
Genome analysis

DeFCoM: analysis and modeling of transcription

factor binding sites using a motif-centric

genomic footprinter

Bryan Quach1,2,3,* and Terrence S. Furey2,3,*

1Curriculum in Bioinformatics and Computational Biology, 2Department of Genetics and 3Department of Biology,

University of North Carolina, Chapel Hill, NC 27599, USA

*To whom correspondence should be addressed.

Associate editor: Inanc Birol

Received on September 3, 2016; revised on October 23, 2016; editorial decision on November 16, 2016; accepted on November 18, 2016

Abstract

Motivation: Identifying the locations of transcription factor binding sites is critical for understand-

ing how gene transcription is regulated across different cell types and conditions. Chromatin acces-

sibility experiments such as DNaseI sequencing (DNase-seq) and Assay for Transposase

Accessible Chromatin sequencing (ATAC-seq) produce genome-wide data that include distinct

‘footprint’ patterns at binding sites. Nearly all existing computational methods to detect footprints

from these data assume that footprint signals are highly homogeneous across footprint sites.

Additionally, a comprehensive and systematic comparison of footprinting methods for specifically

identifying which motif sites for a specific factor are bound has not been performed.

Results: Using DNase-seq data from the ENCODE project, we show that a large degree of previ-

ously uncharacterized site-to-site variability exists in footprint signal across motif sites for a tran-

scription factor. To model this heterogeneity in the data, we introduce a novel, supervised learning

footprinter called Detecting Footprints Containing Motifs (DeFCoM). We compare DeFCoM to nine

existing methods using evaluation sets from four human cell-lines and eighteen transcription fac-

tors and show that DeFCoM outperforms current methods in determining bound and unbound

motif sites. We also analyze the impact of several biological and technical factors on the quality of

footprint predictions to highlight important considerations when conducting footprint analyses and

assessing the performance of footprint prediction methods. Finally, we show that DeFCoM can de-

tect footprints using ATAC-seq data with similar accuracy as when using DNase-seq data.

Availability and Implementation: Python code available at https://bitbucket.org/bryancquach/

defcom

Contact: bquach@email.unc.edu or tsfurey@email.unc.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Chromatin dynamics vary based on developmental stage (Thomas

et al., 2011), cell-type (Song et al., 2011) and environmental stress

(Nag and Smerdon, 2009). Transcription factors (TFs) bind DNA in

regions of accessible chromatin and play a central role in pre-

transcriptional gene regulation. Understanding these interactions is

critical in deciphering transcriptional regulation that defines cell

identity in different contexts. DNase-seq (Boyle et al., 2008a) and

ChIP-seq (Johnson et al., 2007) identify regions of accessible chro-

matin and TF binding genome-wide, respectively. Notably,

Hesselberth et al. (2009) observed that DNase-seq produces ‘foot-

prints’ at active TF binding sites characterized by a relative depletion

of DNase-seq signal at these sites. Thus, a single DNase-seq experi-

ment captures high-resolution TF binding information for many
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TFs. As performing ChIP-seq for multiple TFs quickly becomes cost

prohibitive, DNase-seq footprinting offers an enticing alternative.

Several computational footprint identification methods, which

we will refer to as ‘footprinters’, have been developed (Boyle et al.,

2011; Chen et al., 2010; Kahara and Lahdesmaki, 2015; Luo and

Hartemink, 2013; Neph et al., 2012; Piper et al., 2013; Pique-Regi

et al., 2011; Raj et al., 2015; Sherwood et al., 2014; Sung et al.,

2014). These footprinters embrace one of two philosophies,

which we denote as de novo and motif-centric footprinting (see

Supplementary Table S5 for an overview of methods). Models gen-

erated by de novo footprinters assume that there exist general data

characteristics at footprint sites. These TF-agnostic models are used

to predict all footprint sites, and then motif databases are queried to

determine potential TFs bound in each individual footprint. In con-

trast, motif-centric footprinters first generate a set of candidate

TFBSs based on a motif, and then predict at which motif sites a foot-

print exists, indicating active binding. Within each group, current

methods exhibit similarities in approach. For instance, the de novo

footprinters DBFP, HINT, and the HMM-based method described

in Boyle et al. (2011) model footprints using probabilistic graphical

models with similar state representations. FOS, Wellington, and

DNase2TF are de novo footprinters that search for genomic loca-

tions akin to short inverse peaks. The motif-centric footprinters

CENTIPEDE, msCentipede and FLR utilize two-component mixture

models to represent bound and unbound sites. In addition to

DNase-seq data, some methods allow for the integration of comple-

mentary information such as histone modification status or distance

from the nearest transcription start site. All these methods implicitly

or explicitly assume there exists two distinct signal patterns in

DNase-seq data that distinguish TF-bound and unbound sites.

