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Abstract

SPLUNC1 is an abundantly secreted innate immune protein in the mammalian respiratory tract 

that exerts bacteriostatic and antibiofilm effects, binds to lipopolysaccharide (LPS), and acts as a 

fluid-spreading surfactant. Here, we unravel the structural elements essential for the surfactant and 

antimicrobial functions of human SPLUNC1 (Short Palate Lung Nasal Epithelial Clone 1). A 

unique α-helix (α4) that extends from the body of SPLUNC1 is required for the bacteriostatic, 

surfactant, and LPS-binding activities of this protein. Indeed, we find that mutation of just four 

leucine residues within this helical motif to alanine is sufficient to significantly reduce the fluid 

spreading abilities of SPLUNC1, as well as its bacteriostatic actions against the Gram-negative 

pathogens Burkholderia cenocepacia and Pseudomonas aeruginosa. Conformational flexibility in 

the body of the SPLUNC1 is also involved in the bacteriostatic, surfactant, and LPS-binding 

functions of the protein as revealed by disulfide mutants introduced into SPLUNC1. In addition, 

SPLUNC1 exerts antibiofilm effects against Gram-negative bacteria, although α4 is not involved 

in this activity. Interestingly, though, the introduction of surface electrostatic mutations away from 

α4 based on the unique dolphin SPLUNC1 sequence, and confirmed by crystal structure, are 

shown to impart antibiofilm activity against Staphylococcus aureus, the first SPLUNC1-depenent 

effect against a Gram-positive bacterium reported to date. Together, these data pinpoint SPLUNC1 

structural motifs required for the antimicrobial and surfactant actions of this protective human 

protein.
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Human Short Palate Lung Nasal Epithelial Clone 1 (SPLUNC1) is a 256-residue protein 

member of the PLUNC family that includes SPLUNCs 1–3 and LPLUNCs 1–5. 
1 

SPLUNC1, also called BPIFA1, is expressed in upper airways of the lungs, where it is one 

of the most abundantly secreted proteins, as well as in the colon and kidneys, and has 

established roles in several aspects of pulmonary function and innate immunity. 
2–4

 It 

regulates the volume of airway surface liquid that covers the pulmonary epithelia by 

inhibiting the actions of the epithelial sodium channel (ENaC), which is responsible for 

transepithelial movement of sodium and water. In the context of cystic fibrosis (CF) 

inactivating mutations of the CFTR channel, ENaC’s actions exacerbate the dehydration of 

CF pulmonary tissues. 
5
 Eighteen amino acids in the N-terminal region of SPLUNC1 (S18) 

were found to be necessary and sufficient for regulating ENaC in normal conditions in vitro; 

however, in the low pH of CF tissues, both S18 and the body of SPLUNC1 were required to 

control ENaC. 
6
 SPLUNC1 has also been shown to act as a surfactant to spread fluids at the 

air-water interface, and an innate antibacterial factor against Gram-negative bacterial 

pathogens. 
7–15

 For example, SPLUNC1 was demonstrated to reduce Mycoplasma 
pneumoniae and Klebsiella pneumoniae infections in mouse models, and to prevent the 

growth of Pseudomonas aeruginosa both in vitro and in vivo. 
13,16–21

 The protein was also 

reported to associate with lipopolysaccharides (LPS) from E. coli and P. aeruginosa, albeit 

through unknown mechanisms. 
7,18,22–25

 To date, while SPLUNC1’s structural mechanism 

in regulating ENaC is relatively well understood, the structural basis of SPLUNC1’s actions 

as a surfactant and antibacterial factor have remained less clear.

The crystal structure of human SPLUNC1 was first reported in 2013, and by a second group 

in 2014, and both reveal a “super-roll” fold composed of a curved β-sheet flanked by α-

helices that together enclose a hydrophobic core consisting largely of leucine residues 

(Figures 1A, B). 
6,25

 The 2013 report focused on the role the body of SPLUNC1 played in 

presenting the S18 peptide, which is disordered in all reported structures, for ENaC 

inhibition in both normal and CF tissues in vitro. By contrast, the 2014 report highlighted 

the ability of SPLUNC1 to associate in vitro with lipids of established pulmonary functions, 

specifically dipalmitoylphosphatidylcholine (DPPC). While SPLUNC1 shares structural 

similarity to two human innate protein proteins, the lipopolysaccharide binding protein 

(LBP) and bacteriocidal permeability-increasing protein (BPI), which are twice the size of 

SPLUNC1, its closest structural homologs are equine latherin and the dust mite allergen 

derP7 which are roughly SPLUNC1’s size. 
3,26

 Latherin is an established surfactant that 
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spreads fluid over the animal’s pelt for cooling. 
27

 The NMR structure of equine latherin was 

reported in 2013 and shares 3.9 Å rmsd over 172 equivalent Cα positions and 27% sequence 

identity with human SPLUNC1. DerP7, an allergen of the Dermatophagoides pteronyssinus 
European house dust mite, shares 3.4 Å rmsd over 147 equivalent Cα positions and only 5% 

sequence identity with human SPLUNC1. In addition to their similarity in overall fold, 

SPLUNC1, latherin and derP7 all contain leucine- or isoleucine-rich loops that extend from 

the body of each protein. In SPLUNC1, this forms α-helix 4 (α4), while in latherin and 

derP7 they form relatively long and short loops, respectively, with at least four Leu or Ile 

residues (Figures 1C, 1D). An elegant model for the surfactant actions of latherin has been 

proposed wherein this Leu-rich loop seeds the unrolling of the protein’s super-roll fold to 

expose its Leu-rich hydrophobic core at the air-water interface. 
28,29

 Here, we test this 

hypothesis for human SPLUNC1, and in doing so also address the structural basis of its 

ability to act as an LPS-binding and innate antibacterial factor. Together, the data presented 

support the conclusion that improved SPLUNC1s could be designed to act as highly 

effective protective factors of potential use in the diseased lungs of patients with CF or other 

pulmonary disorders.

EXPERIMENTAL PROCEDURES

Protein Mutagenesis, Expression and Purification

Protein mutagenesis, expression and purification were carried out as previously described. 
6 

In addition to our previous protocol, Rosetta-gami 2 competent cells (EMD Millipore, MA, 

USA) were used and ion exchange chromatography was included for pDest566 (MBP Derp7 

fusion) following the first Ni-NTA His-Trap gravity column purification. Both His-tagged 

and non-His-tagged proteins were examined and gave similar results. pDest566 was a gift 

from Lars Pedersen (NIEHS) and pET32-sLatherin (Thioredoxin Latherin fusion) gift from 

Brian Smith (University of Glasgow). Curosurf was purchased from Chiesi USA, Inc (Cary, 

NC). Lysozyme was purchased from MP Biochemicals, LLC. Fatty acid free BSA purchased 

from Sigma.

Protein Surfactant and Stability Properties

Air-liquid equilibrium surface tension measurements were performed using the Wilhelmy 

plate method, with a Sigma 701 force tensiometer (Biolin Scientific, Stockholm Sweden). 

Samples measured were at 2uM in 50mM Hepes, pH 8.0 and 150mM NaCl. Briefly, 20 ml 

of sample was measured every minute for 25 minutes at room temperature using a flame-

cleaned platinum plate. Static contact angles were measured using a KSV Instruments LCD 

CAM 200 optical contact angle meter at room temperature. All measurements were carried 

out with drops dispensed from a Hamilton 500ul glass syringe (Hamilton CO, Reno NV) 

onto Parafilm (Bemis, Oshkosh WI).

Protein stability was determined using the Circular Dichroism method. 
30

 10uM of 

rSPLUNC1 wt and mutant proteins in CD buffer containing 10mM potassium phosphate 

(pH 7.4), 100mM potassium fluoride and +/− 5 mM DTT were loaded into a 1-mm cuvette. 

