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Abstract

Two-component regulatory systems, minimally composed of a sensor kinase and a response 

regulator protein, are common mediators of signal transduction in microorganisms. All response 

regulators contain a receiver domain with conserved active site residues that catalyze the signal 

activating and deactivating phosphorylation and dephosphorylation reactions. We explored the 

impact of variable active site position T+1 (one residue C-terminal to the conserved Thr/Ser) on 

reaction kinetics and signaling fidelity, using wild type and mutant Escherichia coli CheY, CheB, 

and NarL to respectively represent the three major sequence classes observed across response 

regulators: Ala/Gly, Ser/Thr, or Val/Ile/Met at T+1. Biochemical and structural data together 

suggested that different amino acids at T+1 impacted reaction kinetics by altering access to the 

active site while not perturbing overall protein structure. A given amino acid at position T+1 had 

similar effects on autodephosphorylation in each protein background tested, likely by modulating 

access of the attacking water molecule to the active site. Similarly, rate constants for CheY 

autophosphorylation with three different small molecule phosphodonors were consistent with the 

steric constraints on access to the phosphorylation site arising from combination of specific 

phosphodonors with particular amino acids at T+1. Because other variable active site residues also 

influence response regulator phosphorylation biochemistry, we began to explore how context 

(here, the amino acid at T+2) affected the influence of position T+1 on CheY autocatalytic 

reactions. Finally, position T+1 affected the fidelity and kinetics of phosphotransfer between 

sensor kinases and response regulators, but was not a primary determinant of their interaction.
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Two-component regulatory systems are almost universal in bacteria, widespread in Archaea, 

and also present in plants and eukaryotic microorganisms.1, 2 In their simplest form, two-

component systems consist of two proteins: a sensor kinase to receive input (often in the 

form of an extracellular stimulus), and a response regulator to execute the response to that 

stimulus. An organism may have a dozen or more two-component systems operating 

simultaneously. Signal fidelity and an appropriate cellular response require that the kinetics 

and specificity of signal transduction be highly regulated. Typically, the lifetime of a 

transduced signal reflects the timescale of the regulated biological process3 and cross-talk 

between two-component systems within the same cell is minimized.4

Stimuli detected by two-component systems are encoded, transmitted, and terminated 

through a series of phosphorylation and dephosphorylation reactions ending at the response 

regulator, which acts as a phosphorylation-mediated switch. Although response regulators 

typically interact with kinases and/or phosphatases in vivo, response regulators contain the 

catalytic machinery necessary and sufficient for phosphorylation5 and hydrolytic 

dephosphorylation.6, 7 Furthermore, currently available evidence is consistent with the 

notion that kinases and phosphatases stimulate intrinsic response regulator reactions rather 

than utilize different reaction mechanisms.8–12 For these reasons, the focus of this study is 

on how differences between response regulators affect signaling kinetics and fidelity.

The response regulator active site (Figure 1A) is located in the receiver domain and consists 

of conserved residues that catalyze phosphorylation and dephosphorylation (Figure 1B), as 

well as variable residues that are presumably responsible for differences between response 

regulators. Here we explore the effects of different amino acids at variable position T+1 [one 

amino acid to the carboxy-terminal side of the conserved Thr/Ser (T)], which is spatially 

close to the conserved Asp (D) site of phosphorylation. We chose the Escherichia coli CheY, 

CheB, and NarL response regulators as representative of the three dominant sequence 

classes at position T+1: Ala/Gly, Ser/Thr, and Val/Ile/Met respectively. The kinetics of 

autophosphorylation and autodephosphorylation, and the fidelity of phosphotransfer from 

sensor kinases, were assessed for wild type and mutant response regulators carrying various 

substitutions at position T+1. To help clarify the molecular mechanisms underlying the 

observed effects on reaction kinetics and phosphodonor specificity, we also determined the 

X-ray crystal structures of four CheY mutants containing substitutions at position T+1 and 

constructed molecular models of attacking water or phosphodonors in the active site. 
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Collectively, our biochemical and structural analyses indicate that position T+1 affects 

access to the response regulator active site and so influences autophosphorylation, 

autodephosphorylation, phosphotransfer from sensor kinases, and signaling fidelity to 

varying degrees. The distribution of amino acids found at position T+1 in different response 

regulator subfamilies can be interpreted in the context of our findings.

EXPERIMENTAL PROCEDURES

Analysis of Response Regulator Amino Acid Sequences

To analyze amino acid composition at position T+1, all response regulator sequences were 

downloaded from MiST213 in September 2011. The receiver domains were aligned and any 

insertions not present in E. coli CheY were removed. Aligned sequences were filtered to 

ensure they contained six highly conserved amino acids corresponding to Asp12, Asp13, 

Asp57, Gly65, Thr87, and Lys109 from E. coli CheY. To reduce bias in the resulting set of 

46,643 sequences, the list was trimmed to include only one species per genus and sequences 

with ≥90% identity to another sequence were removed. The amino acids at position T+1 

were counted in the final list of 14,374 receiver domains.

Amino acid composition at T+1 was also assessed in a few response regulator subfamilies. 

Within the Pfam database,14 response regulator sequences are organized by the homology of 

their output domains. In many cases this homology extends to the receiver domain because 

both domains are co-inherited, but in some cases domain shuffling, gene duplication or 

divergent evolution of a single domain has resulted in divergent receiver domains being 

classified in the same Pfam family.15 The FixJ/NarL subfamily, which is defined by the 

presence of the GerE-like helix-turn-helix DNA binding domain (Pfam: PF00196) in 

addition to a receiver domain,16 is an example of such a divergent group. Therefore, to focus 

on NarL-like sequences we first downloaded the 7,484 protein sequences in the PF00196 

family that contained an N-terminal receiver domain followed by the GerE-like DNA 

binding domain. We then identified the subset of sequences with NarL-like receiver domains 

by aligning the receiver domain sequences and subjecting them to phylogenic analysis using 

Multalin.17 We defined NarL-like sequences as those that remained clustered with E. coli 
NarL after the first branch that split E. coli NarL from the phylogenetically distant 

Rhizobium meliloti FixJ.15 4,084 NarL-like sequences were found. After filtering for the 

presence of six conserved amino acids, 3,477 sequences remained. For analysis of T+1 

residues in the CheY and CheB subfamilies, we first downloaded 317 CheY and 230 CheB 

sequences identified by Refseq name from the MiST2 amino acid sequence database.13 Of 

these, 290 CheY and 211 CheB sequences passed the filtering for conserved amino acids.

Bacterial Strains, Plasmids, and Mutant Construction

Expression of CheY variants was performed using the E. coli ΔcheY strain K0641recA18 

bearing wild type or mutant versions of the pRS3 plasmid.19 The CheY mutants CheYA88S, 

CheYA88M, and CheYA88V were from previous studies20, 21 whereas the remaining 

plasmids encoding mutants were generated from pRS3 by QuikChange mutagenesis 

(Agilent Technologies).
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Gateway plasmids containing E. coli cheB (pENTR-b1883) or narL (pENTR-b1221) were 

kindly provided by Dr. Michael Laub (Massachusetts Institute of Technology).22 For protein 

expression, the cheB and narL genes were amplified from the pENTR plasmids using 

standard PCR methods and sub-cloned into pET28a (Novagen) using NheI/BamHI or NdeI/

XhoI sites respectively. Both products encode response regulators with an N-terminal fusion 

of 20 amino acids that includes a His6 tag and a thrombin cleavage site. The narX sequence 

corresponding to residues 227 through the C-terminus of NarX (NarX227)23 was cloned 

from E. coli DH5α genomic DNA, and sub-cloned into the pMal-C2KV/H6 plasmid24 using 

Xba1 and BamH1 sites. The resulting plasmid encoded a His6-MBP-NarX227 fusion protein. 

Primers for cloning and mutagenesis are listed in Table S1.

