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Abstract

Motivation: Mutations (or Single Nucleotide Variants) in folded RiboNucleic Acid structures that

cause local or global conformational change are riboSNitches. Predicting riboSNitches is challeng-

ing, as it requires making two, albeit related, structure predictions. The data most often used to ex-

perimentally validate riboSNitch predictions is Selective 20 Hydroxyl Acylation by Primer

Extension, or SHAPE. Experimentally establishing a riboSNitch requires the quantitative compari-

son of two SHAPE traces: wild-type (WT) and mutant. Historically, SHAPE data was collected on

electropherograms and change in structure was evaluated by ‘gel gazing.’ SHAPE data is now rou-

tinely collected with next generation sequencing and/or capillary sequencers. We aim to establish

a classifier capable of simulating human ‘gazing’ by identifying features of the SHAPE profile that

human experts agree ‘looks’ like a riboSNitch.

Results: We find strong quantitative agreement between experts when RNA scientists ‘gaze’ at SHAPE

data and identify riboSNitches. We identify dynamic time warping and seven other features predictive

of the human consensus. The classSNitch classifier reported here accurately reproduces human con-

sensus for 167 mutant/WT comparisons with an Area Under the Curve (AUC) above 0.8. When we ana-

lyze 2019 mutant traces for 17 different RNAs, we find that features of the WT SHAPE reactivity allow

us to improve thermodynamic structure predictions of riboSNitches. This is significant, as accurate

RNA structural analysis and prediction is likely to become an important aspect of precision medicine.

Availability and Implementation: The classSNitch R package is freely available at http://classsnitch.

r-forge.r-project.org.

Contact: alain@email.unc.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A persistent challenge in the field of structural biology is accurately

predicting the conformational and ultimately functional conse-

quences of a mutation on a protein or nucleic acid (Chauhan and

Woodson, 2008; Cheng et al., 2005; Churkin et al., 2011; Russell

et al., 2002a,b). For both nucleic acids and proteins, accurately pre-

dicting the extent of disruption is generally more challenging than

predicting the entire structure (Miao et al., 2015; Waldispuhl and

Reinharz, 2015; Wan et al., 2014). Indeed it requires making two,

albeit related structure predictions. The data most often used in

conjunction with RiboNucleic Acid (RNA) structure prediction al-

gorithms are chemical and enzymatic probing experiments (Corley

et al., 2015; Ritz et al., 2012; Solem et al., 2015). These experi-

ments, in particular Selective 20 Hydroxyl Acylation by Primer

Extension (SHAPE) provide nucleotide resolution structural infor-

mation and are exquisitely sensitive to structure change (Cruz et al.,

2012; Kutchko et al., 2015; Rice et al., 2014; Siegfried et al., 2014).

Recent technological advances enable this data to be collected with

unprecedented throughput (Siegfried et al., 2014); traditionally this

data was carefully human curated to ensure accuracy, which is
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simply not possible in the genomic context (Ritz et al., 2012; Rocca-

Serra et al., 2011; Sansone et al., 2012).

Chemical and enzymatic probing techniques have long been used

in structural, kinetic and thermodynamic characterizations of nu-

cleic acids (Brenowitz et al., 1986a,b; Deras et al., 2000; Sclavi

et al., 1997). Until the advent of capillary sequencing and more re-

cently next generation sequencing, the experiments were carried out

using traditional gel electrophoresis (Brenowitz et al., 1986a,b; Petri

and Brenowitz, 1997). Although informatics tools were developed

to rapidly quantify these complex electropherograms, most struc-

tural insight was still gleaned by ‘gel gazing;’ for an effect to be ro-

bust the scientist had to be able to visualize it (Das et al., 2005; Das

et al., 2008; Russell et al., 2002a,b; Takamoto et al., 2004). With

high-throughput probing experiments rapidly becoming the norm, it

is impossible to systematically visualize all the data.

In this manuscript we are specifically interested in mutation

induced structure change in RNA and in particular the detection of

riboSNitches using chemical and enzymatic probing data (Corley

et al., 2015; Halvorsen et al., 2010; Lokody, 2014; Martin et al.,

2012; Ritz et al., 2012; Solem et al., 2015; Wan et al., 2014).

Accurately detecting riboSNitches experimentally is essential to es-

tablishing robust benchmarks (Corley et al., 2015; Ritz et al., 2012).

Moreover, as transcriptome-wide structure probing experiments rap-

idly become the norm (Martin et al., 2012; Wan et al., 2012, 2014),

efficiently detecting riboSNitches is likely to become an important

component of personalized medicine (Solem et al., 2015). The main

premise for the work presented in this manuscript is in the history of

chemical and enzymatic probing techniques and in particular the

value of expert human decision making in the determination of

whether a structural change is significant. In particular, the distinc-

tion between a local structural change affecting several residues and a

global structure change affecting a majority of residues.