Except for msCentipede, footprinters expect that DNase-seq signal

is highly homogeneous in both the bound and unbound groups and

thus can be represented by a single model. This assumes TFs bind

DNA in the same manner genome-wide, but TF binding behavior

can vary across TFBSs (Siggers and Gordan, 2014).

More recently, Kahara and Lahdesmaki proposed a supervised

classification approach, BinDNase, that learns TF-specific DNaseI

cleavage patterns from training data to predict footprints in other

data. They show that their supervised approach often produced su-

perior prediction accuracy over two unsupervised generative models,

PIQ and CENTIPEDE. In contrast, Gusmao et al. (2016) conducted

a systematic footprinter comparison and found most generative

model footprinters outperformed BinDNase. In their analysis, foot-

print detection accuracy was evaluated within a de novo footprint-

ing framework based on overlap with ChIP-seq peak annotations. It

is not clear how accurately this evaluates motif-centric footprinter

performance.

Here, we conducted an in-depth, motif-centered analysis of

DNaseI digestion signals and DNase-seq footprinters to provide a

more complete understanding of strengths and weaknesses of cur-

rent methods. We introduce a novel motif-centered method,

Detecting Footprints Containing Motifs (DeFCoM) that approaches

footprint identification using a nonlinear supervised classification

framework. Importantly, DeFCoM is designed to capture variation

in DNaseI signal within active footprints and unbound motif sites to

enhance footprint classification accuracy, a consideration un-

accounted for in previous footprinters. We compared the per-

formance of DeFCoM against both de novo and motif-centric

footprinting approaches across eighteen TFs in four cell-lines using

data from the Encyclopedia of DNA Elements (ENCODE) Project

(Feingold et al., 2004) and show that DeFCoM outperforms existing

approaches overall. In addition, we analyzed the variability in

accuracy across multiple TFs and the effect of data quality

and DNase-seq sequencing depth. Finally, we show DeFCoM can

detect footprints in data from Assay for Transposase-Accessible

Chromatin sequencing (ATAC-seq) experiments with similar classi-

fication accuracy as with DNase-seq data.

2 Methods

2.1 Data and software
DNase-seq and ChIP-seq data (Supplementary Tables S1 and S2)

were obtained from the UCSC ENCODE portal (https://www.gen

ome.ucsc.edu/ENCODE/). ATAC-seq data for GM12878

(Buenrostro et al., 2013) was obtained from GEO (GSE47753). The

DAC Blacklisted Regions and Duke Excluded Regions for hg19

were downloaded from the UCSC Genome Database then combined

into one set.

DeFCoM utilizes the Python packages PySam v0.9.0 and scikit-

learn v0.17 (Pedregosa et al., 2012). The R package ROCR (Sing

et al., 2005) was used for computing performance statistics and the

ROC curves for the footprinters. F-Seq (Boyle et al., 2008b) was

used to call peaks for DNaseI hypersensitive sites.

2.2 Generating cell-line specific motif sites
Sets of motifs labeled as active (TF-bound) or inactive (TF-absent)

were generated as follows: (1) Transcription factor motif position

weight matrices were downloaded from http://compbio.mit.edu/en

code-motifs/ (Kheradpour and Kellis, 2014). Motif occurrences were

identified across the hg19 genome using FIMO (MEME v4.9.0)

(Grant et al., 2011) with a genomic background nucleotide distribu-

tion pre-computed by FIMO and the parameters ‘–max-strand –

max-stored-scores 1000000 –no-qvalue’. (2) Predicted motif sites

were removed if (i) they fell in ENCODE blacklisted regions, (ii) less

than 10% of bases within a 200 bp window centered on the motif

center had DNase-seq digestion data; (iii) they were less than 400 bp

from chromosome boundaries; or (iv) there were ambiguous nucleo-

tide calls within 400 bp of the motif site center. (3) Motif sites were

annotated as active if they overlapped ChIP-seq peaks for that TF,

else they were labeled inactive. If multiple motif sites overlap the

same peak region, only the site closest to the annotated point-source

of the peak was retained. To further ensure inactive sites were not

bound, we calculated ChIP-seq and input control signal enrich-

ments, defined as sTF � scontrol, where sTF and scontrol are sequencing-

depth normalized read density values in 200 bp windows centered

on the motif. Inactive sites where sTF � scontrol>0 were removed.

Motif sets were created for 18 TFs (CEBPB, CHD2, CTCF, EP300,

GABPA, JUN-D, MAFK, MAX, MYC, NRF1, RAD21, REST,

RFX5, SRF, SP1, TAF1, TBP and USF2) in four human cell-lines

(GM12878, H1-hESC, HepG2 and K562) except SP1 in K562 (no

data).