Protein Expression and Purification

CheY variants were expressed and purified using a protocol similar to that previously 

described.25 Briefly, K0641recA containing pRS3 or variants were grown to an OD600 of 1.0 

and induced with 100 mg/L β-indole acrylic acid at 37 °C overnight. Cell lysates in TMG 

buffer (25 mM Tris, pH 7.5, 5 mM MgCl2, 10% (v/v) glycerol) were purified by dye-affinity 

chromatography (Affigel-Blue, Bio-Rad) followed by size-exclusion chromatography 

(Superdex 75, GE). Concentrations were determined spectrophotometrically using an 

extinction coefficient of 0.727 (mg/mL)−1 cm−1 for wild type CheY and all CheY variants.26

For NarL expression, E. coli BL21(DE3) cells containing pET28a-NarL or variants were 

grown to OD600 of 1.0 and induced with 1 mM IPTG for 3 hrs at 37 °C. Cell lysates were 

purified by affinity chromatography using Ni-NTA beads (Qiagen). The resulting N-terminal 

hexa-histidine tagged proteins were then subjected to ion exchange chromatography (Q-

Sepharose, GE, pH 7.5), followed by size-exclusion chromatography (Superdex 75, GE) into 

NarL storage buffer (20 mM Tris, pH 7.5, 0.5 mM MgCl2, 10% (v/v) glycerol). 

Concentrations of NarL and variants were determined spectrophotometrically using an 

extinction coefficient of 0.292 (mg/mL)−1 cm−1 calculated with protParam.27

Hexa-histidine tagged CheB and variants were expressed and purified in a manner similar to 

NarL. BL21(DE3) cells containing pET28a-CheB or variants were grown to OD600 of 0.8 

and induced with 1 mM IPTG overnight at room temperature. Importantly, 2 mM β-

mercaptoethanol was included in both lysis buffer (50 mM Tris, pH 8.0, 300 mM NaCl, 10 

mM imidazole, 2 mM β-mercaptoethanol) and elution buffer (lysis buffer with 300 mM 

imidazole) during Ni-NTA affinity purification to improve protein stability. Promptly after 

affinity purification, CheB proteins were chromatographed over a Superdex 75 size-

exclusion column into CheB storage buffer (10 mM Tris, pH 8.0, 50 mM NaCl, 10% (v/v) 

glycerol, 20 mM β-mercaptoethanol). CheB protein concentrations were determined using 

an extinction coefficient of 3.97 (mg/mL)−1 cm−1 estimated by protParam.27 Working stocks 

of CheB were frozen at −80 °C in CheB storage buffer. For longer term storage, CheB was 

precipitated in 50% saturated ammonium sulfate and stored at 4 °C.28

His6-MBP-NarX227 was expressed in BL21(DE3) cells containing pMal-C2KV/H6-NarX227 

grown to OD600 of 1.0 and induced with 1 mM IPTG for 3 hrs at 37 °C. Cell lysates were 

purified by affinity chromatography using Ni-NTA beads (Qiagen), followed by size-

exclusion chromatography (Superdex 75, GE) into NarX storage buffer (20 mM HEPES, pH 
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7.0, 200 mM KCl, 1 mM DTT, 5% v/v glycerol). Concentrations of His6-MBP-NarX227 

were determined using a calculated extinction coefficient27 of 1.09 (mg/mL)−1 cm−1.

Small Molecule Phosphodonors

The calcium salt of monophosphoimidazole (MPI)29 and the potassium salt of 

phosphoramidate (PAM)30 were synthesized as described. The calcium counter ion of the 

MPI salt, which might affect the observed phosphorylation or dephosphorylation rates,31 

was exchanged using the sodium form of Chelex 100 resin. The lithium potassium salt of 

acetyl phosphate (AcP) was purchased from Sigma.

Autodephosphorylation Assays

The fluorescence and radioactive methods described below both selectively monitor loss of 

phosphoryl groups from phosphorylated proteins in a first order reaction that is independent 

of protein concentration. Neither the proportion of the protein population phosphorylated at 

the start of the experiment nor the fraction of the population that is functional affect 

measurement of autodephosphorylation rate constants by these methods.

E. coli CheY contains a unique Trp residue at position D+1 in the active site (Figure 1A) 

that can be used to optically measure reaction kinetics.5 Intrinsic tryptophan fluorescence 

measurements on CheY and variants were made on a Perkin-Elmer LS-50B 

spectrofluorimeter (minimum data interval and response time = 20 ms) using an Applied 

Photophysics (Surrey, U.K.) RX2000 rapid mixer accessory (dead time = 8 ms) and Perkin-

Elmer FL WINLAB V3 software as previously described.32 Excitation and emission 

wavelengths were set to 295 nm and 346 nm respectively. Samples were maintained at a 

constant temperature of 25 °C with a circulating water bath.

CheY autodephosphorylation experiments used the pH-jump method.33, 34 CheY and 

variants were initially autophosphorylated using ~5-times the K1/2 of PAM.33 Equal volumes 

of CheY-P (10 μM in 10 mM HEPES, pH 7.0, 20 mM MgCl2, and PAM) and pH jump 

Buffer (200 mM sodium carbonate, pH 10.2) were mixed to effectively stop 

autophosphorylation33 and allow direct observation of the subsequent 

autodephosphorylation reaction as a restoration of tryptophan fluorescence. The change in 

fluorescence as a function of time was fit to a first order exponential to determine the rate 

constant for autodephosphorylation, kdephos. Measurements were made in triplicate.

To measure the autodephosphorylation rate constants of wild type and mutant CheB 

proteins, we phosphorylated CheB with [32P]CheA-P and followed the decay of the resulting 

[32P]CheB. Because the phosphoryl group on CheB-P has a half-life on the order of several 

seconds35 and CheA has no known phosphatase activity toward response regulators,6 no 

attempt was made to purify CheB-P away from CheA. Radiolabeled CheA-P was prepared 

as described previously.33 Prior to the start of the reaction, [32P]CheA was diluted in CheB 

buffer (35 mM Tris pH 7.0, 35 mM KCl, 3.5 mM MgCl2), and a sample was removed for a 

zero time point. To initiate the reaction, CheB was added to give final concentrations of 7 

μM CheB and 0.35 μM [32P]CheA. Following set incubation times at room temperature, 

samples were removed into 2x SDS running buffer, resolved on 18% SDS-PAGE gels (Jule), 

vacuum dried for 90 min at 65 °C, and analyzed using a Storm 860 phosphorimager (GE). 
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The fraction of [32P]CheB-P remaining as a function of time was fit to a first order 

exponential decay to calculate kdephos. The results of triplicate experiments were averaged.

The sensor kinase NarX stimulates dephosphorylation of NarL-P,36 so NarX was removed 

from the reaction before NarL autodephosphorylation rate constants were determined. His6-

MBP-NarX227 was first autophosphorylated as described previously23, 37 and then 

immobilized on a 100 μL amylose microspin column. Then 6 μM wild type or position T+1 

variant NarL was added to initiate the phosphotransfer. Approximately 10 seconds after 

addition, NarL was centrifuged through the column. The resulting [32P]NarL-P was passed 

over a second amylose column to remove contaminating His6-MBP-NarX227. During the 

phosphotransfer, 1 mM unlabelled ATP and an ATP regeneration system (0.01 units/mL 

pyruvate kinase and 1 mM phosphoenol pyruvate) were added to keep any residual MBP-

NarX227 phosphorylated and thus minimize phosphatase activity toward NarL-P. Following 

set incubations times at room temperature, samples of NarL were removed into 2x SDS 

running buffer, resolved on 4–20% SDS-PAGE gels (Jule), vacuum dried for 90 min at 70° 

C, and quantified using a Storm 860 phosphorimager (GE). The results of triplicate 

experiments were analyzed as described for CheB.

CheY Autophosphorylation

The approach to equilibrium for autophosphorylation experiments was continuously 

monitored by following the decrease of CheY intrinsic tryptophan fluorescence. Because 

increasing ionic strength inhibits CheY autophosphorylation,9, 34 reactions were carried out 

in 100 mM HEPES, pH 7.0, 10 mM MgCl2, and a concentration of KCl balanced with the 

concentration of the phosphodonor sufficient to maintain a constant ionic strength of 100 

mM for the phosphodonor and KCl together. To initiate the reactions, CheY (5 μM final 

concentration) was mixed with an equal volume of phosphodonor at four final 

concentrations ranging from 5–30 mM PAM (n=3), 5–30 mM AcP (n=2), or 5–30 mM MPI 

(n=2). For CheY mutants bearing Ser at position T+2, phosphodonor concentrations were 5–

20 mM PAM (n=2) for CheYE89S and CheYA88T/E89S and 25–100 mM PAM (n=2) for 

CheYA88V/E89S. Analysis of the data and calculation of rate constants are described in the 

legend to Figure 4.