Using a Chirascan-plus instrument (Applied Photophysis Limited), spectra from 185 to 280 

nM were recorded at 20 ± 1.0 °C. Measurements were corrected for background signal using 
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a CD buffer sample. The melting profile of the sample was monitored at 221 nM from 20 °C 

to 94 °C.

Protein Crystallization and Structure Determination

Crystals of purified rhSplunc1 disulfide bond mutants were grown at 37 °C in 6M 

ammonium nitrate, and 0.1M Tris-HCL (pH 8.5), and cryoprotected in this condition with 

15% glycerol. Crystals were flash-frozen in liquid nitrogen in preparation for X-ray data 

collection. Diffraction data were collected on the 23-ID beamline at GM/CA-CAT 

(Advanced Photon Source, Argonne National Laboratory). Data were processed using 

standard methods and structures determined by molecular replacement using the rhSplunc1 

structure as a search model (PDB:4KGH). 
31–33

 Structures were refined using standard 

methods. Coordinates and structure factors can be found at PDB: 517J, 517K and 517L

Primary Human Bronchial Epithelial Cultures (HBEC)

HBECs were obtained and harvested from freshly excised bronchial specimens from normal 

subjects (n = 4–5 donors) following the protocol approved by the University of North 

Carolina Institutional Review Board. 
34

 HBECs were cultured at an air-liquid interface in a 

modified bronchial epithelial growth medium with 5% CO2 at 37°C and were used 3–4 

weeks after the seeding on 12-mm T-clear inserts (Corning-Costar, Corning, NY, USA). 

During image acquisition, HBECs were maintained in a modified Ringer Solution as 

described previously. 
35

Confocal Microscopy Measurement and Analysis of ASL

ASL labeling with Dextran-tetramethylrodamine (Life Technologies, D-1817) was 

performed as described previously. 
6,35

 Acquiring ASL images using a Leica SP8 confocal 

microscope with a 63x/1.3 Numerical Aperture glycerol immersion lens and analyzing 

acquired ASL images were performed as described previously. 
36

Bacterial Growth and Biofilm Assays

B. cenocepacia J2315 (obtained from Dr. John J. Lipuma, CFF Burkholderia cepacia 
Research Laboratory and Repository, University of Michigan Medical School), P. 
aeruginosa, and S. aureus (obtained from Dr. Matthew Wolfgang, University of North 

Carolina at Chapel Hill) were grown in Luria broth (LB) at 37°C for 24 h with shaking 300 

rpm. CFU/ml were determined by serial dilution plating on LB agar plates. The bacterial 

cultures were adjusted to an optical density at 600 nm (OD600) of ~ 0.600, and 106 CFU/ml 

bacteria was co-incubated with varying concentrations of rSPLUNC1 wt and mutant 

proteins in flat bottom 96-well plates (Corning Incorporated) for 24 h at 37°C. For 

antimicrobial activity, bacterial growth was measured at 24 h at OD600 nm. Samples were 

collected at 24 h, serial diluted in Ringer’s solution and plated on LB agar plates to 

determine the number of CFU per milliliter. For antibiofilm activity, plates were washed and 

biofilms were fixed with methanol and stained with 1% crystal violet. After rinsing with 

distilled water, the stained biofilms were resolubilized with 33% acetic acid. Biofilm 

formation was measured at OD590 nm.
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LPS Binding Assays

A modified, enzyme-linked immunosorbent assay (ELISA)-based LPS binding method was 

used to detect interaction between LPS and SPLUNC1 as described previously. 
23

 Briefly, a 

96-well plate was coated overnight with purified LPS (400 ng/well) from Pseudomonas 
aeruginosa 10 or Escherichia coli 055:B5 (Sigma, St. Louis, MO). Wells were washed and 

blocked with 1% bovine serum albumin (BSA)–phosphate-buffered saline (PBS) for 1 h; 

then, 2-fold dilutions of purified SPLUNC1 (400 ng) were added to each well in duplicate. 

PBS was used as a control for this experiment. An antibody specific to human SPLUNC1 

(Hycult, Plymouth Meeting, PA) was used to detect the LPS-bound SPLUNC1. After the 

secondary antibody reaction performed using horseradish peroxidase (HRP)-conjugated 

anti-mouse IgG, enzyme activity was detected using a TMB Ultra 1-step assay (Pierce 

Biotechnology, Inc., Rockford, IL). Absorbance was detected at OD450 nm in a BioTek 

spectrophotometer (BioTek, Winooski, VT). This experiment was performed three times, 

and the data were presented as means ± SD.

RESULTS

Human SPLUNC1 is a Strong Protein Surfactant

The ability of human SPLUNC1 to act as a surfactant was examined using the Wilhelmy 

plate method. Purified human SPLUNC1 at 2 μM (50 μg/mL) in 50 mM HEPES pH 8.0 

buffer with 150 mM NaCl exhibited a surface tension of 38 mN/m (Figure 2A; Table 1). 

Water and buffer (50 mM HEPES pH 8.0 buffer with 150 mM NaCl) demonstrated a surface 

tension of 72 mN/m, which is standard for solutions lacking surfactants. Lysozyme at 2 μM 

(45 μg/mL) also exhibited a surface tension of 72 mN/m, indicative of a lack of surfactant 

activity for this protein, while BSA at 2 μM (133 μg/mL) exhibited a moderate ability to act 

as a surfactant, reducing surface tension to 56 mN/m. Two structural homologues of 

SPLUNC1, the equine pelt cooling factor Latherin 
28

 and the dust mite allergen derP7 
29

, 

were also tested at 2 μM and exhibited moderate surfactant actions, reducing surface tension 

to 52 mN/m and 55 nM/m, respectively. The pulmonary surfactant Curosurf, a mixture of 

lipid purified from porcine lungs and employed clinically to treat respiratory distress, was 

tested at 1.5 mg/mL and reduced surface tension to 32 mN/m. 
37

 However, Curosurf at the 

same mass to volume ratio as SPLUNC1, 50 μg/mL, reduced surface tension to only 52 

mN/m. Thus, human SPLUNC1 is a strong protein-only surfactant and is superior to two 

proteins, latherin and DerP7, that share a common fold. Furthermore, SPLUNC1’s surfactant 

activities are on-par with that of the standard of care for respiratory distress, even when 

employed at 30-fold less concentration on a weight per volume basis.

SPLUNC1’s α4 is Critical to Surfactant Activity

To determine the molecular basis of SPLUNC1’s surfactant activity, we designed several 

mutant forms of the protein using the human SPLUNC1 crystal structure (see Table 1 for 

SPLUNC1 proteins examined), and tested their ability to reduce surface tension. All variant 

proteins were expressed and purified as described, and were found using circular dichroism 

(CD) and CD-monitored thermal denaturation to be similar to wild-type SPLUNC1 in terms 

of overall structure and stability (e.g., see below). 
30

 First, eliminating SPLUNC1’s ENaC 

inhibitory domain (the S18 region) did not alter the surfactant activity of SPLUNC1 (ΔS18, 
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Figure 2B; all proteins are at 2 μM; Table 1). Second, it has been hypothesized that a 

surface-exposed leucine-rich loop in equine Latherin would be critical to surfactant 

activity. 
28

 In human SPLUNC1, that region corresponds to α4 (see Figs. 1C–D). Thus, we 

created a form of SPLUNC1 lacking α4 (Δα4) and found that this variant exhibited 

significantly diminished surfactant activity, only reducing surface tension to 47 mN/m 

(SPLUNC1Δα4 in Figure 2B). Thus, α4 in SPLUNC1 is crucial to the surfactant actions of 

human SPLUNC1.