Human ability to visually detect patterns in data is exceptional;

even in the field of RNA structure, humans readily design better

RNA folds than purely automated programs (Lee et al., 2014;

Rowles, 2013; Treuille and Das, 2014). Interestingly, with enough

examples machines can then learn the rules used by humans to make

these designs (Lee et al., 2014). In this manuscript, we aim to auto-

mate some of the human skills associated with ‘gel gazing’ and apply

these to the problem of identifying riboSNitches from high-

throughput SHAPE data. We are particularly interested in under-

standing how humans interpret SHAPE data and what features of

the signal they use to classify structure change. We are also inter-

ested in determining whether there is a consensus among users of

SHAPE data as to what constitutes a small or large change in RNA

structure. We therefore created a platform for easily visualizing

SHAPE traces and asked experts in the field to classify traces and

structures. As will be shown below, there is surprising agreement in

human appreciation of the data and from these classifications we

are able to identify novel metrics that reproduce the manual classifi-

cations. We are therefore able to report a structural classification

scheme that quantitatively reproduces the process of ‘gel gazing.’

Our classifier allows us to simulate human eyes on high-throughput

datasets and identify important differences in specific RNAs’ sensi-

tivity to mutation.

2 Materials and methods

2.1 Dataset
SHAPE traces for 17 mutate-and-map experiments were obtained

from the publicly available RNA Mapping DataBase (RMDB)

(Cordero et al., 2012; Kladwang et al., 2011a,b,c). These 17 RNA

database entries had a total of 2019 WT and single-point mutant

trace pairs (Supplementary Material, Table S1). Of these trace pairs,

200 pairs were chosen for manual evaluation by 14 experts. Due to

incomplete survey results we were able to obtain a majority consen-

sus from at least 14 experts on 167 of the pairs.

2.2 Data normalization and noise reduction
Each WT trace was normalized to a mean reactivity of 1.5.

A multiplier was used to normalize the respective mutant trace. The

multiplier was chosen that minimized the difference between the

WT and mutant traces. We reduced noise by setting mutant SHAPE

values equal to the WT value, if both reactivities were outliers as

defined by (Karabiber et al., 2013). To remove end effects, 8% of

the data was trimmed from the 50 and 30 ends. Normalization and

noise reduction are further explained in Methods Supplementary,

Section S2.2.

2.3 Human expert evaluations
An online survey was created for the manual evaluation of 200 WT/

mutant trace pairs. A trace pair consisted of a single WT trace and a

mutant trace. The same WT trace could be used in multiple pairs

with different mutants. The WT structure determined from the

mutate-and-map experiments was provided, along with the WT

SHAPE trace, the mutant SHAPE trace, the overlay of the WT and

mutant traces, and the difference between the WT and mutant trace

(Kladwang et al., 2011a,b,c). Survey participants were asked to label

each WT/mutant pair as having: (i) no differences or small differ-

ences, (ii) local differences or (iii) global differences (Methods

Supplementary, Section S2.3). For the purpose of this survey, local

differences were considered to be close to the mutation site in se-

quence space. Under this definition, local changers in secondary

structure space may be misclassified as global changers. Similarly,

global changers in secondary structure space may be misclassified as

local changers. Therefore, it is useful to consider secondary structure

in structure change prediction, but the true secondary structure for

an RNA is difficult to obtain experimentally. To address this we

compared the expert classification to secondary structure prediction

guided by SHAPE data. It is important to note that using predicted

secondary structures in lieu of experimental structures is imperfect

and likely increases the perceived secondary structure classification

error by the experts. The experts did occasionally classify local chan-

gers in predicted secondary structure as global changers. However,

the experts rarely classified global changers in secondary structure

as local changers. (Supplementary Material, Table S8). Experts were

filtered using a set of questions that gauged their familiarity with the

biological sciences, RNA, RNA structure and SHAPE experiments.

We identified 14 respondents in our survey results who self-

identified as experts.

2.4 Feature and algorithm selection
Twenty-three features were initially used to quantify WT and mu-

tant SHAPE trace differences and are reported in Table 2 and

Supplementary Material, Table S2. These features rely solely on the

experimental data and are completely independent of any structure

prediction. Recursive feature elimination, using the caret package in

R (Kuhn, 2008; Saeys et al., 2007) identified 8 features from the set

of 23 that optimally classified the human consensus. In addition we

used the WEKA suite to execute thirty-five classification algorithms

using the default settings with 5-fold cross-validation (Hall et al.,

2009). From these algorithms, random forest was selected as the
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most accurate for classification (Supplementary Material, Table

S3) based on the number correctly predicted for non-changers.