Partner and Non-Partner Phosphotransfer Assays

For phosphotransfer reactions from sensor kinases to response regulators, sensor kinases 

were first autophosphorylated for 30 min at room temperature. His6-MBP-NarX227 was 

incubated in 100 mM HEPES pH 7.0, 50 mM KCl, 5 mM MgCl2, 5 mM MnCl2, 10 mM 

DTT, 10% (v/v) glycerol), and 30 nM [γ-32P]ATP.23, 37 CheA was incubated in 50 mM Tris 

pH, 7.5, 50 mM KCl, 5 mM DTT, 10% (v/v) glycerol, and 100 nM [γ-32P]ATP in 300 μM 

unlabelled ATP.25 Wild type or position T+1 variant response regulators were then added 

directly to the kinase autophosphorylation reactions to give final concentrations of ~1.3 μM 

sensor kinase and 6 μM response regulator. At set time points, samples were removed into 

2x SDS running buffer, resolved on either 18% or 4–20% SDS-PAGE gels, dried, and 

visualized with a phosphorimager.
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Because phosphotransfer from sensor kinases to partner response regulators is very fast [e.g. 

a kcat of ~800 s−1 for CheA to CheY34], this manual assay can only detect large effects. 

Phosphotransfer could be 1,000-times slower than wild type and still be complete by the first 

timepoint at 10 seconds. Although the phosphotransfer rate cannot be quantified with a 

manual assay, the qualitative distinctions that can be made are informative. Comparison of 

phosphotransfer completed within 10 seconds versus 1 hour is a recognized indicator of 

partner versus non-partner phosphotransfer.22

Crystallization, Data Collection, Structure Determination and Refinement

Crystals of CheY mutant proteins were grown by hanging drop vapor diffusion at room 

temperature. Prior to crystallization, 20 mM MnCl2, 1 mM BeCl2 and 10 mM NaF were 

added to CheY (4.8–10.1 mg/mL) in TMG buffer (described above) to form the 

CheY•BeF3
−•M2+ complex. Initial crystallization hits were found in a screen of ammonium 

sulfate (1.6–2.6 M) based on previously published crystallization conditions.38 

Crystallization buffers and drop ratios were optimized and diffraction quality crystals were 

found in conditions ranging from 1.6–2.4 M ammonium sulfate, 0–10% (v/v) glycerol, 100 

mM Tris, pH 7.5–8.5 with drop ratios of 1:1, 3:1 or 3:2 protein:reservoir. CheY mutants with 

near wild type kdephos (CheYA88S and CheYA88T) crystallized in the orthorhombic 

spacegroup P212121 as seen previously for wild type CheY, whereas CheYA88V (slower 

kdephos) grew as primitive triclinic crystals. CheYA88M, which displayed an intermediate 

kdephos, grew in both crystal forms.

Crystals were cryoprotected with glycerol as previously described,38 or by serial transfers 

through buffers with increasing amounts of glycerol, and flash cooled in liquid nitrogen. X-

ray diffraction images were collected at the SERCAT beamlines (22-BM or 22-ID) at APS. 

Diffraction data were reduced and scaled using HKL2000.39 Initial phases for the CheY 

mutants were obtained by molecular replacement using PDBid 1fqw40 as a search model. 

Initial models were improved by iterative rounds of model building in Coot41 and structure 

refinement with PHENIX.42 Prior to deposition the models were validated using 

MolProbity.43 Table 3 contains a summary of diffraction data and refinement statistics.

Both Mn2+ and Mg2+ were present during crystallization. Mg2+ was modeled as the active 

site metal ion in CheYA88V due to relatively weak electron density, whereas Mn2+ was used 

in the other three structures based on a reasonable match to experimental electron density. 

The identity of the metal ion does not appear to affect any conclusions of this study. The 

metal coordination and active site geometry of Thermotoga maritima CheY are 

indistinguishable whether bound to Mn2+ or Mg2+,44 and both ions support 

autophosphorylation and autodephosphorylation of E. coli/Salmonella CheY.5, 31, 45

RESULTS

Amino Acid Frequency at Position T+1 Varies Between Response Regulator Subfamilies

In addition to a receiver domain, most response regulators contain an output domain(s). 

Response regulators are conveniently classified on the basis of their output domains16 and 

receiver and output domains within the same response regulator generally have co-
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evolved.15, 46 Our database of receiver domains from all classes indicated that position T+1 

is usually occupied by the smallest amino acids (Ala or Gly), which account for 52% and 

21% of response regulator sequences respectively. However, some response regulator 

subfamilies exhibited dramatically different distributions of amino acids at position T+1 

(Table 1). For example, CheB response regulators, which are notable for rapid 

autodephosphorylation,35, 47 were likely to have a Ser or Thr at position T+1 (89%, 

compared to 17% for all response regulators). In contrast, NarL-like response regulators had 

a preponderance of Val, Ile, or Met residues at the T+1 position (44%, compared to 5% for 

all response regulators), and exhibit much slower autodephosphorylation.48, 49

Position T+1 Similarly Affects Autodephosphorylation Rate Constants of CheB, CheY, and 
NarL Response Regulators

To assess how particular amino acids at position T+1 affect response regulator function, we 

began by determining the autodephosphorylation rate constants for wild type and position T

+1 variants of E. coli CheB, CheY, and NarL (Table 2). The fluorescence of a unique Trp 

residue at CheY position D+1 increases in intensity when the phosphoryl group is lost from 

the adjacent residue.5, 34 Therefore, Trp fluorescence was used to monitor CheY 

autodephosphorylation kinetics (Figure 2A). CheB and NarL do not contain active site Trp 

residues. Instead, a pulse of radioactive phosphoryl groups was first rapidly transferred from 

the partner sensor kinase and then autodephosphorylation was measured by loss of 32P from 

CheB and NarL (Figure 2BC). Our measurements of rate constants for the wild type proteins 

were similar to previously published values.33, 35, 48 The effects on autodephosphorylation 

of a particular amino acid at position T+1 were qualitatively similar in all three response 

regulators tested (Figure 2D). The reaction was fastest with Ser, intermediate with Ala, and 

slowest with Val. Furthermore, for CheY, where additional mutants were measured, the 

effects of chemically similar substitutions (Ser vs. Thr and Ile vs. Val) were 

indistinguishable. Finally, the autodephosphorylation rate constant for CheY carrying a Met 

substitution at T+1 was intermediate between the rate constants for CheY with Ala or Ile/

Val.

CheY Crystal Structures Suggest That Residue T+1 Influences Autodephosphorylation 
Kinetics by Modulating Access to the Active Site

To explore the molecular mechanisms by which residue T+1 influences the rate of 

autodephosphorylation, high-resolution crystal structures of CheY mutants carrying Val, Ser, 

Thr, or Met at position T+1 were determined in the presence of divalent metal ion and 

BeF3
−, a stable phosphoryl group analog whose effects on response regulator structure40, 50 

and function51 have been validated. X-ray diffraction and refinement statistics are 

summarized in Table 3. The only significant differences between the structures of the CheY 

mutants and wild type were the additional atoms for the larger amino acids substituted at 

position T+1. This indicates that replacement of the Ala at T+1 with Val, Ser, Thr, or Met 

was well tolerated.

During response regulator autodephosphorylation, a water molecule must attack the 

phosphorus atom in line with the bond to be broken (Figure 1B).52 This geometric constraint 

facilitated the modeling of an attacking water molecule into the crystal structures of wild 
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type and mutant CheY proteins complexed with BeF3
− (Figure 3). These models allowed for 

analysis of interactions between the residue at T+1 and the modeled attacking water, and 

revealed that CheY mutants with slower autodephosphorylation kinetics had more occluded 

active sites.

Wild type CheY (PDBid 1fqw) with a docked attacking water displayed limited interaction 

between the water and the Ala at position T+1 (Figure 3A). In contrast, in the CheYA88V 

model, the Cγ2 methyl of the β-branched Val at position T+1 partially overlapped with a 

modeled attacking water molecule (Figure 3B). Partial occlusion of the attacking water 

would be expected to impede the dephosphorylation reaction and is consistent with the 

observed decrease in rate constant compared to wild type CheY (Table 2).