2.3 DNaseI signal profiles and correlations
Aggregate DNaseI signal profiles were calculated for active and in-

active motif sites for each TF in each cell type (Supplementary

Methods). DNaseI signal correlations for NRF1 were performed

using only sites corresponding to the PWM ‘disc_1’, for CHD2

using motif ‘disc_1’ and for CEBPB using motif ‘known_1’

(Supplementary Figure S1) to ensure variability was not due to mul-

tiple motifs. Motif sites were extended 50 bp from the motif center

and signal profiles were calculated. To remove sites with spurious

spikes in DNaseI activity, motif regions with more than 500 DNase-

seq reads were removed. Profiles were smoothed using 7 bp sliding

DeFCoM: motif-centric footprinting analysis 957
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windows to improve signal quality at sites with sparse signal.

Aggregate mean DNaseI signal profiles for active and inactive sites

were created using smoothed individual profiles. Pairwise Pearson

correlation coefficients between active and inactive motif DNaseI

profiles were used for complete-linkage hierarchical clustering fol-

lowed by heatmap visualization.

2.4 DeFCoM feature extraction and training
Detecting Footprints Containing Motifs (DeFCoM) is an SVM-

based (Boser et al., 1992) supervised footprinter. Given a set of

motif sites labeled as active or inactive for a given TF in a cell type/

experimental condition, the SVM classifier is trained on features

that are derived from DNase-seq data from the same cell type for

each motif site. The trained model is used to predict active and in-

active sites in a test set based only on DNase-seq data.

To train DeFCoM, motif site sets of size m and n, labeled as ac-

tive or inactive respectively, were generated as described above

(2.2). The 50 end of each DNase-seq read was considered a digestion

site. Initial active and inactive motif site DNaseI digestion count

matrices, DActive
ms and DInactive

ns, were calculated, in which each

row corresponded to a scaled DNaseI digestion profile consisting of

the square root of the DNaseI digestion frequency at each position

in an s-sized region centered on a motif site. For all the training and

evaluation tests, s¼200 bp regions were used. To account for spuri-

ous spikes in the data, any row in the matrix with a value greater

than �500 was removed.

Intuitively, we wished to generate DNase digestion features in

windows around a motif site, with smaller windows used near the

motif site where the TF binds to allow for greater resolution, and

progressively larger windows used at more distant regions. We also

wanted to account for sparse or noisy DNaseI data. Given the region

size s, we first defined varying-sized, non-overlapping, contiguous

windows symmetric about the motif site center. Let x2{0,1,2,. . .,k}

index each window starting at the motif site center with the win-

dows progressively increasing in size from 0 to k. We define f(x), the

size of window x, to be

f xð Þ ¼
x2 þ 5; x < k

s

2
� g xð Þ

� �
þ x2 þ 5; x ¼ k

8<
: (1)

g xð Þ ¼
g x� 1ð Þ þ x2 þ 5; x � 0

0; x < 0

(
(2)

where the recursive function g(x) equals the sum total size of all win-

dows up to and including window x. The total number of windows

k that will span a region of size s/2 can be calculated as follows:

argmink

s

2
� g kð Þ

� �
j s
2
� g kð Þ � 0 (3)

In Equations (1) and (3), we use s/2 because windows are symmetric

about the motif center. For s¼200, we defined 12 windows (6 on

each side of the motif site center) with sizes 45, 21, 14, 9, 6, 5, 5, 6,

9, 14, 21 and 45. For each window, we computed the mean of the

scaled DNaseI digestion counts and the slope of these counts across

the window using DActive and DInactive. This generated a feature vec-

tor f of length 4k. To provide additional global features of the region

s, we partitioned a 90 bp segment centered on the motif center into 3

windows, computed the mean and slope for these windows (6 fea-

tures total), and calculated the mean cut frequency of a 150 bp re-

gion centered on the motif center (1 feature). Finally, we used

maximal absolute value scaling to scale each of the 4kþ7 features

to a [�1,1] range. This results in the final feature matrices FActive

and FInactive.

As part of the training process, DeFCoM selects between a linear

and radial basis function (RBF) kernel SVM to use as the final classi-

fier. To decide between the two SVM models, we bootstrapped

1000 samples 100 times from each of FActive and FInactive and applied

5-fold cross validation. We used the mean pAUCs (5% FPR) from

the cross validations to select a model. We additionally derived the

kernel parameter and SVM hyperparameter through bootstrapping

(Supplementary Methods). To improve the computational efficiency

of the SVM training phase, the chosen SVM was trained with 3000

randomly selected samples from each of FActive and FInactive to pro-

duce the final trained model.

For ATAC-seq data, the DActive and DInactive matrices were con-

structed using Tn5 transposase tagmentation events as opposed to

DNaseI digestion frequencies. Tn5 tagmentation sites are denoted as

50 ATAC-seq read ends offset 5 bp downstream on the positive DNA

strand and 4 bp upstream on the negative strand.

2.5 Footprinter implementations for comparative

analysis
The footprinters BinDNase, CENTIPEDE, cut density, DNase2TF,

HINT, FOS, msCentipede, PIQ and Wellington (Supplementary

Table S5) were used to evaluate DeFCoM. These methods were

chosen based on availability, compatibility with our evaluation

framework, and their broad range of conceptually diverse

approaches to footprinting (See supplementary methods for details

on exact settings used for each footprinter).