Assuming a tie at this level, we then selected the most accurate

based on local changers and then global changers. We used this

ranking because the distinction between change and no change is

the most biologically important in our opinion. Further visual

analysis of specific traces suggests that the random forest algo-

rithm better distinguishes between local and non-changers than

the next best performing algorithms, Multilayer Perceptron and

Kstar. This is particularly true for WT/mutant pairs with minimal

differences in pattern, but sizeable differences in magnitude such

as the G55U mutation in the 16S four-way junction, which we il-

lustrate in Supplementary Material, Figure S1. KStar and

Multilayer Perceptron mislabel the pair as a local changer, while

Random Forest correctly identified the pair as a non-changer in

agreement with the majority vote of experts. Although these

minor differences in classification do not indicate that random

forest is statistically better than Kstar and Multilayer Perceptron,

the correct classification by random forest on these particularly

difficult comparisons led us to choose it for implementation in the

classSNitch approach. We built a random forest classifier on the

set of 167 trace pairs using the randomForest R package with

5001 trees and default settings (Breiman, 2001; Liaw and Wiener,

2002). The random forest classifier was used to predict the classes

for the entire set of 2019 normalized and noise reduced WT/mu-

tant trace pairs. Feature selection, algorithm selection, and model

building are further explained in Methods Supplementary,

Section S2.4. The model’s robustness to noise was tested using

both simulated noise and repeated experiments (Supplementary

Material, Fig. S2).

2.5 classSNitch package
An R package was created for the identification of RNA structure

change in large amounts of SHAPE data. The package includes

methods for normalization, noise reduction, and calculating fea-

tures. Feature calculations include pattern change, dynamic time

warping, change contiguousness, Pearson correlation, Euclidean

norm, change variance, eSDC and change range. The package can

identify structure change in new SHAPE datasets based on an exist-

ing classifier. classSNitch is currently available at R-Forge.

2.6 WT SHAPE improved SNPfold
We modified the SNPfold scoring scheme, which is based on the WT

and mutant Pearson correlation coefficient (Halvorsen et al., 2010),

to include the WT SHAPE prediction as follows:

Score ¼ �SNPfoldscore þ SHAPEf0;1g þGorCf0;1g (1)

where SHAPE{0,1} is 1 if the WT SHAPE reactivity is above the me-

dian value of the trace, 0 if it is below; GorC{0,1} is 1 if the WT nu-

cleotide is a G or C, 0 otherwise. SNPfold is further explained in

Methods Supplementary, Section S2.6.

3 Results

3.1 The ‘obvious’ riboSNitch
Figure 1A illustrates the published secondary structure of the apo

Glycine riboswitch based on multiple probing experiments, phylogen-

etic analysis and partial crystal structures (Butler et al., 2011;

Kladwang et al., 2011a,b,c). The nucleotides are color coded accord-

ing to SHAPE reactivity (red high, yellow medium and black low). In

Figure 1B, the corresponding experimental SHAPE data for the WT

RNA is plotted as a black line. A qualitative relationship between the

structure and experimental data is evident when the data is presented

in this way; in general paired nucleotides have low SHAPE reactivity,

while unpaired bases have a ‘peak’ in the profile. In a gel electro-

pherogram, the peaks would be darker, and the paired nucleotides

lighter. Figure 1C illustrates the experimental SHAPE data and cor-

responding SHAPE-directed structure prediction for the A125U mu-

tation in the Glycine riboswitch. The overlay of the two traces reveals

no visible difference between the WT (WT, black) and mutant

(MUT, blue) trace; the structure prediction is nearly identical to that

Fig. 1. Structure change patterns in SHAPE trace data for the glycine riboswitch aptamers from Fusobacterium nucleatum. (A) Published WT structure for the apo

glycine riboswitch aptamers consistent with the crystal structure and multiple independent structure probing experiments (Butler et al., 2011; Kladwang et al.,

2011a,b,c). Red nucleotides indicate high SHAPE reactivity, yellow indicates mid-range reactivity, and black indicates low reactivity. (B) The individual WT trace is

shown in black; the colored bars indicate the structural regions for each of the aptamers: P1 (orange), P2 (green) and P3 (blue). (C) The WT trace (black) is overlaid

with the mutant SHAPE trace (dark blue), and the absolute difference between the WT and mutant traces is below (dark green). A red bar on the traces shows the

mutation site. The A125U mutation is a mutation that leads to no appreciable differences in structure. 100% of experts that classified this mutant labeled it as a

non-changer. (D) The A116U mutation leads to a local structure change, where the mutant trace reactivity increases at the mutation site disrupting the P3 region

of domain 2. 66% of experts that classified the A116U mutant labeled it as a local changer. (E) The A94U mutation leads to a global structure change, where the

mutant trace reactivity increases at both the mutation site and at nucleotides distant in sequence space disrupting both the P1 and P2 regions of domain 2. 66%

of experts that classified the A94U mutant labeled it as a global changer (Color version of this figure is available at Bioinformatics online.)
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of the WT. Not surprisingly, mutating A125 in domain 2 (P3) does

not affect structure, as this nucleotide is not paired.

In Figure 1D we report the SHAPE-directed prediction for the

A116U mutation, which occurs in the P3 helix of domain 2. In this

case we see a local difference in the SHAPE trace, and the predicted

structure does not contain this region of P3. This mutation has dis-

rupted a single hairpin. It is important to note that the resulting

SHAPE differences are readily visualized with the difference of the

two traces (green trace, right panel). Figure 1E shows the effect of dis-

rupting a base in the P2 stem in domain 2 with the A94U mutation.

This results in a change in the P1 helix of domain 2 as well and is con-

sidered a global change. We chose to illustrate these three mutations

from the 158 available for the Glycine riboswitch (Cruz et al., 2012)

as they are visually striking. As will be revealed below, not all muta-

tion induced RNA structure change is as clear to visualize.