In the CheYA88S and CheYA88T structures, the Ser and Thr sidechains at position T+1 both 

adopted a rotameric conformation similar to that of Val88 in CheYA88V. However, the 

chemical difference between methyl (Val) and hydroxyl (Ser/Thr) means that the modeled 

steric overlaps are not disfavored. Instead the overlaps indicate potential hydrogen-bonding 

interactions between Ser/Thr at position T+1 and a water molecule poised for the 

dephosphorylation reaction (Figure 3C), consistent with a modest increase in the rate 

constants of autodephosphorylation for the A88S and A88T mutants compared to wild type 

CheY (Table 2).

In the CheYA88M structure, the Met at position T+1 adopted two different rotameric 

conformations. In one protomer, the active site was “closed”, with the Met residue rotated 

over the site of phosphorylation (Figure 3D) such that it would partially occlude an attacking 

water molecule. In the second crystallographic protomer (Figure 3E), the active site was 

“open” with the Met at T+1 rotated away from the active site in a rotamer that would make 

minimal van der Waals (VDW) contacts with an attacking water molecule. Thus, even 

though Met is large, the flexibility of the sidechain allows for two distinct atomic 

arrangements of the active site. The “open” arrangement is permissive for entry of an 

attacking water molecule, whereas the “closed” arrangement occludes access to the Asp 

phosphorylation site. The modest reduction in autodephosphorylation rate for the Met 

mutant compared to wild type (Table 2) is consistent with a model in which a fraction of the 

CheYA88M molecules at any time are in a conformation permissive for phospho-chemistry.

Interestingly, in all of the CheY T+1 mutant structures except the “open” conformation of 

CheYA88M, two other variable active site residues (D+2 and T+2) interacted with one 

another (Figure 3), and the Asn at D+2 was poised to potentially interact with an attacking 

water (Figure 1B). However, the conformation of D+2 did not correlate with 

autodephosphorylation kinetics and the functional significance of this observation remains to 

be established.

In summary, the autodephosphorylation rate constants of CheY mutants bearing 

substitutions at position T+1 (Table 2) correlate with the accessibility of water molecules to 

the path for an inline attack on the P-O bond, as revealed in the crystal structures (Figure 3). 

This supports the suggestion by Volz that the high frequency of small amino acids at T+1 

reflects the need for access to the phosphorylation site.53
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Residue T+1 Affects Phosphodonor Specificity and Forms Part of the CheY Binding Pocket 
for Small Molecule Phosphodonors

Autophosphorylation of CheY has been thoroughly characterized,9, 26, 34 whereas 

autophosphorylation of CheB and NarL have not. Therefore, we focused on CheY to assess 

the influence of position T+1 on autophosphorylation. Three small molecule phosphodonors 

were tested. Monophosphoimidazole (MPI) is a close mimic of the phosphohistidine side 

chains found in sensor kinases and histidine-containing phosphotransfer (Hpt) proteins, the 

predominant phosphodonors for response regulators in vivo. Phosphoramidate (PAM) is the 

smallest possible phosphodonor that can supply the P-N bond cleaved during 

phosphorylation with phosphohistidine and thus represents the most fundamental properties 

of the reaction. Acetyl phosphate (AcP) is a metabolite that can serve as a phosphodonor for 

many but not all response regulators in vivo.54 AcP differs from MPI and PAM in that a P-O 

bond is cleaved during phosphorylation with AcP. Raw data for autophosphorylation of 

CheY variants with PAM is shown in Figure 4, and rate constants for all phosphodonors are 

summarized in Table 4. Each phosphodonor gave a distinct pattern of autophosphorylation 

kinetics, suggesting differential interactions between phosphodonors and position T+1 

sidechains.

To examine possible causes for differing autophosphorylation efficiencies of PAM, AcP, and 

MPI, each of the three phosphodonors were modeled into each of the CheY mutant 

structures. The most illustrative models placed the phosphodonors into the CheYA88T 

structure and are presented in Figure 5. Although structures containing BeF3
− reflect the end 

rather than the beginning of the autophosphorylation reaction, phosphomimic structures 

were chosen in preference to unphosphorylated structures because the BeF3
− structures are 

in the active conformation that is optimal for catalysis.32, 45, 55 Furthermore, as noted in the 

Discussion, the kinetic data suggest that adoption of the active conformation precedes 

phosphodonor binding. Initial docking of each phosphodonor was accomplished by aligning 

the oxygen atoms of the phosphoryl group with the fluorine atoms of the bound BeF3
−, after 

which the BeF3
− was removed from the structure. The rotatable dihedral angles of the 

phosphodonors were then adjusted manually to give the best fit.

The Effects of Position T+1 on the Kinetics of CheY Autophosphorylation with PAM Parallel 
Effects on Autodephosphorylation

In each of the CheYA88T models, the Thr side chain at position T+1 interacts with the 

phosphodonor around the distal end of the scissile bond. For the PAM model (Figure 5A), 

the amino group of PAM lies in essentially the same position that the attacking water 

molecule would adopt in the autodephosphorylation reaction and forms a hydrogen bond 

with the T+1 Thr. The similar locations of the modeled water and the amine of PAM in each 

of the CheY mutant structures are consistent with the observation that the position T+1 

substitutions have generally similar effects on autodephosphorylation (Table 2) and 

autophosphorylation with PAM (Table 4). In particular, substitution of either Val or Ile at 

position T+1 resulted in ~30-fold decreased rate constants for autophosphorylation with 

PAM or autodephosphorylation with water relative to wild type CheY, whereas introduction 

of Met diminished PAM autophosphorylation and water-mediated autodephosphorylation 

about threefold. A different steric explanation for the failure of Ser or Thr at position T+1 to 
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enhance autodephosphorylation with PAM in spite of modeled hydrogen bond formation is 

described in the Discussion. In summary, for reaction with both PAM and water, the 

dominant effect of the amino acid at position T+1 may be access of the small molecule to a 

specific location in the response regulator active site.

Position T+1 Has Little Effect on CheY Autophosphorylation with AcP

Although AcP is a larger molecule than PAM, the distal end of the ester linkage fills a 

smaller volume than the corresponding amine from PAM. Therefore, VDW contacts 

between the docked AcP and the Thr at position T+1 were limited (Figure 5B). Modeling of 

AcP into the other CheY position T+1 mutants similarly revealed relatively few interactions 

between the phosphodonor and CheY compared to PAM or MPI. The limited interactions in 

the modeled structures are consistent with the relatively narrow (six-fold) range in AcP 

autophosphorylation rate constants measured across the position T+1 mutants (Table 4).

β-branched Amino Acids at Position T+1 Impede CheY Autophosphorylation with MPI

MPI contains a rigid imidazole ring and despite retaining rotational freedom around the 

scissile bond could not be docked to CheYA88T in a conformation that would not clash with 

the Thr at position T+1 (Figure 5C). Similarly, Ile or Val at T+1 also clash with a modeled 

MPI, suggesting some rearrangement of the active site would be necessary for the MPI 

phosphodonor to reach the Asp57 site of phosphorylation in mutants containing these β-

branched residues. In contrast, the Ala residue at position T+1 in wild type CheY does not 

clash with a docked MPI, and non-clashing rotamers of Ser and Met exist. Thus, a consistent 

correlation emerged between the analysis of MPI docking and the rate constants for 

autophosphorylation with MPI (Table 4). The amino acids at T+1 that facilitate access of 

MPI to the active site support autophosphorylation, whereas the β-branched amino acids that 

interfere with access impede autophosphorylation.

Combined Effects of Positions T+1 and T+2

The results reported in Tables 2 and 4 demonstrate that the amino acid at position T+1 

affected both autodephosphorylation and autophosphorylation. It is well established that the 

amino acids at positions D+2 and T+2 also affect the same reactions,3, 38, 56 so it is possible 

that the particular amino acids at D+2, T+1, and T+2 mutually affect their net influence. A 

thorough examination of the combined effects of these three variable active site positions is 

outside the scope of this study, but exploratory experiments were of interest. The Asn/Ser 

pair of amino acids found at D+2/T+2 in NarL was chosen for investigation because it is 

both relatively abundant in wild type response regulators (seventh out of 400 possible 

combinations) and associated with an unusual distribution of amino acids at position T+1. 