2.6 Effective sequencing depth
Signal-to-noise was measured using FRiP (fraction of reads in peaks)

scores (Landt et al., 2012). Peaks were called using F-Seq with de-

fault parameters, then the ratio of DNase-seq reads aligning within

the top 50 000 peaks (ranked by F-Seq score) to the total aligned

reads was calculated. This ratio was multiplied by the total aligned

reads to obtain the effective sequencing depth.

3 Results

3.1 Aggregate DNaseI digestion profiles do not capture

motif site heterogeneity
Aggregate mean DNaseI digestion profiles summarize positional

DNaseI cleavage preferences at TFBSs. These profiles convey a sin-

gle value at each position, thus they lack information regarding the

variability in DNaseI activity at a given position across sites. Raj

et al. (2015) showed that variation in DNaseI activity at TF-bound

SP1 motif sites exceeded that expected under a multinomial model

of DNaseI digestion signal. To evaluate this more broadly, we deter-

mined positional variability in DNaseI digestion signal for multiple

TFs (Figure 1A; Supplementary Figure S2). We stratified motif sites

into active and inactive based on presence of corresponding ChIP-

seq signal for the factor in the same cell type (see Methods). We

used these to evaluate two common assumptions held by several

footprinting methods: (1) active TFBSs possess a general footprint

pattern of local depletion in DNaseI digestion relative to flanking re-

gions; and (2) inactive motif sites contain approximately uniformly

distributed DNaseI digestion signal. For most factors, aggregate pro-

files for active sites clearly produced expected DNaseI digestion pat-

terns, but with relatively large standard deviations. An investigation

of individual binding sites clearly shows how sites deviate from the

aggregate pattern (Figure 1C and D). In some cases, the previously
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characterized sequence preferences for DNaseI digestion (He et al.,

2013) are visually apparent. For a minority of the TFs, the aggregate

profile for active sites portrays a visually weak footprint or none at

all (i.e. SRF, Supplementary Figure S2). Overall, TFs exhibit aggre-

gate profiles with consistently high coefficients of variation

(Supplementary Figure S3).

In spite of position-specific variability across motif sites, it is pos-

sible that DNaseI signal at individual sites resemble the aggregate

profile in shape but not scale. To quantify the similarity of DNaseI

digestion profiles at individual sites to the aggregate mean profiles,

we calculated Pearson correlation coefficients between the aggregate

profiles and every individual TFBS profile for CEBPB, CHD2 and

NRF1 (Supplementary Figure S4). Among the three TFs, 30–63% of

the individual profiles did not correlate with the same class aggre-

gate profile (Pearson’s r<0.1). Interestingly, we found that 17–51%

of individual profiles from the active and inactive classes exhibited

stronger positive correlations with the aggregate profile from the op-

posite class.

To further assess within and between class heterogeneity, we

computed Pearson correlations between the top 2000 individual

DNaseI digestion profiles, ranked based on the number of DNase-

seq reads in a 100 bp window centered on the motif site, in the active

and inactive classes for all three factors. We observed small clusters

of highly correlated sites, implying possible subgroupings for

DNaseI cleavage profiles within each class. We also found 34–53%

of motif sites within each class exhibited negative or no correlation

to each other (Pearson’s r<0) (Figure 1D; Supplementary Figure

S5). Notably, 4–6% of correlations between sites from opposite

classes had Pearson’s r>0.5. These analyses of variability in DNaseI

digestion signal strongly indicate that aggregate mean profiles do

not sufficiently capture the heterogeneity in DNaseI activity across

motif sites.

We hypothesized that high correlations between sites from one

class to the aggregate profile of the opposite class may be partially

attributed to similarities in binding preferences for multiple TFs.

Therefore, a motif site deemed inactive for a specific TF based on

ChIP-seq data could be active for another TF with a similar motif.

We assessed this by determining how many inactive motif sites over-

lapped ChIP-seq peaks for at least one other TF for each of 18 TFs

in the K562 cell line. We found that this was the case for 8.85% of

all inactive sites (Supplementary Figure S6). For most TFs, the num-

ber of inactive motif sites was significantly larger than the number

of active sites (Supplementary Table S3). Thus, while the number of

inactive sites overlapping another ChIP-seq peak was relatively

small, these represented 0.41–32.21 times the total number of active

motif sites for a TF. Footprint patterns at inactive sites that resemble

active sites due to the binding of another factor highlights an import-

ant consideration and caveat when conducting motif-centric foot-

printing and evaluating the accuracy of footprint predictions. This

also applies to de novo footprinting as it becomes an issue when

annotating called footprints using motifs. A potential solution

would be to exclude all motif sites overlapping ChIP-seq peaks for

multiple TFs. However, this would remove 66–100% of active sites

for a TF. Additionally, this would require conducting a multitude of

ChIP-seq experiments and disregards the fact that many TFs have

binding partners.