Leucines in and around SPLUNC1’s α4 are conserved and present in the structural 

homologs Latherin and derP7 (Fig. 1; Table 1). We mutated four leucines in that region 

(L87, L88, L91, L92) simultaneously to alanines (LAx4) and to serines (LSx4; see Fig. 1B) 

in SPLUNC1. We found that these proteins each showed the same diminishment of 

surfactant activity as Δα4, reducing surface tension to only 46–47 mN/m (Figure 2B). A 

control mutant in which five surface-exposed leucines (L191, L192, L195, L203, L204) 

located away from α4 on human SPLUNC1 were mutated to alanine (LAx5; Table 1; see 

Fig. 1B) did not show an impact on its surfactant activity, reducing surface tension to the 

wild-type level of 38 mN/m in the Wilhelmy plate assay. Thus, the leucines in the α4 region 

are necessary for the surfactant activities of human SPLUNC1.

We employed contact angle measurements of SPLUNC1 and specific variants (Figure 2C; 

all proteins at 2 μM) as a secondary assessment of surfactant activity. Contact angles below 

90° are considered to be “wetting” and to be indicative of surfactant activity (the spreading 

of fluid across a surface), while those above 90° are “non-wetting”. Human SPLUNC1 

exhibited a contact angle of 86°, similar to that observed for SPLUNC1 ΔS18 and LAx5 

(Figure 2C). By contrast, SPLUNC1 Δα4 and LAα4 both exhibited significantly higher 

contact angles of 93° and 96°, respectively (Figure 2C), similar to that observed for the weak 

surfactant protein BSA (94°). By this measure, SPLUNC1, ΔS18, and LAx5 can be 

categorized as wetting with intact surfactant abilities, while SPLUNC1 Δα4 and LAα4 are 

relatively non-wetting with reduced surfactant actions. These data are similar to those 

obtained in the Wilhelmy plate assay, and support the conclusion that α4 and the leucines 

therein are crucial to SPLUNC1’s surface tension lowering activities.

Designed Disulfide Bonds Reduce SPLUNC1’s Surfactant Activity

SPLUNC1 is composed of a “super-roll” fold formed by relatively parallel α-helices that 

come together adjacent to a rolled β-sheet (see Fig. 1A) to create a hydrophobic core 

composed largely of leucine residues. Therefore, it has been hypothesized that such proteins 

act as surfactants by partially or completely unrolling at the helical interface (grey dotted 

line in Fig. 1B) to expose their internal leucines to the air. 
28

 To test this hypothesis, we 

generated mutant forms of human SPLUNC1 in which disulfide bonds were added to the 

interface between α5 and α-helices 1-3. The addition of disulfides requires specific 

proximities for the amino acids to be mutated; thus, we chose two sets of residues expected 

to place newly-introduced cysteines close enough to form disulfide bonds. M3 (I76C

+V214C) was expected to diminish the surfactant actions of SPLUNC1 given its proximity 

to α4, while M2 (A48C+V253C), distant from α4, was expected to serve as a control 

(Figures 1, 3; Table 1). The M2 and M3 SPLUNC1 variants were expressed recombinantly 
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in E. coli and purified to homogeneity, and then the structures of each were determined by x-

ray crystallography to 2.6 and 2.5 Å resolution, respectively (Table 2). 
31–33

 Even in the 

initial electron density maps obtained after molecular replacement, the novel disulfides 

designed into each protein variant were evident. Upon refinement, the M2 (A48C+V253C) 

and M3 (I76C+V214C) designed disulfides were confirmed in the final models (Figure 3A 

and 3B).

We first confirmed that the native disulfide in SPLUNC1 did not contribute to the protein’s 

surfactant activities. A mutant form of human SPLUNC1 in which this native disulfide was 

eliminated (C180A+C224A) exhibited the same surface tension of 38.5 mN/m as wild-type 

SPLUNC1 in a Wilhelmy plate assay (Figure 3C; all proteins at 2 μM). The M2 form of 

SPLUNC1 gave a surface tension of 40 mN/m while the M3 mutant significantly diminished 

surfactant activity, with a reduction of surface tension to only 44 mN/m (Figure 3C). Thus, 

locking α3 and α5 together with a disulfide impacts the surfactant action of this human 

protein. Addition of the reducing agent dithiothreitol (DTT) to the M3 mutant of human 

SPLUNC1 returned the protein to its wild-type surfactant activity (Figure 3C). Combining 

M3 with LAx4 produced a small reduction in SPLUNC1’s surfactant activity: LAx4 is 45.5 

mN/m (Figure 2B), while M3+LAx4 is 47 mN/m (Figure 3C). Upon DTT addition to 

M3+LAx4, reduction of the M3 disulfide bond only eliminated the small M3 contribution 

and left the protein with the 45.5 mN/m value expected for LAx4 alone Figure 3C). Thus, a 

disulfide at the α5 and α-3 interface reduced the surfactant actions of SPLUNC1 beyond 

what eliminating critical leucines near α4 achieved.

These observations were confirmed using contact angle measurements. SPLUNC1 and 

native disulfide-eliminated (C180A+C224A) SPLUNC1 exhibited wetting contact angles of 

86° and 87°, respectively, similar to the M2 disulfide mutant at 86° (Figure 3D). M3 showed 

a slightly wetting contact angle of 88° in this assay. However, combining M3 with LAx4 

produced a non-wetting contact angle of 96° (Figure 3D), higher than the contact angle of 

93° measured for LAx4 alone (Figure 2C). Taken together, these results pinpoint the 

molecular features of human SPLUNC1 necessary for its surfactant activity and further 

support the conclusion that SPLUNC1 employs the α4-adjacent leucines and the 

disassociation of α5 and α-2–3 interface to lower fluid surface tension.

Impact of SPLUNC1 Variants on Airway Surface Liquid and LPS Binding

We assessed biophysically the following proteins as representative of the total panel 

examined above: SPLUNC1, Δα4, LAx4, M3, and LAx4+M3. We first examined the 

melting temperatures (Tm) using CD-monitored unfolding at increasing temperatures. 
30 

SPLUNC1 did not unfold even at 95 °C in the absence of reducing agent; upon the addition 

of 5 mM fresh DTT, SPLUNC1 exhibited a Tm of 84 °C. For comparison, the C180A

+C224A native disulfide mutant SPLUNC1 demonstrated a relatively close Tm of 79 °C 

both with and without DTT. The remaining SPLUNC1 variants were all tested with 5 mM 

fresh DTT and exhibited the following values: >95 °C for Δα4, 84 °C for LAx4, 85 °C for 

M3, and 83 °C for for LAx4+M3. In addition, CD spectra of these mutants showed no 

differences in secondary structure relative to SPLUNC1. Thus, the SPLUNC1 variants 

examined do not differ from the native protein in overall structure or stability based on Tm 
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values or secondary structure, with the exception of the Δα4 which does not unfold up to 

95 °C in these conditions. However, Δα4 SPLUNC1 stability was not decreased relative to 

SPLUNC1, indicating that using this protein reagent in subsequent studies would produce 

data not clouded by instability.

We studied a set of human SPLUNC1 variants for their ability to control airway surface 

liquid height in cultured human bronchial airway epithelial cell cultures (HBECs), an 

established function of SPLUNC1. 6 SPLUNC1 maintains airway surface liquid (ASL) 

height in HBECs grown at the air-water interface (Figure 4A). The Δα4 and LAx4 forms of 

human SPLUNC1, which were deficient in surfactant activity, also maintained ASL at a 

level significantly above vehicle (Figure 4A). The M3 disulfide form of SPLUNC1 exhibited 

a slightly reduced ability to regulate ASL, but the LAx4+M3 form of SPLUNC1 recovers 

the ability to maintain ASL (Figure 4A). Together, these data indicate that mutations that 

diminish the surfactant activities of human SPLUNC1 do not impact the ability of this factor 

to control ASL.

