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Abstract

Objective—Increased levels of Type I interferon (IFN-I) and IFN-I-regulated genes are found in 

patients with systemic lupus erythematosus (SLE) and may be central to its pathogenesis. The 

mitochondrial adaptor protein MAVS is a key regulator of IFN-I that undergoes a dramatic prion-

like aggregation and self-propagates the activation signal from viral RNA to amplify downstream 

IFN production. We wondered if such MAVS aggregates might play a role in the sustained 

increased production of IFN-I in SLE.

Methods—Peripheral blood mononuclear cells (PBMCs) were isolated and mitochondrial 

extracts were prepared. MAVS aggregation was detected with semi-denatured agarose gel 

electrophoresis (SDD-AGE) and confirmed by immunofluorescence staining. MAVS-associated 

signaling proteins were analyzed by Western blot. MAVS aggregation-associated gene expression 

signature was analyzed by microarray.

Results—Blood cells from 22 of 67 SLE patients were found to have essentially all of their 

MAVS in a high molecular weight aggregated form. None of six rheumatoid arthritis patients and 

only three of 33 healthy controls had abnormal MAVS. The MAVS-aggregate positive SLE 

patients had significantly higher serum levels of IFN-β and significantly increased auto-antibodies 

against Sm and U1RNP, compared to MAVS-aggregate negative patients. Gene array data revealed 
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a characteristic gene expression pattern in these patients, with altered expression of genes involved 

in IFN signaling and membrane trafficking.

Conclusion—Persistent MAVS aggregates may lead to increased IFN-I production and result in 

unmitigated signals leading to autoimmunity.

Patients with systemic lupus erythematosus (SLE) have elevated type I interferon (IFN-I) 

and IFN-inducible gene expression, the “IFN signature”, implicated in disease etiology and 

activity. Type I interferon production is regulated to a considerable extent by Toll-like 

receptor signaling, and abnormalities in this pathway have been described in lupus patients 

(1, 2). The more recently described RIG-I signaling pathway also plays an important role in 

IFN-I production. The mitochondrial antiviral signaling protein MAVS is required for this 

pathway of innate anti-viral defense (3–6). RIG-I/MDA5 recognizes viral dsRNA and 

undergoes a conformational change to induce the activation of MAVS, ultimately engaging 

nuclear factor κ-B (NFκ-B) and IRF3/7 activation through TRAF6/3, respectively (7). 

Coordinated activation of these transcription factors triggers inflammatory cytokine and 

IFN-I production. Supporting the notion that RIG-I signaling is important in respond to viral 

infection in vivo. MAVS deficient mice are severely compromised in anti-viral defense (8).

The RIG-I pathway may contribute to increased IFN inducible gene activation in SLE, 

resulting in increased disease activity. Transient exposure to a RIG-I ligand aggravates 

murine lupus nephritis via IFN signaling (9). Polymorphisms in Ifih1 (IFN-induced helicase 

1 gene, encoding MDA5) are associated with susceptibility to autoimmune diseases. 

Constitutively activated MDA5 (Gly821Ser) leads to a murine SLE-like phenotype, with 

increased IFN-I and IL-6, lymphocyte infiltration, complement deposition, and nephritis. 

The SLE-like disease requires functional MAVS (10). Overexpression of MAVS in fish cells 

causes constitutive induction of IFN and IFN-stimulated genes (ISGs) (11). Polymorphisms 

of human MAVS are associated with SLE susceptibility and manifestations (12). A loss-of-

function variant (C79F) of MAVS is associated with low levels of IFN-I in SLE patients, 

together with absence of RNA-protein binding autoantibodies (13).

Recently, Hou et al discovered that MAVS forms remarkable prion-like aggregates that 

propagate RIG-I signaling (14). Aggregated MAVS is detergent- and protease-resistant, and 

mediates signal transduction by autocatalytic conformational conversion of the adapter. We 

wondered if inappropriate or persistent MAVS aggregation might lead to increased IFN-I 

production, immune stimulation, and systemic autoimmunity in SLE. Our findings indicate 

that in a significant fraction of SLE patients, there is MAVS aggregation in peripheral blood 

cells, raising the possibility that this abnormality reflects persistent MAVS signaling and 

underlies type I interferon production, contributing to the development of SLE.