3.2 Modeling data heterogeneity for footprinting
To account for the high variance in DNaseI activity at motif sites,

we devised a novel supervised learning based footprint prediction

framework called DeFCoM. DeFCoM trains an SVM using ex-

tracted features from DNaseI digestion profiles of motif sites labeled

as active or inactive. In the training phase, DeFCoM applies a model

selection procedure to choose between a linear kernel and nonlinear

RBF kernel (Figure 2; Methods). This allows DeFCoM to capture

the complexity of the data when necessary with the RBF kernel

while avoiding over-fitting, a common problem in supervised learn-

ing, by choosing the linear kernel when that complexity is lacking.

Once trained, the SVM uses features from DNaseI digestion profiles

for new, unlabeled motif sites to determine which are active and in-

active in another cell-type/condition.

Fig. 1. Within and between class variability in DNaseI digestion signal at motif sites. (A) Per base means (m) and standard deviations (r) of DNaseI signal aggre-

gated for NRF1 motif sites active (þ) and inactive (�) in K562. (B) K562 DNase-seq and ChIP-seq signal at an NRF1 motif site (Chr1:16,175,923-16,176,022) from

the active class and (C) two neighboring NRF1 inactive sites (Chr22:38,966,291–38,966,390). (D) Pairwise Pearson correlations between the top 2000 NRF1 motif

sites from the active and inactive class ranked by DNaseI digestion signal.
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To assess DeFCoM’s classification accuracy, we first performed

5-fold nested cross validation on 71 evaluation sets comprised of

data from 18 transcription factors in the human cell-lines

GM12878, H1-hESC, HepG2 and K562 generated by the ENCODE

project. Second, we tested DeFCoM’s ability to generalize across cell

types by training models using data from one cell type and testing

on an independent cell type. We also wanted to know whether using

the RBF kernel increased accuracy given the demonstrated hetero-

geneity in these data. Therefore, for both sets of experiments, we

used a linear and an RBF SVM and compared their classification

performance. We will refer to these models as DeFCoM-linear and

DeFCoM-RBF respectively. We calculated receiver operating char-

acteristic (ROC) Area Under the Curve (AUC) values using all the

data and also partial AUC (pAUC) values corresponding to partial

ROC curves at a 5% false positive rate (FPR) cutoff.

When applied to the 71 data sets, DeFCoM-RBF performed bet-

ter than a random classifier in all cases (Figure 3A). Notably, we

observed a wide distribution of pAUC scores ranging from 0.096 to

0.981, but there was less variability in the full AUC scores (0.714–

0.998). For the cross cell-line experiments, we expected that add-

itional variability across the two datasets would decrease perform-

ance compared to the within cell-line cross validation tests. Indeed,

we witnessed overall lower scores from the former but by a marginal

amount (median pAUC decrease of 0.021) indicating there exists

consistent footprint signals across cell types.

To determine whether using the nonlinear RBF kernel to model

heterogeneity was warranted, we repeated the above experiments

using the linear kernel. Overall, DeFCoM-RBF improved classifica-

tion accuracy for all cell-lines in both experimental setups except for

the cross cell-line case where the test set was derived from data in

the K562 cell line (Figure 3B). We saw that the pAUC increased as

much as 0.141 when using DeFCoM-RBF. However, the pAUC was

essentially the same in 31% of cross validation tests and 41% of

cross cell-line tests. This demonstrates that the RBF kernel can pro-

vide large gains in accuracy, but some factors or datasets may not

possess enough DNaseI signal heterogeneity to benefit from more

complex footprint modeling.

Interestingly, DeFCoM-linear performed substantially better

on cross cell-line tests when training with GM12878 and evaluat-

ing with K562 data. This demonstrated the need for flexibility in

model complexity. Therefore, we incorporated a model selection

step during DeFCoM training to automatically determine the most

appropriate kernel for a given test (see Methods). We found that

with the exception of CTCF, our model selection procedure identi-

fied the better model in all cases in which there was a measurable

difference between kernels (pAUC difference>0.05; Figure 4). We

also evaluated alternative methods for addressing cross cell-line

applications of DeFCoM and found the aforementioned approach

produced the best results (Supplementary Methods; Supplementary

Table S5).

3.3 Multiple variables impact motif-centric footprinting
In addition to addressing the heterogeneity of DNaseI signal at motif

sites, our analyses provide insights into some variables that may af-

fect motif-centered footprinting performance, though this is cer-

tainly not an exhaustive list of contributing factors. Our

observations suggest that the ‘footprintability’, i.e. the quality of

footprinting, of any particular dataset is a function of several char-

acteristics. We noted that features of the data from a particular cell-

line and the specific TF being considered can contribute to footprint-

ability. For instance, the pAUC is 0.36 higher on average in K562

compared to HepG2 for all cross validation experiments (Figure 3),

suggesting that footprint signals in K562 are better overall. Within

GM12878, the cross validation pAUC scores across TFs range from

0.210 to 0.915, highlighting the variability in footprintability across

TFs. Finally, pAUCs for CHD2 are higher than CEBPB in all cell

types (Supplementary Figure S7) suggesting active footprints for

some factors are in general easier to discriminate than for others.