We also examined this set of SPLUNC1 variants for their ability to bind to LPS from P. 
aeruginosa and E. coli (Figure 4B, 4C).

12
 We found that the forms of SPLUNC1 that exhibit 

wild-type surfactant activities (SPLUNC1, ΔS18, LAx5, and M2) all were able to bind to 

LPS either from either of these Gram-negative organisms. By contrast, the four forms of 

SPLUNC1 found to be deficient in surfactant activity (i.e., Δα4, M3, LAx4, and M3+LAx4) 

were all significantly reduced in binding to both forms of LPS (Figure 4B, 4C). Therefore, 

we conclude that SPLUNC1’s LPS binding is functionally linked to its surfactant activity.

SPLUNC1 Variants Against Gram-Negative Bacteria

We next examined the ability of native and variant SPLUNC1 proteins to act as antibiofilm 

and bacteriostatic factors against the cultured airway-relevant bacteria Staphylococcus 
aureus, Pseudomonas aeruginosa and Burkholderia cepacia complex. SPLUNC1 has 

previously been shown to act as an innate antibacterial agent against Gram-negative 

bacteria. 
7,8 As expected, our human SPLUNC1 proteins were ineffective against both 

growth or biofilm formation by the Gram-positive pathogen S. aureus, where growth was 

examined by both optical density (OD) and colony forming units (CFU) and biofilm was 

assessed using the crystal violet assay (not shown).

SPLUNC1 and its designed mutants were found to have no effect by OD (Figure 5A) but did 

exert effects by CFU when measuring the growth of the Gram-negative pathogen P. 
aeruginosa (Figure 5B). Specifically, native SPLUNC1 at 10–100 μg/mL significantly 

reduced P. aeruginosa growth, and a similar result was observed with LAx4 SPLUNC1 

(Figure 5B). Δα4 SPLUNC1 showed no effect on P. aeruginosa growth, while both the M3 

and LAx4+M3 SPLUNC1 variants demonstrated enhanced P. aeruginosa anti-growth 

activity starting even at 1 μg/mL (Figure 7B). We conclude that α4 is necessary for the 

bacteriostatic activity of SPLUNC1 against P. aeruginosa, and that the M3 variant is capable 

of improving this activity. While the optical density (OD) measurements did not reveal 

changes in bacterial growth with SPLUNC1, the CFU assay, which depends on growth, 

clearly delineated specific SPLUNC1 effects with P. aeruginosa. All forms of SPLUNC1 
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showed essentially the same anti-biofilm activity against this Gram-negative pathogen, 

reducing biofilm biomass starting at 1–3 μg/mL (Figure 5C).

SPLUNC1 exerted a bacteriostatic effect in both the OD and CFU assays starting at 10 

μg/mL against B. cepacia (Figure 6A). By contrast, all SPLUNC1 mutants exhibited 

diminished bacteriostatic activities in the OD assay, showing either no effect up to 100 

μg/mL for Δα4 SPLUNC1, or effects only at 100 μg/mL for LAx4 and LAx4+M3 

SPLUNC1 (Figure 6A). By CFU, native SPLUNC1, M3 and LAx4+M3 SPLUNC1s showed 

bacteriostatic activity at concentrations equal to or greater than 10 μg/mL, while the Δα4 and 

LAx4 forms of SPLUNC1 exhibited significantly diminished bacteriostatic activity against 

B. cepacia complex (Figure 6B). Similar to the trend observed for P. aeruginosa, native 

SPLUNC1 and all variant forms of SPLUNC1 examined demonstrated significant reduction 

in biofilm formation starting at 10 μg/mL (Figure 6C). Therefore, these results support the 

conclusion that the surfactant activity of SPLUNC1 is important for the bacteriostatic 

activity of this protein against Gram-negative bacteria, but is not involved in its anti-biofilm 

effects on either of the pulmonary pathogens P. aeruginosa or B. cepacia.

Enhanced Antibiofilm Functions Against Gram-Positive S. aureus

Finally, we noted that the mutants examined above had not impacted the antibiofilm 

functions of SPLUNC1 (Figs. 5C, 6C). Thus, we sought to explore that aspect of the 

protein’s activity using a unique set of protein derived from the following observation: the 

GL-rich region between residues 58 and 88 (α1-α4) in the mammalian SPLUNC1s are 

highly similar in sequence, with the noted exception of the water mammals (e.g., the 

SPLUNC1s from dolphin, orca and manatee; Fig. 7A). The SPLUNC1s from land mammals 

are neutral in this area, while the SPLUNC1 orthologs in the water mammals place charged 

amino acids in this region, particularly three anionic residues E62, D63 and D66 (Fig. 7A). 

To test the potential importance of this region toward SPLUNC1 function, we created two 

novel mutant forms of human SPLUNC1: D1 (G58A, S61A, G62E, G63D, G66D, I67T), 

and Dolphinized SPLUNC1, with the full 58-88 region of dolphin SPLUNC1 in place of the 

58-88 region of human SPLUNC1 (Fig. 7A). The crystal structure of D1 SPLUNC1 was 

determined to 2.6 Å resolution (Table 2) and revealed the addition of a significant 

electronegative patch on the protein’s surface, created by the three anionic residues (Fig. 

7A). We examined D1 and Dolphinized SPLUNC1 proteins in bacteriostatic and antibiofilm 

assays with S. aureus, P. aeruginosa and BCC. For the latter two species, the proteins acted 

like native human SPLUNC1 (not shown). For S. aureus, however, while the effect on S. 
aureus growth was similar to SPLUNC1 and remained unchanged, we found that both D1 

and Dolphinized SPLUNC1 exhibited antibiofilm activity above 30 μg/mL protein 

concentration (Fig. 7B, C). Thus, the addition of negatively charged residues in the α1-α4 

region of SPLUNC1 reduced levels of S. aureus biofilm, and highlights this region of the 

protein as important for antibiofilm activity, at least against a Gram-positive bacterium.

DISCUSSION

The abundantly secreted humoral pulmonary factor SPLUNC1 is multifunctional, with 

established roles in regulating ASL volume, as a surfactant in lowering the surface tension at 
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the air-water interface, and as an innate antimicrobial protein against Gram-negative 

bacteria. 
4,7,8,38

 We hypothesized that specific molecular features of human SPLUNC1 

would be responsible for each function, and we tested this hypothesis by creating site-

specific mutations in the protein and determining their effects on ASL, surfactant, and 

antimicrobial functions. Structural comparisons between human SPLUNC1, equine latherin 

and Dermatophagoides pteronyssinus derP7 reveal similarities in their overall “super-roll” 

fold but differences in the region around SPLUNC1’s α4. Equine latherin, whose structure 

was resolved by NMR in 2013, contains a leucine-rich loop in the area where SPLUNC1 

places its α4, and this L-rich region was proposed by Vance et al. to be crucial for latherin’s 

surfactant activities by bringing the protein to the air-water interface. 
28

 DerP7 also contains 

isoleucine and leucine residues in the same area (I62, I64, I65, L67). 
29

Because SPLUNC1’s α4 region also contains several leucine residues, we chose to test the 

latherin hypothesis by eliminating SPLUNC1’s α4, and by making specific leucine-to-

alanine and leucine-to-serine mutations in this area (LAx4, LSx4). Our results both with 

Wilhelmy plate and contact angle methods support the conclusion that α4 and the leucines in 

that region are crucial for SPLUNC1’s surfactant activities (Figs. 2B–C). Thus, we suggest 

that the α4 and L’s in that region “seed” SPLUNC1’s localization to the air-water interface. 