Compared to all receiver domains, those containing Asn at D+2 and Ser at T+2 are enriched 

at position T+1 for the usually infrequent amino acids Thr (43% when D+2/T+2 is Asn/Ser 

vs. 7% in all), Ser (22% vs. 10%), and Val (9% vs. 2%); as well as depleted for the usually 

common amino acids Ala (8% vs. 53%) and Gly (7% vs. 22%). The effects of Thr or Val at 

T+1 on CheY autocatalytic reactions were qualitatively similar in the context of Asn at D+2 

and Ser at T+2 (Table 5) to those observed in the Asn/Glu D+2/T+2 context of wild type 

CheY (Tables 2 and 4). Compared to Ala at T+1, Thr enhanced autodephosphorylation and 

diminished autophosphorylation with PAM, whereas Val diminished rate constants for both 
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reactions. However, the impact of Val at T+1 was quantitatively different in the context of 

different T+2 residues. The implications of these differences are considered in the 

Discussion.

Position T+1 Influences Phosphotransfer Between Partner and Non-partner Sensor 
Kinases and Response Regulators

To ensure signaling fidelity, the interactions between response regulators and their protein 

partners are highly specific.4, 57 Residues directly at the interface between a response 

regulator and its partner protein would be predicted to be the most likely to elicit changes in 

specificity or reaction kinetics. The T+1 position of the response regulator is at the protein-

protein interface in reported structures of complexes between response regulators and sensor 

kinases,58–60 Hpts,61–63 or phosphatases.64–66 To test if response regulator position T+1 

influences phosphorylation from sensor kinases, partner and non-partner phosphotransfer 

reactions were performed using either CheA (the partner kinase for CheB and CheY) or a 

well-characterized soluble construct (MBP-NarX227)23 of NarX (the partner kinase for 

NarL) in all possible combinations with the set of 12 wild type and mutant CheB, CheY, or 

NarL response regulators used in this study. Results are summarized in Table 6.

Efficient partner phosphotransfer was observed in 10 of 12 cases (CheB, Figure 2B; CheY, 

Figure 6C; NarL, Figure 6A). Only transfer from CheA to CheBS84V (Figure 2B) and from 

MBP-NarX227 to NarLV88S (not shown) was inefficient. In both cases, diminished 

phosphotransfer was observed to the response regulator mutant bearing at position T+1 the 

amino acid within the test set that was most different from the wild type residue (Ser vs. 

Val).

The amino acid at position T+1 had a more noticeable impact on phosphotransfer between 

non-partner proteins (Table 6). In the five cases where non-partner phosphotransfer cross-

talk was observed, the amino acid at position T+1 in the non-partner was similar to the T+1 

residue in the wild type partner response regulator. In a single time point experiment (Figure 

6A), MBP-NarX227 served as a phosphodonor for wild type CheY (Ala at T+1) and mutants 

bearing the hydrophobic amino acids Ile, Met, or Val, but did not appear to donate 

phosphoryl groups to CheY mutants containing the hydrophilic amino acids Ser or Thr. In 

the reciprocal combination, weak phosphotransfer from CheA to NarLV88S was observed 

(Figure 6D), but CheA did not act as a phosphodonor for wild type NarL (Figure 6CD) or 

NarLV88A (Figure 6C).

To verify that the apparent absence of phosphorylated CheYA88S or CheYA88T was due to 

lack of phosphotransfer from MBP-NarX227 rather than rapid autodephosphorylation, a time 

course experiment was performed (Figure 6B). Phosphorylation of CheYA88S and 

CheYA88T was not observed at any time point. Furthermore, phosphorylated MBP-NarX227 

did not decrease over the entire time course, in contrast to the four CheY variants for which 

phosphotransfer was observed. We therefore conclude that MBP-NarX227 did not 

phosphotransfer to CheYA88S or CheY88T. CheB autodephosphorylates even more rapidly 

than CheY. However, analogous single time point and time course experiments showed that 

MBP-NarX227 did not phosphotransfer to wild type CheB, CheBS84A, or CheBS84V 

(neither decrease of phosphorylated MBP-NarX227 nor phosphorylated CheB were 
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observed), but did transfer to wild type NarL in a positive control reaction (data not shown). 

Finally, because NarL autodephosphorylates more slowly than CheY, the failure to observe 

NarL-P or a decrease in CheA-P under conditions that generated CheY-P from CheA-P 

(Figure 6C) is strong evidence that CheA does not phosphotransfer to wild type NarL or 

NarLV88A.

DISCUSSION

Position T+1 Effects on Response Regulator Autodephosphorylation can be Grouped

Combining the data reported here (Tables 2 & 5, Figure 3) with available structures and 

previously published biochemical results suggests that consideration of the potential steric 

interactions involving position T+1 can be used to sort the amino acids into four groups with 

distinct effects on the response regulator autodephosphorylation reaction as described from 

fastest to slowest below:

i. Residues that can hydrogen bond with the attacking water molecule, i.e. 

the small polar residues Ser (Figure 3C) and Thr, correlate with enhanced 

autodephosphorylation. Ser and/or Thr substitutions at position T+1 in 

CheY, NarL, and DosR67 supported faster autodephosphorylation than 

wild type. Conversely, removing the Ser from wild type CheB diminished 

the autodephosphorylation rate constant. Looking more broadly, the 

response regulators with the fastest known autodephosphorylation rate 

constants (CheB or CheY proteins)3, 47 are substantially enriched for Ser 

and Thr at position T+1 (Table 1). Furthermore, the greater Ser/Thr 

enrichment in CheB (89%) compared to CheY (32%) is consistent with 

autodephosphorylation being the primary known route of phosphoryl 

group loss in vivo for CheB. In contrast, the dephosphorylation rates of 

many CheY proteins are further stimulated by CheZ or CheC/CheX/FliY 

phosphatases.

Structures have been reported of six activated wild type response 

regulators containing a Ser (PDBids 4if4, 4nic) or Thr (1k68, 3h1e, 4e7p, 

4ldz/4le0) at position T+1. In four cases, the Ser/Thr residue is 

appropriately positioned to interact with a nucleophilic water molecule. In 

one case (4e7p), the Thr adopts different conformations in the two 

protomers of the asymmetric unit - one is positioned to participate in the 

reaction and the other is not. In the last case (4ldz/4le0), the Thr is out of 

position. Thus, wild type Ser and Thr residues at position T+1 can and 

frequently do adopt a conformation that could enhance 

autodephosphorylation.

ii. Residues that minimally interact with the attacking water, including Ala 

(Figure 3A) and presumably Gly, neither accelerate nor impede 

autodephosphorylation. Ala and Gly residues account for the majority of 

response regulator sequences. There are 12 X-ray crystal structures of 

activated wild type response regulators or receiver domains with an Ala at 

position T+1 (1fqw, 1nxt/2a9r, 1qmp, 1zes, 1zh4, 2a9o, 2pl1, 2v0n, 3gl9, 
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3nnn, 3w9s, 4hns) and seven with a Gly (1d5w, 1l5y, 1xhf, 1zy2, 2vui, 

3crn, 3rqi). Ala or Gly at position T+1 would not occlude the path of a 

water molecule making an in-line attack on the phosphorus (beryllium) 

atom in any of the examined structures.

iii. Residues that can adopt multiple conformations modestly impede 

autodephosphorylation. The Met in CheY (Figure 3DE), which exhibited 

side-chain conformations that either partially occluded or minimally 

interfered with a modeled attacking water molecule, resulted in a modestly 

diminished autodephosphorylation rate constant. Similarly, replacement of 

the Gly at position T+1 with a Glu in Sinorhizobium meliloti FixJ reduces 

the autodephosphorylation rate constant by about one-third.68 “Open” and 

“closed” conformations analogous to those seen with Met in CheY were 

observed for the Leu at position T+1 in the structure (3nns) of Thermatoga 
maritima DrrB.55

iv. Residues that partially occlude the attacking water molecule, such as the 

β-branched amino acids Val (Figure 3B) and Ile, resulted in distinct 

decreases in autodephosphorylation rate constants in CheY and CheB 

(Tables 2 & 5). Conversely, removing the Val from wild type NarL 

enhanced the autodephosphorylation rate constant, in agreement with 

Huynh et al.69

Response Regulator Structural Activation May Precede Phosphodonor Binding

Response regulators undergo a structural rearrangement that facilitates phosphochemistry 

and switches the signaling state. While it is commonly held that catalysis of 

autophosphorylation is preceded by structural activation, the temporal sequence of 

phosphodonor binding and structural activation is still unclear. If phosphodonor binding is 

coincident with or requires pre-rearrangement of the β4α4 loop into the active 

conformation,32, 45, 55 then position T+1 forms one surface of a small phosphodonor binding 

pocket. On the other hand, if phosphodonor binding occurs before structural activation, then 

position T+1 would not necessarily be part of the binding pocket. Intriguingly, the 

CheYA88S and CheYA88T mutants may help distinguish between these two 

autophosphorylation models.