It is important to note that the four cell lines we use span a wide

range of sequencing depths (Supplementary Table S4). We wondered

how closely footprintability was associated with total sequencing

depth. Since the signal quality across datasets can widely vary, we

also wondered whether the ‘effective’ sequencing depth, based on the

number of reads in DNaseI hypersensitive sites, was more important

than simply the raw sequencing depth. We used mean pAUC values

from DeFCoM’s nested cross validation experiments for each TF

across all cell lines to compare footprintability based on total and ef-

fective sequencing depth. Overall, we found that for most factors,

Fig. 2. Overview of the DeFCoM classification framework.

Fig. 3. (A) Partial (5% FPR) and full AUCs from evaluations of DeFCoM-RBF for

18 TFs in four cell-lines. Black horizontal lines signify values if classifications

were random. (B) Comparison of DeFCoM to DeFCoM-linear by differences in

pAUCs for the same test sets as A.

Fig. 4. Assessment of when the model selection procedure chooses the better

SVM type (linear versus RBF kernel) during the training phase of cross cell-

line tests for 18 TFs.
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accuracy increased nonlinearly with respect to total sequencing depth,

but not effective sequencing depth (Supplementary Figure S8).

To better understand the trade-off between sequencing depth

and signal quality, we focused on data from GM12878 and H1-

hESC since they possess very different signal-to-noise ratios (0.19

versus 0.43 FRiP score). We performed 5-fold nested cross valid-

ation using DeFCoM and data from each cell line subsampled to 25,

50, 75 and 100 million aligned reads and calculated pAUCs for each

(Supplementary Methods). The effect of raw sequencing depth ver-

sus signal quality became more apparent when we assessed changes

in pAUC at a fixed 5% FPR under this framework (Supplementary

Figure S9). As expected, the changes in pAUC vary by TF, but per-

formance in the H1-hESC cell-line was less affected by increased

sequencing depth. This suggests that for data with better signal-to-

noise, informative DNaseI signals are present at lower sequencing

depths, resulting in smaller improvements in footprintability with

increased sequencing depth. We see the opposite in the GM12878

cell-line where increased sequencing depth substantially improves

accuracy. When looking across sequencing depths at the number of

H1-hESC active motif sites that are in the evaluation sets, we notice

that more active sites meet the coverage filtering thresholds as

sequencing depth increases. This shows that although much of the

DNaseI signals may be present at lower sequencing depths, a higher

sequencing depth can provide gains in sensitivity. The improvements

in sensitivity will vary by TF, as evidenced by large increases for

CTCF and RAD21 but significantly smaller increases for other TFs

(Supplementary Table S10).

Interestingly, active footprints for some TFs were more accur-

ately identified in GM12878 than H1-hESC at equivalent sequenc-

ing depths despite the reduced signal-to-noise. This may be due to

the FRiP score serving as a global signal quality measure rather than

at the level of individual TFs. To investigate this further, we ana-

lyzed the ratio of active motif sites to inactive sites for several TFs

and found that many decreased drastically in GM12878 data with

increasing sequencing depth compared to the same ratios in H1-

hESC data (Supplementary Table S11). For instance, in GM12878

for SP1 this ratio was 16.8 at a sequencing depth of 25 million reads

but decreased to 0.55 at 100 million reads. In H1-hESC, we

observed a much smaller ratio change from 0.48 to 0.10 for the

same factor (Supplementary Figure S11). The large changes in active

to inactive site ratios in GM12878 suggest that in data with lower

signal-to-noise, the number of inactive sites is more affected by

sequencing depth, at least based on our criteria. Across all 18 TFs in

GM12878, we witnessed a 0.71 inverse Pearson correlation on aver-

age between the active to inactive site ratios and pAUCs for a TF. In

H1-hESC the mean correlation was �0.89. Overall, our results sug-

gest that increasing sequencing depth to improve accuracy will

primarily benefit noisy datasets, and that signal quality in data will

affect accuracy by varying the number of inactive motif sites that are

considered compared to the number of active motif sites.