We term this area of human SPLUNC1 the “L-Loop”. A model of the α4 region extended 

from the body of SPLUNC1 is shown in Figure 8 and reveals that the largely conserved 

leucines 87–88 and 91–92 can be placed at the terminus of a long tether composed of 

flexible and conserved glycine residues, and suggests a L-Loop seeding mechanism for 

SPLUNC1. Liu et al. previously showed that SPLUNC1 expression reduces the surface 

tension of epithelial secretions from human bronchial epithelial cell cultures, and 

furthermore that the level of SPLUNC1 expression correlates with reduction of that surface 

tension. 
13

Vance et al. proposed equine latherin an unrolling at the air-water interface to expose the 

hydrophobic core of this protein. 
28

 We also tested this prediction in human SPLUNC1 by 

engineering disulfide bonds designed to lock together the α1-α6 and α3-α5 secondary 

structural elements of SPLUNC1 in oxidizing conditions (see Fig. 1B). We conclude that the 

two different types of mutants examined here (e.g., M3 and LAx4) reveal two distinct 

mechanisms used by SPLUNC1 to reduce surface tension. First, we propose that the α4 

region unwinds to position the leucines of the L-Loop at the air-water interface (Fig. 4), and 

second that the super-roll fold partially unrolls to expose a portion of the leucine-rich 

hydrophobic core of SPLUNC1 to air. Together, these mechanisms work in concert to 

provide SPLUNC1 with potent surfactant activities, on par with the complex lipid-protein 

mixture CuroSurf.

To further examine our over-arching hypothesis that different regions of SPLUNC1 impart 

distinct functions, we tested the impact these surfactant mutations have on the ability of 

SPLUNC1 to control the airway surface liquid (ASL) levels in cultured human bronchial 

epithelial cells. It has been established previously that the N-terminal S18 region of 

SPLUNC1 inhibits the epithelium sodium channel (ENaC), reducing the influx of sodium 

and water into pulmonary epithelial cells and maintaining the height of the airway surface 

liquid. 
5,6 We found that the Δα4, LAx4 and M3+LAx4 forms of human SPLUNC1 were not 

Walton et al. Page 10

Biochemistry. Author manuscript; available in PMC 2016 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



significantly different from SPLUNC1 in ASL height (Fig. 4A). By contrast, the M3 form of 

SPLUNC1 exhibited a reduced ability to regulate airway liquid height, although this effect 

was not maintained in the M3+LAx4 SPLUNC1 variant (Fig. 4A). These data support the 

conclusion that the presentation of the S18 region of SPLUNC1 to ENaC, which has been 

shown to be impacted by the body of the SPLUNC1 protein, is not eliminated by mutations 

to the protein that affect its surfactant activity. Therefore, it appears that the ENaC-

regulatory and surfactant motifs of SPLUNC1 are both physically and functionally distinct.

However, we found that surfactant activities of SPLUNC1 were required for LPS binding by 

the protein, as mutants that lack surface tension-lowering activities were deficient in LPS 

binding (Figs. 4B, 5C). We conclude that, while the ASL- and surfactant-regulating regions 

of SPLUNC1 are distinct, the LPS-binding and surfactant-regulating regions overlap and are 

functionally related. We propose that LPS molecules bind to SPLUNC1 at the air-water 

interface in a cleft that can form between helices 2 and 5 in Figure 4; access to this cleft 

would be expected to be significantly reduced in the surfactant-deficient variants Δα4, and 

M3+/−LAx4.

We examined SPLUNC1’s impact on growth and biofilm formation by the Gram-positive 

bacterium Staphylococcus aureus and the Gram-negative microbes Pseudomonas aeruginosa 
and Burkholderia cepacia. We found that SPLUNC1 and surfactant mutants had no effect on 

S. aureus. However, SPLUNC1 exerted a bacteriostatic effect on both P. aeruginosa and B. 
cepacia at 10 μg/mL over 24 hours. Furthermore, human SPLUNC1 inhibited biofilm 

formation by P. aeruginosa and B. cepacia at 1 μg/mL and 10 μg/mL, respectively. The 

effects on Pseudomonas growth and biofilm had been reported previously 
16,18,20,21,23,39

, 

but this provides an important advance on the effects of SPLUNC1 on Burkholderia. These 

data establish that SPLUNC1 contains innate antibacterial activities against two Gram-

negative pulmonary pathogens of the Proteobacteria phylum. We found that our surfactant-

reducing mutations had no effect on anti-biofilm activity against P. aeruginosa and B. 
cepacia. Thus, we conclude that anti-biofilm activity of SPLUNC1 is independent of the α4 

region.

In contrast to the biofilm results, we found that the α4 region of SPLUNC1 was necessary 

for the protein to reduce the growth of P. aeruginosa and B. cepacia. For P. aeruginosa, it has 

been shown previously that SPLUNC1 binds to this bacterium and produces holes in its 

outer membrane; together, these actions are expected to impact bacterial growth. 23 Δα4-

SPLUNC1 may lack one or both of these functions, leading to its loss of bacteriostatic 

activity, and it is attractive to speculate that the leucine-rich α4 of SPLUNC1 may serve as 

the pore-forming “warhead” of this protein toward Gram-negative pathogens. An alternative 

hypothesis is that, because Δα4-SPLUNC1 lacks wild-type surfactant abilities, this protein 

variant is unable to spread bacteria at the air-water interface to prevent growth. However, the 

data outlined below for other SPLUNC1 variants with reduced surfactant activities makes 

this hypothesis less likely, as they show differential effects depending on the mutation and 

the bacterial species tested.

Indeed, we find for P. aeruginosa that the M3 and M3+LAx4 forms of SPLUNC1 exhibits 

enhances bacteriostatic activity by 10-fold over SPLUNC1; both M3-containing SPLUNC1s 
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significantly reduces P. aeruginosa growth at 1 μg/mL, while the native protein exerts this 

effect at 10 μg/mL. We speculate that the M3 disulfide bond may restrict the conformation 

of the L-Loop region of SPLUNC1 in a manner that enhances the protein’s ability to bind to 

or form pores in Gram-negative bacteria, leading to enhanced bacteriostatic effects. Future 

studies will focus on testing these predictions. However, because the LAx4 form of 

SPLUNC1, which is also deficient in surfactant activity, does not exhibit a difference in P. 
aeruginosa bacteriostatic effects, we conclude that the inherent surface tension-lowering 

qualities of SPLUNC1 are not responsible for its ability to reduce bacterial growth. 

Interestingly, however, for B. cepacia the Δα4 and LAx4 forms of SPLUNC1 were 

significantly diminished in their bacteriostatic activities, while the M3 and M3+LAx4 

SPLUNC1s were closer to native SPLUNC1. These results indicate that there are unique 

features between these two Proteobacterial pathogens that lead to differential effects by the 

same forms of SPLUNC1. Future studies will be undertaken to determine how different 

SPLUNC1s exert alternative effects on different Gram-negative bacteria.

Because the surfactant mutants had no effect on the antibiofilm activities of SPLUNC1, we 

probed the SPLUNC1s that were most sequence divergent in the α1-α4 region, those of the 

water mammals. These forms of the protein encode anionic residues in the 58–68 region in 

place of the neutral side chains maintained by the land mammals. Thus, we hypothesized 

that a variant human SPLUNC1 with these residues would exhibit a distinct function. 

Indeed, we found that inclusion of just six amino acid changes (D1 SPLUNC1) was 

sufficient to impart antibiofilm activity toward the Gram-positive pathogen S. aureus, albeit 

via an enigmatic mechanism given the anionic character of the S. aureus cell envelop. 
40 

Still, these results highlight the importance of this α1-α4 region in the antibiofilm activity of 

SPLUNC1, at least toward Gram-positive microbes, and suggest that additional protein 

variants may be created that further improve their effects against S. aureus and other 

bacterial pathogens.