In the model where CheY is in the active conformation optimal for phosphorylation prior to 

phosphodonor binding, a Thr and to a lesser extent a Ser at position T+1 would partially 

occlude docking of PAM (Figure S1), which would approach with the large phosphoryl 

group first. In contrast, if the active conformation were adopted after phosphodonor binding, 

then the modeled hydrogen bond between Ser/Thr at position T+1 and the amine of PAM 

(Figure 5A) would be expected to enhance the rate of autophosphorylation similar to the rate 

enhancement seen during autodephosphorylation with CheB, CheY, or NarL proteins 

carrying Ser/Thr at T+1 (Table 2, Figure 3B). The observation that Ser and especially the 

larger Thr do not accelerate CheY autophosphorylation with PAM (Tables 4 & 5) is 

consistent with structural activation preceding or being coincident with phosphodonor 

docking, and autophosphorylation catalysis requiring prior structural activation.32, 45, 55
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Influence of Position T+1 in the Context of Different Active Sites

The response regulator active site contains variable positions in addition to T+1, most 

notably D+2 and T+2 (Figure 1). Nevertheless, the effects of various amino acids at T+1 on 

autodephosphorylation (Table 2) are qualitatively similar in the context of three response 

regulators that contain different pairs of amino acids at D+2/T+2. The effects of different 

amino acids at T+1 on CheY autodephosphorylation and autophosphorylation with PAM are 

also qualitatively similar in the context of two different T+2 residues (Tables 2, 4, & 5). The 

latter data allow a quantitative analysis of the effects of individual and combined 

substitutions at positions T+1 and T+2. In particular, the activation energy of a reaction is 

given by ΔG‡ = −RT ln(k), so the difference in activation energies between two proteins (e.g. 

mutant and wild type) is given by ΔΔG‡ = −RT ln(k1) − [−RT ln(k2)] = −RT ln(k1/k2). 

Comparing the logarithms of the ratios of rate constants for single and double mutants to 

wild type (quantities that are proportional to ΔΔG‡) provides insight into whether 

substitutions at multiple positions exert their influence independently or collectively.70 For 

both CheY autodephosphorylation and autophosphorylation with PAM, the effects of 

combining a Thr substitution at position T+1 with a Ser substitution at position T+2 was 

similar to (within less than a factor of two) the sum of the individual substitutions (Figure 7, 

left). In these cases, the additivity of effects suggests each substitution exerted its influence 

on the reaction independently of the other. For example, replacing Ala at T+1 with Thr 

appears to diminish autophosphorylation with PAM through steric hindrance as described in 

the previous section. Replacing Glu at T+2 with Ser would eliminate a methylene group and 

thus reduce hydrophobic surface area, which in turn should diminish autophosphorylation 

with PAM.56

In contrast, the effects of combining a Val substitution at T+1 with a Ser substitution at T+2 

were less than half the sums of effects of individual substitutions, and indeed less than the 

effects of the T+1 substitution alone (Figure 7, right). These antagonistic relationships 

indicate that the two substitutions counteracted the influence of one another on the reactions. 

A simple steric interpretation of the observed antagonism is that changing the Ala at T+1 to 

Val substantially decreases access to the phosphorylation site, whereas replacing Glu at T+2 

with the smaller Ser might slightly increase access.

Synergistic interactions are inferred when a double mutant exhibits a greater effect than the 

sum of effects of single substitutions. Synergistic effects on CheY autodephosphorylation 

have been observed between some pairs of amino acids at positions D+2 and T+2.3 A much 

larger data set will be required to ascertain whether or not position T+1 can act 

synergistically with either position D+2 or T+2, as well as whether the additive and 

antagonistic interactions between T+1 and T+2 described above are typical.

Receiver Domain Position T+1 is at the Interface with Partner Proteins

Although position T+1 is at the protein-protein interface in complexes of response regulators 

in complex with their partner sensor kinases,58–60 Hpt proteins,61–63 or phosphatases,64–66 

there is little previous evidence of a role for T+1 in the interaction. Position T+1 was 

identified as a potential specificity determinant in one analysis of evolutionary covariation of 

residues between partner sensor kinases and response regulators,71 but did not reach the 
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covariation threshold in an earlier study using a different algorithm.72 Furthermore, altering 

residues other than T+1 is sufficient to rewire phosphotransfer specificity such that the 

modified response regulator gains the ability to interact with a non-partner sensor kinase and 

loses the ability to interact with a partner sensor kinase.58, 71, 73

Our systematic analysis revealed that substitutions at position T+1 affected interaction of 

response regulators with partner proteins, either diminishing phosphotransfer from a partner 

sensor kinase or facilitating cross-talk with a non-partner kinase (Table 6). For example, the 

addition of a single atom at position T+1 (the Ser hydroxyl oxygen of CheYA88S versus the 

Ala hydrogen of wild type CheY) was sufficient to change the interaction such that CheY no 

longer could accept a phosphoryl group from MBP-NarX227 (Figure 6AB). Furthermore, 

there is precedence for modulation of signal fidelity by position T+1 for FixL/FixJ68 and 

NarX/NarL69 as described in the next section.

Sensor kinases can be grouped into multiple phylogenetic classes,74 with the major group 

represented by the Pfam designation HisKA. CheA and NarX represent relatively minor 

classes of sensor kinases (containing Hpt and HisKA_3 phosphorylation domains 

respectively). Furthermore, CheA kinases have a distinct architecture in which the 

phosphorylation site is provided by a Hpt domain far from the ATP-binding and catalysis 

domain.75 Some CheAs also contain a P2 domain to which the CheB and CheY response 

regulators bind. Therefore, the extent to which the effect of position T+1 on phosphotransfer 

observed with CheA and NarX can be generalized to other types of sensor kinases is not 

clear.

Phosphotransfer from sensor kinases to response regulators is a multifaceted reaction, and 

we do not know which step(s) is affected by position T+1. The face of CheY that binds to 

CheA P2 is distinct from the CheY active site,76 so it seems unlikely that the substitutions at 

T+1 affect binding to P2. This expectation is supported by the observation that the 

qualitative trends for effect of amino acid at position T+1 on phosphotransfer (Table 6) are 

similar for CheB, CheY, and NarL, regardless of whether the kinase is CheA (has P2 

domain) or NarX (no P2 domain). The location of position T+1 in close proximity to the 

receiver domain phosphorylation site suggests instead that amino acids at T+1 could affect 

steric access of the kinase phospho-His sidechain to the response regulator active site, 

binding of the response regulator to the sensor kinase, or orientation of the two proteins with 

respect to one another.

Phenotypes of T+1 Mutants

Although the results described here suggest it may be possible to successfully predict the 

qualitative impact of amino acid substitutions at position T+1 on response regulator 

autophosphorylation and autodephosphorylation kinetics, prediction of in vivo phenotypes 

of cells containing such mutants is problematic. T+1 substitutions clearly affect multiple 

response regulator functions, and it is not obvious a priori which effect might be dominant. 

However, we are aware of three cases in which genetic screens for constitutive gain of 

function mutants identified substitutions at T+1. Consideration of these mutants and the 

mechanisms underlying their activity is illuminating.
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Egan and Stewart isolated NarLV88A as a constitutive mutant active in the absence of the 

NarX partner sensor kinase.77 They hypothesized that the enhanced in vivo activity of 

NarLV88A could be the result of either increased phosphorylation or decreased 

dephosphorylation. Our results (Table 2) and those of the Stewart laboratory69 concerning 

the relative impact of Ala and Val on response regulator autodephosphorylation are 

inconsistent with diminished autodephosphorylation as an explanation for the phenotype. 