3.4 DeFCoM outperforms other footprinters
To provide a comprehensive study of footprinting from a motif-

centric perspective, we compared DeFCoM with nine competing

footprinters: BinDNase, CENTIPEDE, cut density, DNase2TF,

HINT, FOS, msCentipede, PIQ and Wellington (Supplementary

Table S5). All methods were assessed based on their ability to cor-

rectly classify the same sets of motif sites for 18 TFs as active or in-

active in the given cell-line. Partial AUCs (5% FPR) were calculated

to compare the methods. For the supervised learning footprinters

(DeFCoM and BinDNase), training was performed using data from

K562 for test sets in GM12878, H1-hESC and Hepg2, and in

GM12878 for test sets in K562. To summarize performance across

all datasets, we ranked each method by pAUC for each of the 71

tests and calculated their mean rank across all tests (Figure 5).

DeFCoM ranked first in 25 of the 71 evaluation sets (34.7%) and se-

cond in an additional 29 test sets (40.3%). We see even better per-

formance by DeFCoM when using pAUCs from within cell-line

cross validation for the two supervised methods. DeFCoM ranked

first 39 times (54.9%) and second 23 times (32.4%) (Supplementary

Figure S12). DeFCoM had the best mean rank for results from both

the cross cell-line and cross validation tests followed by BinDNase

and msCentipede. Interestingly cut density, which simply predicts

footprints based on the number of DNase-seq reads, had the fourth

best mean rank despite not using any information about actual foot-

print signals (Figure 5B, Supplementary Figure S15). Previous stud-

ies witnessed similarly reasonable performance for this simple

method (Cuellar-Partida et al., 2012; He et al., 2013), but Gusmao

et al. showed that cut density’s accuracy relative to other foot-

printers suffers at a 1% FPR (Gusmao et al., 2016). In our study,

cut density had the fifth best mean rank using pAUCs at a 1%

FPR (Supplementary Figure S13), still outperforming five other

footprinters.

The improved classification accuracy of both DeFCoM and

BinDNase over the unsupervised approaches highlights the utility of

learning a discriminative model for motif-centric footprinting.

Because DeFCoM defaults to a linear SVM model unless more com-

plex modeling is required, we expect it to perform at least as well as

BinDNase, which uses another type of linear model, logistic regres-

sion. Also, including the nonlinear RBF kernel enables DeFCoM to

outperform BinDNase by as much as 0.0835 pAUC, though we note

that the two footprinters have essentially the same accuracy for 59

of the 71 datasets (pAUC difference<0.025). This increases to 65 of

the 71 datasets using pAUC difference<0.05 (Supplementary

Figure S14). BinDNase includes a computationally expensive greedy

backward search to determine optimal features. Impressively, this

shows that DeFCoM can achieve a similar or better accuracy than

BinDNase using a set of predefined features that can be computed

more efficiently. The greater overall performance of msCentipede

relative to the other unsupervised footprinters indicates that model-

ing heterogeneity with an unsupervised method can produce com-

parable results to DeFCoM in some cases, though we note that for

the factor TBP in HepG2, a model could not be learned in reason-

able time (model training terminated after 60 days). For 48 of the 71

test sets, DeFCoM and msCentipede perform similarly (pAUC dif-

ference<0.05), but using supervised learning affords DeFCoM bet-

ter performance in 16 of the datasets (pAUC>0.05), including a

pAUC difference of 0.25 for the RAD21 test sets.

Fig. 5. Comparison of footprinters. (A) Frequency at which each footprinter

obtains a rank (based on 5% FPR pAUC) for all 71 evaluation sets. (B) Mean

rank, derived from A, of each footprinter.
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3.5 ATAC-seq is comparable to DNase-seq for

footprinting
Like DNase-seq, ATAC-seq assays for accessible chromatin and can

generate visible footprints in aggregate accessibility profiles for ac-

tive motif sites. Its low biological sample material requirement rela-

tive to DNase-seq makes it an appealing alternative when this is a

limiting factor. We evaluated DeFCoM using GM12878 ATAC-seq

data to determine its utility for motif-centric supervised footprint-

ing. We applied 5-fold nested cross validation with the ATAC-seq

data to train and test DeFCoM models for 18 TFs. The pAUC at 5%

FPR and full AUC were averaged across the 5 folds. We then re-

peated the nested cross validation with DNase-seq data on the same

set of active and inactive sites (Figure 6). Despite the differences in

sequencing depth of the DNase-seq (245 million reads) and ATAC-

seq data (93 million reads), the pAUC and full AUC values are gen-

erally similar, with DeFCoM performing slightly better when using

DNase-seq (mean pAUC difference¼0.072, mean AUC differ-

ence¼0.043). Overall this supports the feasibility of extending

DeFCoM to experiments that use ATAC-seq.

3.6 DeFCoM as an open-source software package
Poor implementation and usability hinder the adoption of otherwise

practical tools in the scientific community. With this in mind, we im-

plemented DeFCoM to be an easy-to-use software package with a

code-base that follows good software design principles. For both

end-users and developers, we make our code freely accessible via a

code repository (https://bitbucket.org/bryancquach/defcom) with ex-

tensive API documentation and a user guide. DeFCoM is the only

supervised learning footprinter supported by thorough documenta-

tion to improve ease of use. We also include well-commented scripts

to handle common data processing tasks for footprint analysis.