3.2 Human consensus on local and global

structure change
The complexity of interpreting SHAPE traces is illustrated in Figure 2.

Here we plot the WT structure for the 16S four-way junction from the

E.coli ribosome, as well as the mutant SHAPE data for A26U, A47U

(P2b) and U99A (P1c). In each of these cases, it is not visually evident if

the structure change is local, global, or if the data is simply inadequate.

It is important to note that these SHAPE data are collected in a high

throughput fashion, robotically and often not replicated (Cheng et al.,

2015; Cordero and Das, 2015; Kladwang et al., 2011a,b,c; Miao et al.,

2015). This is one of the main differences in the way in which chemical

and enzymatic probing is now collected. Because it can be collected in a

very high throughput way, emphasis is placed on multiple experiments

(all mutations in an RNA) rather than multiple replicates. Although it

would be ideal to replicate these large-scale experiments there is a sig-

nificant financial cost associated with multiple replicates.

In visually inspecting traces like the ones illustrated in Figure 2A,

we observed that in general most people in our lab agreed that A26U

does not alter structure, A47U causes a local change, and U99A ap-

pears to alter the structure globally. We therefore decided to evaluate

if RNA scientists, when presented with these types of traces and the

accepted secondary structure of the RNA, agree on the classification

of these data into none, local and global change. We recruited 14 vol-

unteers from multiple RNA labs to answer an online survey in which

each person would classify up to 200 traces (WT/MUT comparisons)

into none, local and global changes. In total 1427 comparisons were

manually classified, with an average of seven views for each trace

(Table 1). From this data we built a consensus human classification of

the traces and evaluated each expert’s ROC (receiver operator curve)

area under the curve (AUC) to the consensus (Fig. 2B). Since this is a

three-way classification we evaluate AUC pairwise for none, local and

global change. As can be seen the expert reproducibility is high (AUC

average above 0.8) which indicates RNA scientists agree with each

other at least with respect to what structure change looks like in a

SHAPE trace. We also evaluate human three-way AUC using a cob-

web plot (Fig. 2C). This shows that the largest disagreement between

self-reported RNA SHAPE experts is in their classification of local ver-

sus global change. The average AUC is still 0.8 (blue) suggesting the

disagreement is weak. The green AUC curves in Figure 3A, show that

for all but distinguishing global vs. none (rightmost graph) eSDC per-

forms quite poorly.

We also investigated whether another standard metric, the

Euclidean distance (blue AUC) did any better and observed a similar

trend. The mean expert performance is shown in black, and is far su-

perior to any single metric. Thus, to achieve consensus, RNA

scientists must be looking at other features in the data than simple

correlations in the pattern. We set out to discover what these are

and to develop an automated classification system of RNA structure

change that simulates human consensus calls.

3.3 Automated classification of mutation induced

structure change
To develop an automated classifier for identifying mutation induced

structure changes in RNA we began by establishing a list of 23 fea-

tures commonly used to evaluate quantitative differences

Fig. 2. Expert evaluation of RNA structure change in SHAPE data. (A)

Accepted WT structure for the 16S four-way junction domain from the E.coli

ribosome in agreement with the crystal structure and multiple structure prob-

ing experiments (Cordero and Das, 2015; Tian et al., 2014; Zhang et al., 2009).

Red nucleotides indicate high SHAPE reactivity, yellow indicates mid-range

reactivity, and black indicates low reactivity. For each mutant, the WT trace

(black) is overlaid with the mutant SHAPE trace (dark blue). The absolute dif-

ference between the WT and mutant traces is depicted below (dark green).

100% of experts that evaluated the A26U WT mutant pair agree that there is

no difference or a small difference. 88% of experts agree that the A47U muta-

tion creates a local difference. Experts are split on the U99A mutation. 37.5%

of experts indicated that the mutation creates no difference or a small differ-

ence, 37.5% of experts indicated that the mutation creates a local difference

and 25% of experts indicated the mutation creates a global or distant muta-

tion. (B) ROC curve analysis was used to compare expert classification to the

majority vote consensus. The gray curves represent individual expert per-

formances, while the black curves show the average performance among ex-

perts. The ROC curves are depicted for performance in identifying non-

changers (red), local changers (blue) and global changers (green). (C)

Cobweb plots show the percentage of mutants mislabeled by the expert ma-

jority vote with non-changers on the red axes, local changers on the blue

axes, and global changers on the green axes. Expert classification is least

consistent on differences between global and local changers with a higher

percentage of global changers mislabeled as local changers, and local chan-

gers mislabeled as global changers (Color version of this figure is available at

Bioinformatics online.)
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between two linear datasets (Table 2 and Supplementary Material,

Table S2). Using the human survey classification (Table 1) for super-

vised learning, we trained 38 different algorithms and evaluated

their accuracy. The results of this training are provided in

Supplementary Materials, Table S3 and suggest the Random Forest

classifier performs the best on this data using the eight features

found in Table 2. The trained random forest classifier on these eight

features is the algorithm used in the classSNitch R package released

with this manuscript.