Taken as a whole, the data presented define for the first time the molecular foundations of 

human SPLUNC1’s ability to act as a surfactant and antimicrobial factor. The L-Loop and 

α4 regions appear essential for surfactant, LPS-binding, and bacteriostatic activities, and 

each of these functions is distinguishable from the ASL-regulating actions of SPLUNC1, 

indicating that this multifunctional protein has multiple functional sites. Furthermore, 

because enhanced antibacterial actions were observed for specific forms of SPLUNC1 (e.g., 
M3, LAx4) that lack statistically significant effects on regulating ASL height, it appears that 

SPLUNC1s with improved antimicrobial actions could successfully be designed. With 

development, such reagents have the potential to be employed as prophylactics to prevent 

infections by opportunistic pulmonary pathogens in at-risk patient populations, such as those 

with cystic fibrosis, chronic obstructive pulmonary disorder, or are immune compromised.
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ABBREVIATIONS

LPS Lipopolysaccharide

SPLUNC1 Short Palate Lung Nasal Epithelial Clone 1

ENaC epithelial sodium channel

CF cystic fibrosis

DPPC dipalmitoylphosphatidylcholine

LBP lipopolysaccharide binding protein

BPI bacteriocidal permeability-increasing protein

CD circular dichroism

Δα4 SPLUNC1 lacking α4

LAx4 leucines L87, L88, L91, L92 simultaneously mutated to alanines

LSx4 leucines L87, L88, L91, L92 simultaneously mutated to serine

LAx5 surface-exposed leucines L191, L192, L195, L203, L204 located away from 

α4 on human SPLUNC1 simultaneously mutated to alanine

M2 A48C+V253C SPLUNC1

M3 I76C+V214C SPLUNC1

DTT dithiothreitol

Tm melting temperatures

HBECs human bronchial airway epithelial cell cultures

ASL airway surface liquid

OD optical density

CFU colony forming units

D1 human SPUNC1 with five Dolphin SPLUNC1 mutations [G58A, S61A, 

G62E, G63D, G66D, I67T]

BCC Burkholderia cenocepacia complex.

References

1. Bingle CD, Bingle L. Characterisation of the human plunc gene, a gene product with an upper 
airways and nasopharyngeal restricted expression pattern. 2000; 1493:363–367.

2. Bingle L, Bingle CD. Distribution of human PLUNC/BPI fold-containing (BPIF) proteins. Biochem 
Soc Trans. 2011; 39:1023–1027. [PubMed: 21787341] 

3. Bingle CD, Seal RL, Craven CJ. Systematic nomenclature for the PLUNC/PSP/BSP30/SMGB 
proteins as a subfamily of the BPI fold-containing superfamily. Biochem Soc Trans. 2011; 39:977–
983. [PubMed: 21787333] 

4. Britto CJ, Cohn L. Bactericidal/Permeability-increasing protein fold-containing family member A1 
in airway host protection and respiratory disease. Am J Respir Cell Mol Biol. 2015; 52:525–534. 
[PubMed: 25265466] 

Walton et al. Page 13

Biochemistry. Author manuscript; available in PMC 2016 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



5. Hobbs, Ca; Blanchard, MG.; Kellenberger, S.; Bencharit, S.; Cao, R.; Kesimer, M.; Walton, WG.; 
Redinbo, MR.; Stutts, MJ.; Tarran, R. Identification of SPLUNC1’s ENaC-inhibitory domain yields 
novel strategies to treat sodium hyperabsorption in cystic fibrosis airways. FASEB J. 2012; 
26:4348–4359. [PubMed: 22798424] 

6. Garland AL, Walton WG, Coakley RD, Tan CD, Gilmore RC, Hobbs CA, Tripathy A, Clunes LA, 
Bencharit S, Stutts MJ, Betts L, Redinbo MR, Tarran R. Molecular basis for pH-dependent mucosal 
dehydration in cystic fibrosis airways. Proc Natl Acad Sci. 2013; 110:15973–15978. [PubMed: 
24043776] 

7. Di YP. Functional roles of SPLUNC1 in the innate immune response against Gram-negative 
bacteria. Biochem Soc Trans. 2011; 39:1051–1055. [PubMed: 21787346] 

8. Bartlett JA, Bartlett J, Gakhar L, Penterman J, Singh PK, Singh P, Mallampalli RK, Porter E, 
McCray PB. PLUNC: a multifunctional surfactant of the airways. Biochem Soc Trans. 2011; 
39:1012–1016. [PubMed: 21787339] 

9. Chu HW, Thaikoottathil J, Rino JG, Zhang G, Wu Q, Moss T, Refaeli Y, Bowler R, Wenzel SE, 
Chen Z, Zdunek J, Breed R, Young R, Allaire E, Martin RJ. Function and regulation of SPLUNC1 
protein in Mycoplasma infection and allergic inflammation. J Immunol. 2007; 179:3995–4002. 
[PubMed: 17785838] 

10. Gakhar L, Bartlett JA, Penterman J, Mizrachi D, Singh PK, Mallampalli RK, Ramaswamy S, 
McCray PB. PLUNC is a novel airway surfactant protein with anti-biofilm activity. PLoS One. 
2010; 5:e9098. [PubMed: 20161732] 

11. McGillivary G, Bakaletz LO. The multifunctional host defense peptide SPLUNC1 is critical for 
homeostasis of the mammalian upper airway. PLoS One. 2010; 5:e13224. [PubMed: 20949060] 

12. Thaikoottathil JV, Martin RJ, Di PY, Minor M, Case S, Zhang B, Zhang G, Huang H, Chu HW. 
SPLUNC1 deficiency enhances airway eosinophilic inflammation in mice. Am J Respir Cell Mol 
Biol. 2012; 47:253–260. [PubMed: 22499853] 

13. Liu Y, Bartlett Ja, Di ME, Bomberger JM, Chan YR, Gakhar L, Mallampalli RK, McCray PB, Di 
YP. SPLUNC1/BPIFA1 contributes to pulmonary host defense against klebsiella pneumoniae 
respiratory infection. Am J Pathol. 2013; 182:1519–1531. [PubMed: 23499554] 

14. Kohlgraf KG, Ackermann AR, Burnell KK, Srikantha RN, Joly SA, Bartlett JA, Gakhar L, Johnson 
GK, McCray PB, Guthmiller JM, Brogden KA. Quantitation of SPLUNC1 in saliva with an xMAP 
particle-based antibody capture and detection immunoassay. Arch Oral Biol. 2012; 57:197–204. 
[PubMed: 21925642] 

15. Bartlett JA, Meyerholz DK, Wohlford-Lenane CL, Naumann PW, Salzman NH, McCray PB. 
Increased susceptibility to otitis media in a Splunc1-deficient mouse model. Dis Model Mech. 
2015; 8:501–508. [PubMed: 25765466] 

16. Gally F, Di YP, Smith SK, Minor MN, Liu Y, Bratton DL, Frasch SC, Michels NM, Case SR, Chu 
HW. SPLUNC1 promotes lung innate defense against Mycoplasma pneumoniae infection in mice. 
Am J Pathol. 2011; 178:2159–2167. [PubMed: 21514430] 

17. Lukinskiene L, Liu Y, Reynolds SD, Steele C, Stripp BR, Leikauf GD, Kolls JK, Di YP. 
Antimicrobial activity of PLUNC protects against Pseudomonas aeruginosa infection. J Immunol. 
2011; 187:382–390. [PubMed: 21632717] 

18. Zhou H-D, Li X-L, Li G-Y, Zhou M, Liu H-Y, Yang Y-X, Deng T, Ma J, Sheng S-R. Effect of 
SPLUNC1 protein on the Pseudomonas aeruginosa and Epstein-Barr virus. Mol Cell Biochem. 
2008; 309:191–197. [PubMed: 18049866] 