Our results with CheY (Tables 4 & 5) predict that NarLV88A should have enhanced 

autophosphorylation activity compared to wild type NarL. However, the phenotype of cells 

expressing NarLV88A does not depend on the small molecule phosphodonors acetyl 

phosphate or carbamoyl phosphate, and instead is due to reduced sensitivity to the 

phosphatase activity of NarX.69

The S. meliloti response regulator mutant FixJG83E exhibits diminished phosphotransfer 

from the FixL sensor kinase, reduced autodephosphorylation activity (as would be predicted 

from our results, with a long, flexible Glu in the same functional category as Met), and 

lessened sensitivity to FixL phosphatase activity in comparison to wild type FixJ.68 

Presumably, the constitutive activity of cells expressing FixJG83E arises from a net increase 

in phosphorylation in which slower dephosphorylation outweighs slower phosphorylation.

Finally, replacing the Ala at T+1 in Bacillus subtilis Spo0A with Val results in constitutive 

activity in vivo.78 In vivo activity of Spo0AA87V depends on the presence of the Spo0F and 

Spo0B proteins, which are upstream of Spo0A in a phosphorelay. Therefore, a plausible 

interpretation of these observations in light of our results is that the Val substitution results 

in decreased dephosphorylation and hence a net increase in phosphorylation of Spo0AA87V 

compared to wild type Spo0A. However, experiments would be required to determine 

whether the Val substitution reduces other potential routes of phosphoryl group loss from 

Spo0A (reverse phosphotransfer from Spo0A to Spo0B and/or phosphatase-mediated 

dephosphorylation of Spo0A) in addition to the predicted decrease in autodephosphorylation 

of Spo0A.

Position T+1 Controls Access to the Response Regulator Phosphorylation Site Modulating 
Phosphochemistry and Two-Component Signaling

Two-component systems are a striking example of biological variation on a theme. Despite 

highly conserved structures, catalytic mechanism, and active site geometry, small variations 

allow multiple two-component systems to operate in the same cell at a variety of time scales 

and without deleterious cross-talk. Our results explored one functional determinant of two-

component system variation and confirm the proposal53 that the residue at position T+1 

affects access to the response regulator active site. Improved access (T+1 = Ala or 

presumably Gly) enhanced both autophosphorylation and autodephosphorylation, whereas 

impeded access (T+1 = Val or Ile) diminished both autophosphorylation and 

autodephosphorylation reactions. We also established two additional classes of residues at T

+1. Met (and presumably other flexible amino acids) can get out of the way and hence only 

modestly affected access and kinetic rates. Ser or Thr at position T+1 can hydrogen bond 

with an attacking water molecule and likely enhanced autodephosphorylation. Although 

similar hydrogen bond interactions can be modeled between Ser/Thr at T+1 and 
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phosphodonors, the failure of Ser/Thr to enhance autophosphorylation suggests that 

phosphodonor binding occurs after conformational activation, and these residues impede 

phosphodonor approach. Further experiments will be necessary to determine the extent to 

which the influence of position T+1 is affected by neighboring variable active site residues. 

However, the biased distribution of amino acids found at position T+1 in different response 

regulator subfamilies correlates with autodephosphorylation rate constants and suggests T+1 

is functionally important. We showed that T+1 affects the fidelity and kinetics of 

phosphotransfer from sensor kinases. Each demonstrated role for the residue at T+1: access 

to the active site, modulation of autophosphorylation and autodephosphorylation kinetics, 

partner protein interactions, and fidelity of sensor kinase phosphorylation and 

dephosphorylation, are part of the answer to how a myriad of two-component systems can 

operate simultaneously and successfully in the same organism.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Two views of the response regulator active site. (A) Surface representation of the E. coli 
CheY active site (PDB id 1fqw). The aspartic acid site of phosphorylation is colored pink, 

and the surrounding residues are colored red except position T+1, which is colored green. 

The five conserved active site residues are labeled with their CheY residue numbers. Five 

nonconserved residues are labeled in relation to the conserved residues. For E. coli CheY, 

these are DD+1, Phe14; D+1, Trp58; D+2, Asn59; T+1, Ala88, T+2, Glu89. (B) Diagram of 

the putative transition state for both phosphorylation and dephosphorylation. Specific 

residue numbers are from E. coli CheY. Bonds broken and formed are indicated by black 

dotted lines. The black dashed lines indicate hydrogen-bonding interactions. The red and 

blue dashed lines between positions T+1 (red) or D+2/T+2 (blue) and X represent potential 

interactions with the leaving group of the phosphodonor (e.g. acetate or the sensor kinase) 

for phosphorylation or the attacking water for dephosphorylation.
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Figure 2. 
Autodephosphorylation kinetics of wild type response regulators and position T+1 mutants. 

(A) Representative fluorescence time traces are plotted for wild type CheY (black), A88S 

(blue), A88T (green), A88M (purple), A88V (red), and A88I (orange). Note the time axis is 

on a log10 scale. Mutants with autodephosphorylation rates faster than wild type CheY 

(CheYA88S and CheYA88T) are to the left, and mutants with slower rates (CheYA88M, 

CheYA88V and CheYA88I) are to the right of the fluorescence time trace for wild type 

CheY. (B) Example autodephosphorylation assays of wild type and variant CheB proteins. 

Purified [32P]CheA-P was incubated with various CheB proteins and the time courses of 

[32P ]CheB-P decay were followed by SDS-PAGE and phosphorimagery. (C) Summary of 

NarL autodephosphorylation kinetics. The alanine (open circle) and the serine (closed 

triangle) substitutions at position T+1 in NarL increase the autodephosphorylation rate by 

three-fold and eight-fold respectively compared to wild type NarL (closed squares). (D) 

Autodephosphorylation rate constants from Table 2 normalized to the value for the Ser-

containing variant of each response regulator.
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Figure 3. 
Models of autodephosphorylation. A modeled water (grey sphere) was placed into the 

crystal structures of wild type CheY and the position T+1 mutants bound to BeF3 (light blue 

and yellow) to assess how various residues at this position might influence an attacking 

water molecule. Contacts between the modeled water and position T+1 (residue 88) were 

calculated using Reduce and Probe 79. Hot colored spikes (yellow, red, and hot pink) 

indicate van der Waals clashes, whereas lime green colored dots indicate hydrogen bonding 

interactions. (A) Ala at position T+1 does not interact with an attacking water. (B) β-

branched residues like Val and Ile at position T+1 would sterically block an attacking water 

molecule. (C) The small polar residues Ser and Thr could contribute a hydrogen bonding 

interaction, as shown for CheYA88S. In the crystal structure of CheYA88M, the Met at 

position T+1 was observed in two conformations, one that would block an attacking water 

molecule (D) and one that minimally interacted with the modeled water molecule (E). A 

hydrogen bond between Asn59 and Glu89 is shown as a green dashed line when present.
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Figure 4. 
Autophosphorylation kinetics of wild type CheY and position T+1 mutants using PAM as 

the phosphodonor. (A) Wild type CheY (closed squares), the polar mutants CheYA88S 

(open circles) and CheYA88T (open squares), as well as CheYA88M (closed circles). (B) β-

branched mutants CheYA88V (closed triangles) and CheYA88I (open triangles). Note the 

difference in y-axis scales between panels A and B. Rate constants were determined by 

stopped-flow fluorescence at constant ionic strength. kobs is the observed rate constant for 

the approach to equilibrium between autophosphorylation and autodephosphorylation: kobs = 

(kphos/Ks)[phosphodonor] + kdephos 9, 34. Hence, the slope of the best-fit lines is the effective 

autophosphorylation rate constant kphos/Ks and the y-intercept is the autodephosphorylation 

rate constant kdephos. Note the close agreement (after conversion from units of s−1 to min−1) 

between kdephos values determined here and those measured by pH jump experiments (Table 

2).
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Figure 5. 
Modeled interactions between a Thr at position T+1 and various small molecule 

phosphodonors. The coloring of the contact dots is the same as in Figure 3. (A) Docking of 

PAM into CheYA88T suggests that a hydrogen bonding interaction may be formed between 

the amine of PAM and the hydroxyl of threonine at position T+1. (B) A docked AcP has 

minimal VDW contacts with position T+1. (C) MPI, when docked into the CheYA88T, 

severely clashes with position T+1 and position D+2 (not shown) and would require some 

re-arrangement of the active site to gain access to the conserved Asp site of phosphorylation.
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Figure 6. 
Phosphotransfer permissiveness of the NarX/NarL and CheA/CheY two-component 

systems. (A) Ten second single time point partner and non-partner phosphotransfer from 