Interestingly no single feature drives the classification, indicating

that the human experts are looking at multiple features of the signal

to decide what is or is not a change. Nonetheless we performed ran-

dom feature elimination and did identify that dynamic time warping

alone achieves an accuracy of 65% (Supplementary Material, Fig.

S5A). Dynamic time warping is less sensitive to distortion caused by

local misalignments, a quality that makes the technique useful in

speech recognition and likely contributes to the feature’s success in

our classifier (Sakoe and Chibe, 1978). We also ranked the eight fea-

tures by their importance and see that each feature increases accur-

acy incrementally when added to the model in approximately equal

increments. Plotting the WT to mutant Pearson correlation coeffi-

cient and contiguousness versus dynamic time warping

(Supplementary Material, Fig. S5B) reveals how these features cor-

relate but also illustrates subtle differences in how these different

features classify change.

We illustrate the basic dynamic time warping principle in

Supplementary Material, Figure S4A and how we score differences

based on this trace alignment strategy. The score increases as the

two traces differ and is calculated over the entire alignment.

Dynamic time warping is visualized on the U99A data in

Supplementary Materials, 4B. It identifies the minimum number of

insertions and deletions to optimally align the mutant and WT

traces. As such, a higher dynamic time warping score indicates

greater differences in the traces. It is therefore likely that the expert

humans are performing some form of trace alignment combined

with pattern matching when evaluating the data. Processing SHAPE

data (whether it is obtained by capillary or next generation sequenc-

ing) requires an alignment strategy. It is not surprising that humans

may choose to ignore small frame shifts in the data (which lead to

very high eSDC values) since they know these are most likely errors

in trace alignment (Supplementary Material, Fig. S6).

Overall, the classSNitch performance (purple line Fig. 3A) is

equivalent to human consensus for none, local and global change.

The cobweb plot reveals that the highest error rate in classSNitch

classification is false negatives for local change (Fig. 3B). In com-

parison to eSDC and the Euclidean distance (green and blue AUC,

respectively) our classifier performs significantly better. Thus

classSNitch is a good approximation of human expert classification

of SHAPE trace differences and applying it to high-throughput mu-

tational datasets can simulate human consensus classification of

these data.

3.4 classSNitch analysis of experimental

structure change
The training data used for the development of the classSNitch classi-

fier (Table 1) represents a small subset of publically available muta-

tional SHAPE data (Cordero et al., 2012). We identified a total of

2019 SHAPE traces for eleven different RNAs (Supplementary

Material, Table S1). We classified these using the classSNitch algo-

rithm excluding the training set of 167 RNAs. In this dataset we

identified 382 local changers (19%), and 111 global changers (5%).

When these data are further broken down by RNA (Fig. 4A) we im-

mediately observe significant differences in the sensitivity of muta-

tion in these RNAs. Some RNAs, like the homeobox (Hox) A9

50UTR, are more resistant to mutations. The Hox mRNAs are

involved in development, and the 50UTR plays an important role in

ribosome-mediated translational control. It is highly structured and

folding to a specific conformation is essential to function (Alexander

et al., 2009; Xue et al., 2015). Similarly, the phenylalanine-transfer

RNA, 16S four-way junction and 5S ribosomal RNA are also rela-

tively resistant to mutation. Other RNAs are more sensitive to muta-

tions, like the synthetic Tebowned aptamer that was designed in the

Eterna laboratory as part of their online game (Cordero and Das,

2015; Lee et al., 2014). RNAs folded in different solution condi-

tions, such as aptamers in the absence or presence of their ligand, re-

spond differently to mutation as well (Fig. 4B). For the adenine and

glycine riboswitches, ligand binding increases the RNA’s sensitivity

to mutations. The synthetic Tebowned aptamer has decreased

Fig. 3. classSNitch performance. (A) ROC curve analysis comparing methods

for classifying structure change to the majority consensus by experts. The

ROC curves are depicted for performance in identifying non-changers (red),

local changers (blue) and global changers (green). The methods used for ex-

perimental classification are classSNitch (purple), eSDC (green), Euclidean

norm (blue) and the mean expert human performance (black). Consistently,

classSNitch performs comparably to the mean expert evaluation. classSNitch

outperforms eSDC and the Euclidean norm, which are the current metrics for

classifying RNA structure change in SHAPE data. (B) The cobweb plot shows

the percentage of traces mislabeled by classSNitch; a higher percentage of

local changers are misclassified (Color version of this figure is available at

Bioinformatics online.)

