapping sites and the uniquely selected sites separ-

ately, where the scaled sample mean difference at the jth CpG site

was computed as

m�1
Pm

i¼1 xij � ðn�mÞ�1Pn
i¼mþ1 xijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðn� 1Þ�1Pn
i¼1 ðxij � �xÞ2

q ;

where the first m observations are cases and the other n – m observa-

tions are controls, and �x ¼ n�1
Pn

j¼1 xij.

In Figure 3, the Venn diagram and the plots of SD ratios and

scaled mean differences of CpG sites that were detected by pETM

and plog for the Basal-like subtypes are displayed. We can see that

421 sites out of the top ranked 500 sites were selected by both meth-

ods. The plots of SD ratios against mean differences show that sites

selected by pETM only have large SD ratios in general, while sites

selected by plog only have smaller SD ratios. On the other hand, the

scaled mean differences of the top ranked 500 sites are quite similar,

with the scaled mean differences of sites uniquely selected by pETM

slightly smaller than those of sites uniquely selected by plog. Further

investigation found that the 79 sites uniquely selected by pETM

are from 74 genes, among which 68 genes are not overlapping

with uniquely selected sites by plog. We thus further investigated the

top 10 genes out of the 68 genes uniquely selected by pETM and

found that 7 genes were reported to be associated with cancers:
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Fig. 2. Averaged true positive rates of the top ranked 20, 40 and 80 CpG sites

selected by the plog method using methylation b-values (plog-B), the plog

method using methylation M-values (plog-M), the pETM method using methy-

lation b-values (pETM-B) and the pETM method using methylation M-values

(pETM-M) are displayed when l and d are different between case and control

groups (Color version of this figure is available at Bioinformatics online.)
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HIST1H2BJ (Joosse et al., 2011), TRIM72 (Fuentes-Mattei et al.,

2014) and PCDHB15 (Zhang et al., 2015a) were reported to be

associated with breast cancer; R3HDM2 (Wang et al., 2009),

PTPRN2 (Anglim et al., 2008), C3orf21 (Yoon et al., 2010) and

VGLL4 (Zhang et al., 2014) were reported to be associated with

lung cancer; and VGLL4 (Li et al., 2015) was reported to be associ-

ated with gastric cancer.

The Venn diagram and the plots of SD ratios and scaled mean dif-

ferences for the other three subtypes, Her2, LumA and LumB are given

in Supplementary Figures S6, S7 and S8 in Supplementary Materials,

respectively. For the Her2 subtype, 391 sites were selected by both

methods. The plots of SD ratios against the scaled mean differences for

overlapping sites and uniquely selected sites are slightly different from

those for the Basal-like subtype, where the variation of SD ratios of

sites uniquely selected by pETM are not very different from those of

sites uniquely selected by plog. One possible explanation is the small

sample size, where there are only 12 Her2 subtypes. We similarly

investigated the top 10 genes out of the 94 genes uniquely selected by

pETM from 109 uniquely selected sites and found that 9 genes were

reported to be associated with cancers: CLTC (P€arssinen et al., 2007)

and NSD1 (Stephens et al., 2009) were reported to be associated with

breast cancer; SLC25A2 (Motamedian et al., 2015) and ESRRA

(Micci et al., 2014) were reported to be associated with ovarian cancer;

FSD1 (Yamashita et al., 2006) and CREB3L3 (Wichmann et al.,

2015) were reported to be associated with gastric cancer; CARD14

(Oudes et al., 2005) was reported to be associated with prostate can-

cer; LRRFIP1 (Ariake et al., 2012) was reported to be associated with

colorectal cancer; and PARD3 was reported to be associated with both

esophageal squamous cell carcinoma (Zen et al., 2009) and lung squa-

mous cell carcinomas (Bonastre et al., 2015).

For the LumA subtype, 389 sites were selected by both methods.

Similar patterns can be observed in the plots of SD ratios against the

scaled mean differences for overlapping sites and uniquely selected

sites as for the Basal-like subtype. Similarly, we further investigated

the top 10 genes out of the 91 genes uniquely selected by pETM from

the 111 uniquely selected sites. We found that 9 genes were reported

to be associated with cancers: ZNF536 (Zhang et al., 2015b),

LOC399959 (Chen et al., 2015) and TOX (Tessema et al., 2012)

were reported to be associated with breast cancer; FAM171A1

(Mullapudi et al., 2015) was reported to be associated with lung can-

cer; RBMS3 was reported to be associated with both esophageal squa-

mous cell carcinoma (Li et al., 2011) and nasopharyngeal carcinoma

(Chen et al., 2012); OR5B12 (Gandhi et al., 2015) was also reported

to be associated with hepatocellular carcinoma; EGFLAM (Dong

et al., 2014) was reported to be associated with ovarian cancer;

PRRX1 (Lee et al., 2015) was reported to be associated with cervical

cancer; and BMP2 (Tokumaru et al., 2004) was reported to be associ-

ated with head and neck squamous cell carcinoma.

For the LumB subtype, 415 sites were selected by both methods.

Again, similar patterns can be observed in the plots of SD ratios

against the scaled mean differences for overlapping sites and uniquely

selected sites as for the Basal-like subtype and in the LumA subtype.