MBP-NarX227 to wild type or mutant NarL and CheY. The reactions used 1.5 μM MBP-

NarX227 and 6 μM response regulator. (B) Time course experiments (10 sec to 15 min) for 

non-partner MBP-NarX227 to CheY phosphotransfer. The loss of [32P]MBP-NarX227-P, an 

indication of the MBP-NarX227 to CheY phosphotransfer rate, is similar (only four-fold 

difference in rate between CheYA88M and CheYA88V) for wild type and the three CheY 

variants with non-polar residues at position T+1. The variation in accumulation of 

[32P]CheY-P for these proteins largely reflects differences in autodephosphorylation rate 

constants (see Table 2). Neither CheYA88S nor CheYA88T accept phosphoryl groups from 

MBP-NarX227. (C) Single timepoint experiment (10 sec) for partner and non-partner 

phosphotransfer from CheA to wild type CheY, wild type NarL and corresponding position 

T+1 mutants. CheA can transfer a phosphoryl group to wild type CheY and each of the 

CheY mutants, but not to wild type NarL or NarLV88A. (D) In a longer time course 

experiment (2 min to 90 min), only non-specific phosphorylation was observed for wild type 

NarL by CheA, while NarLV88S was able to accept phosphoryl groups from CheA. 
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Although phosphorylated NarLV88S only weakly accumulated in the first two time points, 

transfer from CheA and subsequent dephosphorylation by NarLV88S can explain the 

decrease in CheA-P.
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Figure 7. 
Individual and combined effects of substitutions at T+1 and T+2 on CheY 

autodephosphorylation and autophosphorylation with PAM. Log10 of the ratios of the rate 

constant for each mutant to the rate constant for wild type CheY are plotted. Blue bars, 

mutants with indicated single substitution at T+1; yellow bars, single substitutions at T+2, 

green bars, substitutions at both T+1 and T+2; dashed bars, sum of values for single T+1 and 

T+2 substitutions (i.e. expected value of double substitution). Note that a factor of two in 

relative rate constants corresponds to 0.3 units on the log10 scale.
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Table 2

Autodephosphorylation Rate Constants for E. coli Response Regulator T+1 Mutants

Amino acid at T+1

kdephos (min−1)a

CheBb CheYc NarLb

Ser ≥ 14d 5.2 ± 0.1 0.24 ± 0.02

Thr 5.0 ± 0.1

Ala 3.7 ± 0.04 3.2 ± 0.2 0.087 ± 0.01

Met 1.3 ± 0.1

Val 0.9 ± 0.1e 0.11 ± 0.01 0.030 ± 0.005

Ile 0.10 ± 0.01

a
Mean and standard deviations of the observed first-order rate constants were determined from individual autodephosphorylation time courses. 

Rate constants for wild type proteins are underlined.

b
CheB and NarL dephosphorylation kinetics were measured directly by loss of 32P. A second more variable assay inferred CheB 

autodephosphorylation as the rate-limiting step in the loss of 32P from a 100-fold excess of CheA-P and gave rate constants that agreed within 
about two-fold (data not shown).

c
CheY dephosphorylation kinetics were measured by fluorescence using the pH jump method. Note the good agreement of these values with the y-

intercepts of the best-fit lines in Figure 4 (plotted in units of s−1), an alternative means of determining kdephos.

d
Autodephosphorylation of wild type CheB is sufficiently rapid that measurement of kdephos by loss of 32P is technically challenging. This lower 

bound based on three time points before signal disappeared is consistent with a previous report using a different method.35

e
Phosphotransfer from CheA-P to CheBS84V was slow (Figure 2B), which may result in a modest (≤ two-fold) underestimate for kdephos.

Biochemistry. Author manuscript; available in PMC 2017 October 04.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Immormino et al. Page 33

Table 3

Summary of X-ray Crystallography Data Collection and Refinement Statistics for CheY T+1 Mutants

Diffraction Data CheYA88V CheYA88T CheYA88S CheYA88M

Diffraction Data Statistics

PDB entry 3OLV 3OLW 3OLX 3OLY

Source APS 22-BM APS 22-ID APS 22-BM APS 22-BM

Space group P1 P212121 P212121 P212121

 a, b, c (Å) 41.48, 44.80, 48.07 54.03, 53.73, 161.80 53.69, 53.76, 160.01 53.59, 53.77, 160.69

 α, β, γ (°) 69.23, 68.02, 66.16 90, 90, 90 90, 90, 90 90, 90, 90

Wavelength (Å) 1.0 1.0 1.0 1.0

Resolution (Å)a 50-1.70 50-2.3 50-2.10 50-2.05

 (Last Shell) (Å) 1.73-1.70 2.34-2.30 2.14-2.10 2.09-2.05

No. of unique reflections 29238 21118 28021 30564

Completeness (Last Shell) (%) 92.9 (67.0) 98.7 (87.8) 98.8 (98.5) 99.9 (100)

Average I/σI (Last Shell) 25.3 (5.4) 9.9 (2.1) 16.6 (2.9) 15.7 (2.68)

Redundancy (Last Shell) 3.7 (2.0) 6.3 (3.2) 6.9 (5.9) 7.1 (6.2)

Rsymb (Last Shell) (%) 5.8 (17.4) 16.7 (37.2) 11.6 (62.0) 11.4 (67.3)

Refinement Statistics

Refinement package PHENIX PHENIX PHENIX PHENIX

1.6.1_336 1.6.1_336 1.6.1_336 1.6.1_336

Resolution range (Å) 24.8-1.7 44.93-2.30 26.88-2.10 26.72-2.05

No. of reflections 27975 20737 26698 28710

No. of non-solvent atomsc 1954 1954 1956 1956

No. of solvent atoms and heteroatomsc 366 294 353 372

No. of molecules in the asymmetric unit 2 2 2 2

Rms deviation from ideality

 Bond lengths (Å) 0.007 0.007 0.007 0.007

 Bond angles (°) 1.034 1.099 1.084 1.063

Rd value (%) 17.4 18.4 18.9 18.0

Rd free (%) 20.9 22.2 23.0 21.2

a
Resolution limit was defined as the highest resolution shell where the average I/σI was >2.

b
Rsym = ΣhklΣi|Ii(hkl) − <I(hkl)>|/ΣhklΣII(hkl).

c
Alternate atoms are counted once.

d
R = Σ|Fo − Fc|/ΣFo. ~5% of reflections were used to calculate Rfree.
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Table 4

Autophosphorylation Rate Constants for CheY T+1 Mutants

Amino acid at T+1

kphos/KS (M−1s−1)a

PAM AcP MPI

Ser 10 ± 0.6 4.5 ± 0.8 15 ± 5

Thr 4.6 ± 0.5 4.2 ± 0.3 3.9 ± 0.9

Ala 9.2 ± 0.9 9.8 ± 2 54 ± 10

Met 3.1 ± 0.4 8.9 ± 2 26 ± 4

Val 0.34 ± 0.06 1.9 ± 0.03 3.7 ± 0.04

Ile 0.31 ± 0.06 1.6 ± 0.3 3.7 ± 0.2

a
Mean and standard deviations of the rate constants were determined from individual autophosphorylation time courses. Rate constants for wild 

type CheY are underlined.
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Table 5

Autodephosphorylation and Autophosphorylation Rate Constants of CheY T+1 Variants Containing Asn at D

+2 and Ser at T+2

Amino acid at T+1 kdephos (min−1) kphos, PAM/KS (M−1 s−1)

Thr 2.7 ± 0.1 3.5 ± 0.7

Ala 1.4 ± 0.0 4.2 ± 0.1

Val 0.31 ± 0.04 0.42 ± 0.03
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Table 6

Phosphotransfera Between Partner and Non-Partner Sensor Kinases and Response Regulators

Response Regulator Amino Acid at Position T+1

Sensor Kinase

CheA MBP-NarX227

CheB Ser (wild type) + −

Ala + −

Val +/− −

CheY Ser + −

Thr + −

Ala (wild type) + +

Met + +

Ile + +

Val + +

NarL Ser +/− +/−

Ala − +

Val (wild type) − +

a
The manual phosphotransfer assay is relatively insensitive; i.e. only very large reductions in phosphotransfer rate can be detected. Symbols: +, 

phosphotransfer indistinguishable from wild type partner; +/−, reduced phosphotransfer; −, no detectable phosphotransfer.
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