Table 1. Expert evaluation summary

Survey statistics

Total Traces 200

Total Experts 14

Total Responses 1427

Mean Trace Coverage 7.24

SD Trace Coverage 2.78

Mean Expert Agreement (%) 79.75

SD Expert Agreement (%) 0.79

Expert Reproducibility (%) 79.70

Total Non-Changers (Majority Consensus) 107

Total Local Changers (Majority Consensus) 40

Total Global Changers (Majority Consensus) 20

Note: Human survey statistics on WT/mutant SHAPE trace pair

classification.
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sensitivity to mutations when in the presence of ligand. The chem-

ical modifier used in chemical mapping experiments also affects the

SHAPE data and ultimately sensitivity to structure change

(Supplementary Material, Fig. S7). N-methlyiastoic anhydride

(NMIA) is less reactive and requires a longer time to react than

1-methyl-7 nitroisatoic anhydride (1M7) (Mortimer and Weeks,

2007). Given the kinetics of the reaction, it is not surprising that

1M7 can detect more subtle differences in structure that could be

occurring on a shorter time scale.

Most structure prediction programs have low accuracy when

identifying experimental riboSNitches with AUC values ranging

from 0.6 to 0.7 (Corley et al., 2015; Ritz et al., 2012). In these

benchmark studies, validation of the experimental data is analyzed

using simple metrics like eSDC or the Euclidean distance (Corley

et al., 2015; Ritz et al., 2012). One possible explanation for the

poor predictive performance of the prediction algorithms in these

benchmark studies is misclassification of the experimental data with

these simple metrics. Indeed, when we observe the performance of

SNPfold on data classified with either eSDC or Euclidean difference,

the AUC values indicate the algorithm is barely predictive (Fig. 5A).

We observe a subtle improvement in performance when we use the

classSNitch classification of the experimental data. A similar per-

formance increase is observed for the other published algorithms de-

signed for riboSNitch prediction (Fig. 5B) (Halvorsen et al., 2010;

Sabarinathan et al., 2013; Salari et al., 2013). Thus, misclassifica-

tion of experimental data is likely a confounding factor for the poor

performance of riboSNitch prediction algorithms, and the use of

classSNitch in future benchmarking studies may improve prediction

accuracy. Details on algorithm parameters can be found in Methods

Supplementary, Section S3.4.

The mutational strategy data is based primarily on four types of

transversion mutations (Kladwang et al., 2011a,b,c) as seen in

Supplementary Material, Table S4. The data presented in this table

indicates mutating C or G in the WT sequence is more likely to in-

duce structure change than mutating A or U with an odds ratio of

1.9, P<0.001. We also observed that low SHAPE reactivity in the

experimentally predicted WT structure is more likely to lead to

structure change when mutated (OR¼1.4, P<0.05).

3.5 WT SHAPE informed riboSNitch detection
It is well established that incorporating SHAPE into RNA structure

folding algorithms improves secondary prediction performance

(Diegan et al., 2009). Since we use SHAPE data to detect

riboSNitches, it does not make sense to include experimental data

for the WT and mutant in structure predictions. Nonetheless our

analysis of sequence composition and WT SHAPE data for local and

global changers does suggest an alternative. Can the WT SHAPE

trace alone inform riboSNitch predictions? This is an attractive

strategy since ultra high-throughput techniques exist to collect WT

data on a genome-wide scale (Siegfried et al., 2014).

The major bottleneck in collecting systematic mutational infor-

mation is the molecular biology required to synthesize and validate

each mutant. When we modify the SNPfold algorithm scoring to

Table 2. Features used to quantify differences between WT and mutant traces

Feature Formula Description

Pearson CC PCC(SHAPEref,

SHAPEalt)

Pearson correlation coefficient is the covariance between the wild type and mutant trace SHAPE

values divided by their standard deviations. Additional descriptions can be found in

Supplementary Material, Figure S3

Pattern CC PCC(Changeref,

Changealt)

Pattern correlation coefficient is the Pearson correlation coefficient between wild type and mu-

tant trace patterns. The trace pattern is given by increase (þ1), decrease (-1) or no change (0)

in SHAPE value moving from one nucleotide to the next across the entire length of the RNAs.

The pattern change between wild type and mutant traces are positions where the trace patterns

different. Additional descriptions can be found in Supplementary Material, Figure S3

Contiguousness # of icontiguous Contiguousness is the number of contiguous stretches of pattern change between wild type and

mutant traces. See Pattern CC. Additional descriptions can be found in Supplementary

Material, Figure S3

Change Range max(idiff) – min(idiff) Change range is the interval containing all pattern changes between wild type and mutant traces.

See Pattern CC. Additional descriptions can be found in Supplementary Material, Figure S3

Change Variance Ri(idiff -mean(idiff))/N Change variance is the spread of pattern change distances between the wild type and mutant

traces. The pattern change distance is the distance away from the mutation site (in nucleotides)

that a pattern change occurs. See Pattern CC. Additional descriptions can be found in

Supplementary Material, Figure S3

Dynamic time warping dynamic time warping

algorithm

Dynamic time warping is an algorithm to optimally align wild type and mutant traces by ‘warp-

ing’ one into the other (Giorgino, 2009). Dynamic time warping aligns two series on the sides

of a grid. The distance between each point in the two series is calculated for every position in

the grid. Summing over the minimum distance path along the grid gives the overall distance.