DeFCoM is implemented in the Python programming language

within an object-oriented framework that enhances modularity

of the code for easy debugging, modification, and extension.

Furthermore, because DeFCoM is a data-intensive method, we

make use of scalable programming techniques such as batch process-

ing and parallel computing to ensure feasibility for use on a modern

desktop machine. As an open-source software package, we encour-

age the community to modify and adapt our code for further ad-

vancements in footprinting research.

4 Discussion and conclusions

Our study provides novel insights into variables that affect identifi-

cation of DNaseI footprints, and for the assessment of footprinter

performance. Aggregate DNaseI digestion profiles do not represent

well the footprint patterns seen at individual sites, thus footprinters

that use models based on aggregate or general footprint signal pat-

terns may suffer. Inactive motif sites for one TF may be bound by

another TF that creates a footprint and thus be misclassified, at least

for the original TF. This is a general challenge in the assessment of

motif-centric approaches, but this does not necessarily reflect a

weakness in these footprinters. The motif-centric footprinter is cor-

rectly identifying a footprint, though it mistakenly attributes it to

the wrong factor. Arguably, this is better than spuriously identifying

a footprint at a location where no factor is bound. This serves as an

important consideration for both interpreting footprint predictions

and assessing footprinters in a motif-based framework.

Heterogeneity in DNaseI digestion signals at motif sites exists,

and we show that our DeFCoM footprinter benefits from being

aware of this heterogeneity. At the same time, we also show that

incorporating the flexibility to use more or less complicated models

depending on the particular TF, cell line, and dataset is important as

well. DNase-seq and ATAC-seq footprint signals will vary based on

biological and technical factors that influence the data. Footprinters

that can model footprints well across this range of variability will

obviously be more robust. Supporting this, msCentipede also models

heterogeneity and was the best performing method that did not use

supervised learning, though we found this method may be limited by

unreasonable training times for specific datasets.

We show that determining appropriate sequencing depth for

footprinting is not easy and is affected by many variables. We

observed sequencing depth affected footprinter accuracy less when

the DNase-seq data had a better signal-to-noise ratio, but we also

witnessed variation in TF-specific footprintability at equivalent

sequencing depths between cell-lines. Sung et al. (2014) provided

evidence that DNA residence time plays a role in the clarity of a

footprint signal. Likewise, greater sequencing depth generally

increased the number of sites where footprints were identified, but

the benefit to individual factors varies. Biological variables such as

these need to be further assessed on a per-TF basis in conjunction

with technical factors to better realize which of these most strongly

contribute to footprintability. This knowledge would help determine

how to appropriately design footprinting experiments.

For footprinters such as DeFCoM that use supervised learning,

the concordance between features of the training and test sets be-

come important. Although this introduces added complexity, it can

be leveraged to achieve more targeted results. For instance, high-

confidence footprints in DNaseI hypersensitive sites could be identi-

fied by tailoring the training set to include only sites in areas of high

DNaseI activity. Doing so would make the model more representa-

tive of these stronger footprint signals, though at the expense of gen-

eralizability to low signal regions. Potential variability between

training and test sets should be minimal for situations in which data

is generated from the same cell type for both but possibly under dif-

ferent experimental conditions.

A comprehensive evaluation of footprinting was reported in

Gusmao et al. (2016). Though more rigorous than previous com-

parative analyses, their evaluation strategy was more informative

for understanding footprinters in a de novo footprinting context.

We provide a complementary footprinter evaluation from a motif-

centric perspective. In our work, we focused on results at a 5% FPR

to provide more practical insight on footprint detection accuracy at

acceptable error rates. The ability of both DeFCoM and BinDNase

to consistently outperform unsupervised footprinters, with the pos-

sible exception of msCentipede, further supports supervised

learning-based methods. We note that our results contradict accur-

acy levels found in the previous evaluation for several footprinters.

This demonstrates that evaluation methods can largely influence

Fig. 6. Comparison between using GM12878 ATAC-seq and DNase-seq data

with DeFCoM. Partial AUC (left) and full AUC (right) results from cross-valid-

ation tests for 18 TFs.
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reported performance. The de novo footprinters DNase2TF and

FOS performed poorly in our tests, because they failed to report a

score for many of the motif sites in the test set. Our results in con-

junction with previous studies highlight the importance of evaluat-

ing a footprinter in the context for which it was designed.

ATAC-seq is quickly being adopted as it requires less biological

starting material, and we show DeFCoM performs comparably with

these data. As we learn more about the nuances of footprinting in

both DNase- and ATAC-seq, we expect footprinters will adapt ac-

cordingly. In light of this, our implementation of DeFCoM in an

open-source, modularized and object-oriented framework makes it

conducive to modification and improvement. As such, we welcome

and encourage collaborative efforts with others in the scientific com-

munity to address the needs of researchers as the field evolves.
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