19. Chu HW, Gally F, Thaikoottathil J, Janssen-Heininger YM, Wu Q, Zhang G, Reisdorph N, Case S, 
Minor M, Smith S, Jiang D, Michels N, Simon G, Martin RJ. SPLUNC1 regulation in airway 
epithelial cells: role of Toll-like receptor 2 signaling. Respir Res. 2010; 11:155. [PubMed: 
21054862] 

20. Jiang D, Persinger R, Wu Q, Gross A, Chu HW. a1-Antitrypsin promotes SPLUNC1-mediated 
lung defense against Pseudomonas aeruginosa infection in mice. Respir Res. 2013; 14:122. 
[PubMed: 24209388] 

21. Liu Y, Di ME, Chu HW, Liu X, Wang L, Wenzel S, Di YP. Increased Susceptibility to Pulmonary 
Pseudomonas Infection in Splunc1 Knockout Mice. J Immunol. 2013; 191:4259–4268. [PubMed: 
24048904] 

Walton et al. Page 14

Biochemistry. Author manuscript; available in PMC 2016 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



22. Zhou HD, Li GY, Yang YX, Li XL, Sheng SR, Zhang WL, Zhao J. Intracellular co-localization of 
SPLUNC1 protein with nanobacteria in nasopharyngeal carcinoma epithelia HNE1 cells depended 
on the bactericidal permeability increasing protein domain. Mol Immunol. 2005; 43:1864–1871. 
[PubMed: 16364440] 

23. Sayeed S, Nistico L, St Croix C, Di YP. Multifunctional role of human SPLUNC1 in Pseudomonas 
aeruginosa infection. Infect Immun. 2013; 81:285–291. [PubMed: 23132494] 

24. Ghafouri B, Kihlström E, Tagesson C, Lindahl M. PLUNC in human nasal lavage fluid: multiple 
isoforms that bind to lipopolysaccharide. Biochim Biophys Acta. 2004; 1699:57–63. [PubMed: 
15158712] 

25. Ning F, Wang C, Berry KZ, Kandasamy P, Liu H, Murphy RC, Voelker DR, Nho CW, Pan C-H, 
Dai S, Niu L, Chu H-W, Zhang G. Structural characterization of the pulmonary innate immune 
protein SPLUNC1 and identification of lipid ligands. FASEB J. 2014; 28:5349–5360. [PubMed: 
25223608] 

26. Kopec KO, Alva V, Lupas AN. Bioinformatics of the TULIP domain superfamily. 2011:1033–
1038.

27. McDonald RE, Fleming RI, Beeley JG, Bovell DL, Lu JR, Zhao X, Cooper A, Kennedy MW. 
Latherin: a surfactant protein of horse sweat and saliva. PLoS One. 2009; 4:e5726. [PubMed: 
19478940] 

28. Vance SJ, McDonald RE, Cooper A, Smith BO, Kennedy MW. The structure of latherin, a 
surfactant allergen protein from horse sweat and saliva. J R Soc Interface. 2013; 10:20130453. 
[PubMed: 23782536] 

29. Tan KW, Jobichen C, Ong TC, Gao YF, Tiong YS, Wong KN, Chew FT, Sivaraman J, Mok YK. 
Crystal structure of Der f 7, a dust mite allergen from Dermatophagoides farinae. PLoS One. 2012; 
7:e44850. [PubMed: 22970319] 

30. Sreerama N, Woody RW. Estimation of protein secondary structure from circular dichroism 
spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference 
set. Anal Biochem. 2000; 287:252–260. [PubMed: 11112271] 

31. Afonine PV, Grosse-Kunstleve RW, Echols N, Headd JJ, Moriarty NW, Mustyakimov M, 
Terwilliger TC, Urzhumtsev A, Zwart PH, Adams PD. Towards automated crystallographic 
structure refinement with phenix.refine. Acta Crystallogr D Biol Crystallogr. 2012; 68:352–367. 
[PubMed: 22505256] 

32. Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol 
Crystallogr. 2004; 60:2126–2132. [PubMed: 15572765] 

33. Otwinowski, Z.; Minor, W. Processing of X-ray Diffraction Data Collected in Oscillation Mode. In: 
Carter, CW., Jr; Sweet, RM., editors. Methods in Enzymology, Volume 276: Macromolecular 
Crystallography, part A. Academic Press; New York: 1997. p. 307-326.

34. Fulcher ML, Randell SH. Human nasal and tracheo-bronchial respiratory epithelial cell culture. 
Methods Mol Biol. 2013; 945:109–121. [PubMed: 23097104] 

35. Worthington EN, Tarran R. Methods for ASL measurements and mucus transport rates in cell 
cultures. Methods Mol Biol. 2011; 742:77–92. [PubMed: 21547727] 

36. Choi H-C, Kim CSK, Tarran R. Automated acquisition and analysis of airway surface liquid height 
by confocal microscopy. Am J Physiol Lung Cell Mol Physiol. 2015; 309:L109–118. [PubMed: 
26001773] 

37. Suresh GK, Soll RF. Overview of surfactant replacement trials. J Perinatol. 2005; 25(Suppl 
2):S40–44. [PubMed: 15861172] 

38. Gaillard, Ea; Kota, P.; Gentzsch, M.; Dokholyan, NV.; Stutts, MJ.; Tarran, R. Regulation of the 
epithelial Na+ channel and airway surface liquid volume by serine proteases. Pflugers Arch Eur J 
Physiol. 2010; 460:1–17. [PubMed: 20401730] 

39. Tsou YA, Chen CM, Lin TC, Hu FW, Tai CJ, Chen HC, Yeh TH, Harn HJ, Tsai MH, Jan CI. 
Decreased SPLUNC1 expression is associated with Pseudomonas infection in surgically treated 
chronic rhinosinusitis patients who may require repeated sinus surgery. Laryngoscope. 2013; 
123:845–851. [PubMed: 23371910] 

Walton et al. Page 15

Biochemistry. Author manuscript; available in PMC 2016 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



40. Romaniuk JAH, Cegelski L, Way R, Cegelski L. Bacterial cell wall composition and the influence 
of antibiotics by cell-wall and whole-cell NMR. Phil Trans R Soc B. 2015; 370:20150024. http://
dx.doi.org/10.1098/rstb.2015.0024. [PubMed: 26370936] 

Walton et al. Page 16

Biochemistry. Author manuscript; available in PMC 2016 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://dx.doi.org/10.1098/rstb.2015.0024
http://dx.doi.org/10.1098/rstb.2015.0024


Figure 1. Structural Features of Human SPLUNC1
A. N- and C- termini are indicated (gray) as are the secondary structural elements (blue, 

green). The native disulfide bond is shown and labeled, and the amino acid positions used to 

create the two novel disulfides presented here are indicated in cyan (48, 253 for M2) and 

magenta (76, 214 for M3). B. Secondary structural elements are shown in schematic, as are 

the locations of the native disulfide and two novel disulfides presented (M2, M3). In 

addition, a schematic view of the Δα4 mutant is indicated (orange), and the locations of the 

Leu-Ala or -Ser mutations in the LAx4 and LSx4 variants are also shown (red). The location 

of the five Leu-Ala changes in the control LAx5 mutation is also shown (black). Finally, the 

gray dotted line indicates secondary structural elements that may disassociate during a 

potential “unrolling” of the SPLUNC1 super-roll fold. C. Human SPLUNC1-equine 

Latherin superposition with the sequences of each protein in the α4 region of human 