Additional descriptions can be found in Supplementary Material, Figure S4

eSDC (1-PCC(SHAPEref,

SHAPEalt)*sqrt(N)

Experimental structural disruption coefficient is 1 minus the Pearson correlation coefficient be-

tween the wild type and mutant traces, normalized by the square root of the length of the

RNA (Ritz, et. al, 2012). See Pearson CC. Additional descriptions can be found in

Supplementary Material, Figure S3

Euclidean Norm Ri(SHAPEref[i]-

SHAPEalt[i])
2

Euclidean norm is the L2-norm or distance between the wild type and mutant traces. The dis-

tance is calculated as the sum over the squared difference between wild type and mutant traces.

Additional descriptions can be found in Supplementary Material, Figure S3

Note: Feature formulas and descriptions for the 8 features included in the model. These 8 features were chosen by recursive feature elimination from the total

set of 23 features (Methods Supplementary, Section S2.4). The formula symbol descriptions are included in Supplementary Material, Table S5. Additional descrip-

tions for these methods can be found in Supplementary Material, Figures S3 and S4. A list of feature statistics can be found in Supplementary Material, Table S7.
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include WT SHAPE data and to take into account the type of muta-

tion (Equation 1), we are able to improve the performance of our al-

gorithm further (Fig. 5B). Thus the WT SHAPE data is useful in

increasing the accuracy of riboSNitch prediction.

4 Discussion

Identifying mutations that are likely to lead to changes in RNA struc-

ture remains a significant computational and experimental challenge

(Chauhan and Woodson, 2008; Cheng et al., 2005; Churkin et al.,

2011; Russell et al., 2002a,b). Such predictions are important in the

context of personalized medicine since many riboSNitches are now

known to be causative of human disease (Solem et al., 2015). Despite

the advent of experimental technology enabling us to probe structure

on a genome-wide scale, we still rely on structure change prediction

algorithms or visual interpretations of the data to detect

riboSNitches as there is no ultra-high throughput approach for rap-

idly mutating an RNA (Ritz et al., 2012; Rocca-Serra et al., 2011;

Sansone et al., 2012; Siegfried et al., 2014).

We hypothesized that one reason for the poor performance of

RNA structure prediction algorithms (Corley et al., 2015; Ritz

et al., 2012) on riboSNitches is the misclassification of the experi-

mental data. We therefore set out to develop novel metrics to

evaluate structure change from SHAPE data. This approach did

lead to modest improvements in performance suggesting that care-

ful analysis of SHAPE data is essential when using these data as a

benchmark. In this age of whole transcriptomic structure probing,

manual validation and curation of these datasets is impractical.

The classSNitch classifier simulates human consensus on what is

and is not a structure change and therefore offers an alternative to

simple metrics like eSDC in experimentally describing RNA struc-

ture change.

The features that classSNitch uses to classify change reveals some

of the subtleties involved in interpreting SHAPE data. Beyond evalu-

ating the magnitude difference between traces, human experts also

utilize information on pattern matching and the distribution of

change along the length of the RNA (Supplementary Material, Figs

S3 and S4). We used those features to develop a classifier that suc-

cessfully mimics expert classification of structure change (Fig. 3).

SHAPE reactivity is correlated with secondary structure, more react-

ive nucleotides are generally single stranded (Eddy, 2014); however

the experiment probes the overall structure of the RNA. The

classSNitch classifier does not attempt to model structure, but instead

establishes a standard for quantifying change. This is biologically

relevant, allowing us to compare different RNAs using a standard vo-

cabulary (Fig. 4). Although only two synthetic RNAs are included in

our dataset, there is a striking difference in their sensitivity to muta-

tion (Fig. 4A). Indeed a much larger fraction of the mutations in these

RNAs result in conformational rearrangement. Although with only

two RNAs it is impossible to draw statistical conclusions, this obser-

vation remains biologically interesting and warrants further investi-

gation as more experimental data is obtained on a wide variety of

RNAs (both synthetic and naturally occurring). The idea that RNA

sequences under natural evolutionary pressure may evolve a general

robustness to mutation warrants further investigation.

The data used for training classSNitch was exclusively collected

using traditional capillary methods of electrophoresis. The quantifi-

cation of this type of data from a capillary trace is a challenge, as it

requires alignment to a reference ladder (Das et al., 2005; Karabiber

et al., 2013; Mitra et al., 2008). Recent algorithmic developments

have further automated this process and increased reliability (Yoon

et al., 2011). It is interesting that dynamic time warping is the most

significant feature used by classSNitch in reproducing expert classifi-

cation. If alignment errors were to persist in the data, one might ex-

pect that experts could be correcting these when gazing at the data.

Fig. 4. Fraction of disruption for individual RNAs. (A) The fraction of muta-

tions that cause no change (red), local change (blue) or global change (green)

for each RNA as classified by classSNitch. The RNAs are grouped by biolo-

gical function: translation, ribosomal, ribozyme, riboswitch or synthetic. The

experimental conditions for each of these RNAs are listed in Supplementary

Material, Table S1. (B) The fraction of mutations that cause aptamers to

change structure in the absence or presence of differing amounts of ligand

for the adenine riboswitch, glycine riboswitch and Tebowned FMN aptamer

(Color version of this figure is available at Bioinformatics online.)