The further investigation of the top 10 genes out of the 79 genes

uniquely selected by pETM from the 85 uniquely selected site found

that 9 genes were reported to be associated with cancers: SORBS1

(Hicks et al., 2011) and CDH13 (Moelans et al., 2011) were reported

to be associated with breast cancer; BCL9L (Steg et al., 2012) was re-

ported to be associated with ovarian cancer; TTBK1 (Langevin et al.,

2015) was reported to be associated with lung cancer; A2BP1 (Chung

et al., 2011) was also reported to be associated with bladder cancer;

AAK1 (Guo et al., 2011) and ABHD2 (Chen et al., 2006) were re-

ported to be associated with gastric cancer; GPR75 (Ashktorab and

Brim, 2014) was reported to be associated with colorectal cancer;

RASSF5 (Djos et al., 2012) was reported to be associated with neuro-

blastoma; and ABHD2 was also reported to be associated with hepa-

tocellular carcinoma and colon cancer (Chen et al., 2006).

In our earlier article, we applied the plog method to ovarian can-

cer 27K methylation data (Sun and Wang, 2012). For comparison

purposes, here we applied both pETM and plog methods to the

ovarian cancer data and investigated top ranked 50 CpG sites se-

lected by both methods based on selection probabilities. There are

60 distinct CpG sites from the two top 50 lists using the two meth-

ods, among which, 40 CpG sites overlap, and 10 sites were uniquely

identified by each method. For the 40 overlapping CpG sites, the

scaled mean differences range from –1.005 to 0.880, and the SD

ratios range from 0.806 to 1.680. This indicates that both the pro-

posed pETM method and plog method can identify CpG sites that

have relatively large mean differences between cases and controls.

The 10 CpG sites uniquely identified by the plog method have rela-

tively smaller mean differences comparing to the 40 overlapping

sites with the scaled mean differences ranging �0:622 � 0:774, and

SD ratios ranging 0.988 �1.696). In contrast, the 10 CpG sites

uniquely identified by the pETM method have larger SD ratio with

the scaled mean differences ranging �0:964 � 0:892, and SD ratios

ranging 0.889 �4.230. One CpG site, ‘cg02331561’, has the scaled

mean difference of 0.0162 but SD ratio of 4.23. Therefore, it could

not be identified by the plog method. This CpG site is in gene

ABCA3, which is a known cancer-related gene according to the

human protein atlas (http://www.proteinatlas.org/) and has been re-

ported to be associated with some cancers (Januchowski et al.,

2014; Yasui et al., 2004).

5 Discussion

In this article, we proposed a penalized exponential tilt model

(pETM) to identify differentially methylated sites for analysis of

plog pETM
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Fig. 3. For the BRCA Basal-like cancer subtype, the top ranked 500 sites se-

lected by the pETM and plog methods are summarized in the Venn diagram

in the top-left panel. Scaled mean differences and SD ratios of sites selected

by both methods are shown in the top-right panel. Scaled mean differences

and SD ratios of sites uniquely selected by either plog or pETM are shown in

the bottom-left panel or the bottom-right panel, respectively
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high-dimensional DNA methylation data that considers both mean

and variance signals when correlations among CpG sites in a gene or

a genetic region are taken into account. Although the model formu-

lation of pETM is similar to our previous work (Sun and Wang,

2012), the new pETM method incorporates the nice features of the

generalized exponential tilt model (ETM) when different types of

kernel functions can be employed to capture variance signals and

higher order signals. Simulation studies demonstrated the superior

performance of the proposed pETM method when there are both

mean and variance signals or only variance signals comparing to

that of our previously developed penalized logistic regression (plog)

method that considers correlations among CpG sites in a gene or a

genetic region but ignores variance signals. When there are only

mean signals in DNA methylation data, the proposed pETM method

might be slightly underpowered comparing to the plog method.

The proposed pETM method uses the Laplacian matrix for

network-based regularization where we used the ring and the fully

connected network graphs for correlated CpG sites with a gene. It is

possible that CpG sites from different genes of the same pathway are

also correlated. However, to consider correlations both ‘between

gene levels’, and ‘within gene levels’ is very challenging and could be

a separate research topic that deserves full attention.

We currently used the Laplacian matrix with 0/1 to represent

existing/not-existing links between CpGs in a gene for the network-

based regularization to reflect the network structure among CpGs.

However, correlations among nearby CpG sites may decrease as dis-

tances between sites increase, i.e. spatial correlations may exist. In

this case, a weighted Laplacian matrix may capture this spatial cor-

relation. Our past experience with weighted Laplacian matrix sug-

gests a minimum improvement in variable selection performance

over 0/1 connections. However, this deserves further investigation in

future work.

With the pETM method, we selected top ranked CpG sites by se-

lection probabilities for further investigation. Although there is no

theoretical justification on how many top ranked CpGs sites should

be selected, we recommend to further investigate CpG sites that are

selected in at least 60% of the resamplings, i.e. sites with selection

probability>60% based on our experience. We developed the

pETM method for a case-control design with high-dimensional

DNA methylation data. It can be readily extended to other types of

study designs. In DNA methylation studies, a matched case-control

design with methylation data from tumor and adjacent normal tis-

sues is commonly used. For matched case-control designs, a penal-

ized exponential tilt model for conditional logistic regression can be

adapted and developed. The R package ’pETM’ implementing the

developed pETM method is available through CRAN.
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