SPLUNC1 also shown, and hydrophobic Latherin residues highlighted in bold. The Δα4 

mutant of SPLUNC1 is indicated with dotted line. D. Human SPLUNC1-dust mite derP7 

superposition with the sequences of each protein in the α4 region of human SPLUNC1 also 

shown, and hydrophobic derP7 residues highlighted in bold. The Δα4 mutant of SPLUNC1 

is indicated with dotted line.
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Figure 2. SPLUNC1Surfactant Activity
A. Surface tension was measured using the Wilhelmy plate method for the indicated proteins 

or other solutions at the indicated concentrations. B. Surfactant Activities of SPLUNC1 
Variants. SPLUNC1, as well as the Δ18 and LAx5 SPLUNC1 variants, reduce surface 

tension using the Wilhelmy plate method to ~39 mN/m, while the LSx4, LAx4 and Δα4 

forms of SPLUNC1 are relatively deficient in surfactant activity and only reduce surface 

tension to ~46 mN/m. All proteins at 2 μM. C. Surfactant Activity by Contact Angle of 
SPLUNC1 and other Solutions. The same SPLUNC1 proteins shown in panel B to be 

optimal surfactant are “wetting” (contact angle <90°) in their actions in this contact angle 

assay, while the LSx4, LAx4 and Δα4 forms of SPLUNC1, as well as BSA and buffer, are 

“non-wetting” (contact angle >90°). All proteins at 2 μM. For all data in this figure, 

experiments were performed ten times, and means ± SEM are shown.
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Figure 3. Designed SPLUNC1 Disulfide Mutants
A. Crystal Structure of M2 SPLUNC1. Overall 2.6 Å resolution structure and 2|Fo−Fc| 

electron density contoured at 1.5σ for designed M2 disulfide bond. B. Crystal Structure of 
M3 SPLUNC1. Overall 2.54 Å resolution structure and 2|Fo−Fc| electron density contoured 

at 1.5σ for designed M3 disulfide bond. C. Surface Tension for Disulfide SPLUNC1 
Mutants. The M2 mutant and SPLUNC1 with the native disulfide eliminated (C180A/

C224A) show surface tension by Wilhelmy plate close to native SPLUNC1, ~38 mN/m, 

while the M3 and M3+LAx4 mutants exhibit relatively deficient surfactant activity, with 

surface tensions >44 mN/m. Additional of DTT reduced surface tension of the M3 mutant 

back to 38 mN/m, but did not impact M3+LAx4, which exhibited the surface tension 

expected for LAx4 alone (see Fig. 2B). All proteins at 2 μM. D. Surfactant Activity by 
Contact Angle for Disulfide Mutants. Most SPLUNC1 proteins are “wetting” (contact angle 

<90°) in their actions in this contact angle assay, while the M3+LAx4 form of SPLUNC1, as 

well as BSA and buffer, are “non-wetting” (contact angle >90°). All proteins at 2 μM. For all 

data in this figure, experiments were performed ten times, and means ± SEM are shown.
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Figure 4. Impact of SPLUNC1 Variants on ASL and on LPS Binding
A. Indicated SPLUNC1 proteins were tested for their impact on airway surface liquid (ASL) 

levels above cultured human airway epithelial cell cultures. B. SPLUNC1 Binding to 

Pseudomonas LPS as assessed by ELISA. C. SPLUNC1 Binding to E. coli LPS as assessed 

by ELISA.
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Figure 5. SPLUNC1 Variants as Antimicrobial Agents against against Pseudomonas aeruginosa
A. The indicated SPLUNC1 variants tested at listed concentrations had no impact on this 

measure of P. aeruginosa growth as measured by OD600nm. B. All SPLUNC1 variants tested, 

except for Δα4, significantly reduced P. aeruginosa growth as measured by colony forming 

units (CFU). **, p<0.01. C. All SPLUNC1 variants tested significantly reduced P. 
aeruginosa biofilm formation. **, p<0.01.
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Figure 6. SPLUNC1 Variants as Antimicrobial Agents against against Burkholderia cenocepacia 
complex (BCC)
A. All SPLUNC1 variants tested, except for Δα4, significantly reduced BCC growth as 

measured by OD600 nm. **, p<0.01. B. All SPLUNC1 variants tested, except for Δα4 and 

LAx4, significantly reduced BCC growth as measured by colony forming units (CFU). *, 

p<0.05; **, p<0.01. C. All SPLUNC1 variants tested significantly reduced BCC biofilm 

formation. **, p<0.01.
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Figure 7. Human SPLUNC1 with Mutations from Dolphin SPLUNC1
A. Surface of human SPLUNC1 D1 Mutant of Human SPLUNC1 with Indicated Mutations. 
Six mutations were introduced and led to a marked increase in negative charge on the 

protein surface. The sequences of human and dolphin SPLUNC1s are indicated, with 

mutations that form D1 and Dolphinized SPLUNC1s indicated. B. The SPLUNC1 variants 

tested did not impact S. aureus growth by OD600 nm. C. Both Dolphinized and D1 

SPLUNC1s significantly reduced biofilm generation by S. aureus. **, p<0.01.
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Figure 8. Model for Human SPLUNC1 with Extended α4 Region
Largely conserved glycine (yellow) and leucines (red) in mammalian SPLUNC1 sequences 

are shown. This flexible region can be modeled to present the key leucines examined here to 

the air-water interface to break fluid surface tension.
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Table 1

SPLUNC1 Variants Examined

Name Amino Acids Function Notes

SPLUNC1 20-256 See reference 
6

ΔS18 45-256 See reference 
6

Δα4 20-256 with
Δ76-105

• Reduced surfactant activity

• Reduced LPS binding

• Reduced bacteriostatic activity against P. 
aeruginosa and B. cepacia

77-105 replaced with 
GSGS

LAx4 (LSx4) 20-256 with
L87A (L87S)
L88A (L88S)
L91A (L91S)
L92A (L92S)

• Reduced surfactant activity

• Reduced LPS binding

• Reduced bacteriostatic activity against B. 
cepacia

LAx5 20-256 with
L191A
L192A
L195A
L203A
L204A

C180A/C224A 20-256 with
C180A
C224A

M2 20-256 with
A48C
V253C

M3 20-256 with
I76C

V214C

• Reduced surfactant activity

• Reduced LPS binding

M3+ LAx4 20-256 with both M3 and LAx4 • Reduced surfactant activity

• Reduced LPS binding

Dolphinized 20-256 with
Δ58-88

• Increased antibiofilm activity against S. aureus 58-88 replaced with 
equivalent residues from 
dolphin SPLUNC1; see 
Fig. 7A

D1 20-256 with
G58A
S61A
G62E
G63D
G66D
I67T

• Increased antibiofilm activity against S. aureus See Fig. 7A
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Table 2

Crystallographic Statistics for SPLUNC1 Variant Structures

M2 M3 D1

Resolution (highest shell), Å 38.8–2.60 (2.69–2.60) 28.3–2.54 (2.63–2.54) 29.6–2.55 (2.64–2.55)

Space group C2221 C2221 C2221

Unit Cell, Å 47.1, 203.6, 120.2 47.8, 206.2, 117.6 48.0, 204.9, 118.7

Total reflections (F>0) 94111 68073 67696

Unique reflections 18284 19395 19300

Multiplicity 5.1 (5.1) 3.5 (3.4) 3.5 (3.2)

Completeness, % 99.6 (96.7) 98.7 (94.5) 98.7 (89.4)

Mean I/sigma(I) 21.3 (4.34) 14.5 (2.3) 13.8 (2.1)

Wilson B-factor, Å2 57.6 58.95 54.92

Rmerge 0.062 (0.580) 0.055 (0.71) 0.057 (0.657)

R 0.2198 0.1995 0.2122

Rfree 0.2837 0.2677 0.2744

No. of atoms per AU:

protein, water 2933, 17 2934, 13 3005, 33

rms bonds, Å 0.009 0.010 0.009

rms angles,° 1.51 1.48 1.50

Ramachandran favored, % 89 93 92

Ramachandran outliers, % 3.4 3 2

Clash score 15.61 11 11

Average B-factor, Å2 67 70.2 65

RCSB ID 517L 517J 517K
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