Fig. 5. Improving the performance of structure change prediction algorithms

(Halvorsen et al., 2010; Sabarinathan et al., 2013; Salari et al., 2013). (A) We

performed ROC curve analysis for SNPfold, a structure change prediction al-

gorithm, using classSNitch (purple), eSDC (green) and the Euclidean norm

(blue) to classify the experimental data using the 10% tails strategy (Corley

et al., 2015). (B) We compare the performance of structure change prediction

algorithms on the classSNitch classification for SNPfold (purple), RNAsnp

(green) and RemuRNA (blue). Each of these algorithms predicts structure

change in RNA using only sequence information. SNPfold, remuRNA and

RNAsnp all make ab initio predictions on whether a mutation alters the RNA

structure; none of the algorithms benchmarked used SHAPE-directed struc-

ture prediction since we are using the WT and mutant SHAPE data for experi-

mental validation. We improved the SNPfold prediction (dark purple) using

Equation 1. The ROC curves for local and global change predictions are

included in Supplementary Materials, Figure S8 (Color version of this figure

is available at Bioinformatics online.)
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As technology has evolved, in particular with the use of next gener-

ation sequencing to collect chemical and enzymatic probing data

(Kertesz et al., 2010; Mortimer et al., 2012; Rouskin et al., 2014;

Siegfried et al., 2014) alignment artifacts may disappear in the data.

As such it may become necessary to retrain classSNitch on these

newer types of data. In our lab’s limited experience with these types

of data (currently unpublished), classSNitch performance is similar

regardless of the type of data analyzed. However, it will be necessary

to continue evaluating classSNitch performance as new experimen-

tal modalities are used. SHAPE data measures the selective reactivity

of a probe for the 20 OH of the RNA (Diegan et al., 2009). As such,

the direct relationship between structure and reactivity is complex

and ultimately depends on the 3-D structure of RNA. As a result,

differences in SHAPE data due to mutation (or exogenous molecule

binding) are notoriously difficult to interpret (Kutchko and

Laederach, 2017). This does not however mean that SHAPE data

does not contain useful information. Our use of the WT SHAPE

data to improve riboSNitch predictions (Equation 1, Fig. 5B) indi-

cates that much as including SHAPE as a free energy term in struc-

ture prediction (Diegan et al., 2009), aspects of the reactivity can

inform predictions. It is likely that the improvement we observe

when using Equation 1, which does not include any free energy

terms, is due to the fact that in general, higher SHAPE reactivities

are indicative of unpaired nucleotides (Eddy, 2014; Kutchko and

Laederach, 2017). The by effectively adjusting the SNPfold score for

nucleotides that are likely unpaired in the WT structure, which also

are less likely to cause a riboSNitch, we observe a modest improve-

ment in prediction performance. This effect remains modest since

the correlation between SHAPE reactivity and base-pair probability

is only moderate (Kutchko and Laederach, 2017).

Although classSNitch was trained on riboSNitches and is pri-

marily intended as a tool to evaluate the effect of mutation induced

structure change, it is in fact a more general metric for comparing

SHAPE data. RNAs will adopt alternative conformations depend-

ing on their environment. For example riboswitches adopt differ-

ent conformations depending on the presence of the ligand. When

applied to the WT traces of apo and bound riboswitch data, the al-

gorithm does identify local and global change for a majority of

riboswitches, as expected. Protein binding, changes in cellular en-

vironment and even counter-ions are known to affect RNA struc-

ture (Bai et al., 2005; Frederiksen et al., 2012). The classSNitch

classifier provides a common language to describe these differ-

ences. For example, it could be used when comparing in vivo and

in vitro probing of the RNA to identify regions where the presence

of proteins alters structure locally and globally. It also offers an at-

tractive way to quantify these changes in agreement with expert

consensus.

Manual classification of traces remains a laborious process, and

is the main reason we developed the classSNitch classifier. We lim-

ited our training set to 200 traces and were able to recruit 17 experts

to classify a majority of these traces. Certainly, a larger number of

manual classifications will further improve the performance and

precision of our classifier, especially for difficult cases. As such it is

important when using the classSNitch classifier to be aware of the

limited size of the training set and exercise care in evaluating the

predictions on novel data. In particular, the performance of the clas-

sifier was with only 5 cross-validation folds in lieu of an independ-

ent test set, and as such is likely still somewhat partial. Nonetheless

our data do suggest that it will be possible to arrive at a consensus

for what a small and large RNA structure change look like and that

the approach we present here is viable for developing a community

standard.

The agreement between human experts ‘gazing’ at this data is

reassuring. Prior to quantitative methods being widely available to

life scientists, significant progress was achieved by carefully looking

at the data; the structure of group I introns, tRNA and the ribosome

were correctly predicted manually years before they were crystal-

lized (Michel and Westhof, 1990). The value of automated systems

that reproduce human appreciation of data is underutilized in RNA

structural research despite the rich history of success in the field.

Developing the classSNitch classifier minimally captures dying ex-

pert knowledge, while also making this expertise accessible to the

community in an automated package.
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