PATIENTS AND METHODS

Study populations

Patients were from the Lupus Clinic at Temple University Hospital. The studies were 

approved by the Temple University Institutional Review Board. After informed consent was 

given, we obtained blood from patients who satisfied diagnostic criteria of the ACR 

(American College of Rheumatology) for SLE and RA. Disease activity was assessed by the 

Shao et al. Page 2

Arthritis Rheumatol. Author manuscript; available in PMC 2017 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



SLEDAI activity index and determined on the day of blood draw. 67 SLE patients (64 

females and 3 males), 6 RA patients and 33 normal age-, sex-, and race-matched controls 

were enrolled in the study 2012–2014. Of these, 22 were Hispanic, 38 African-American, 1 

Asian, and 5 Caucasian.

Serology

Anti-nuclear antibodies, anti-dsDNA, anti-Sm, anti-RNP, anti-cardiolipin antibodies, serum 

C3 and C4, and antibodies to SS-A and SS-B were measured in our clinical laboratories and 

also at RDL Laboratories (Santa Monica, CA) using standard clinical protocols.

PBMC preparation and MAVS aggregation detection

Peripheral blood mononuclear cells (PBMCs) were prepared using Ficoll/Hypaque 

sedimentation. Crude mitochondria and cytosolic extracts were obtained through differential 

centrifugation as described (14). Briefly, we added buffer A (10 mM Tris-HCl, pH 7.5, 10 

mM KCl, 1.5 mM MgCl2, 0.25 M D-mannitol, and Pierrs EDTA-free protease inhibitor 

cocktail) into 3 × 106 PBMCs and then lysed by repeated douncing. Cell debris was removed 

by centrifugation (1000 × g, 5 min) and the supernatants were then centrifuged again at 

10,000 × g for 10 min at 4°C to obtain the supernatant (cytosolic extracts, S5) from the 

pellet (mitochondria enriched samples, P5). MAVS aggregation was detected with SDS-

AGE according to previous publications (14). In brief, P5 and S5 were suspended in 1× 

sample buffer (0.5 × TBE, 10% glycerol, 2% SDS, and 0.0025% bromophenol blue) and 

loaded onto a vertical 1.5% agarose gel. We then ran electrophoresis in 1 × TBE buffer 

supplied with 0.1% SDS and transferred to Immobilon membranes for immunoblotting.

Microscopy

PBMCs from lupus patients and normal controls were incubated with 200 nM of 

MitoTracker Red (Life Technologies) in pre-warmed RPMI-1640 for 45 minutes in the dark. 

Cells were then washed, fixed, and permeabilized with BD Cytoperm buffer. Rabbit anti-

MAVS antibody was diluted into the Per/Wash buffer and incubated for 20 minutes with 

cells. FITC-conjugated anti-rabbit secondary antibody was added after washing. Images 

were captured with a Zeiss confocal microscope (LSM 510META, Germany).

IFN-β analysis

IFN-β was detected using the human IFN-β ELISA kit (Fujirebio Inc. Tokyo, Japan) 

following the manufacture’s procedure. In brief, the antibody-coated microplate was washed 

and incubated with serum and enzyme-linked secondary antibody for 2 hours at room 

temperature. Color developer was then added into each well after 3 washes. The reaction 

was stopped after 30 minutes. Absorbance was read at 450nm with a reference at 620nm.

Gene expression analysis

Total RNA was extracted from all SLE and control PBMCs and the cRNA was run on HT-

HG-U133-plus (Affymetrix) oligonucleotide microarrays containing ~47,000 human 

transcripts (15). RMA function was applied to correct for background and to normalize the 

raw expression values. A linear model to the data was fitted in order to identify 
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Differentially Expressed (DE) genes (16). A Support Vector Machine (SVM) with Recursive 

Feature Selection was applied to determine which genes divided MAVS aggregates positive 

from negative samples. The top 30 genes were selected from the SVM analysis and 

clustering analysis was performed using Pearson correlation.

Western blotting

Western blot analysis was performed using standard procedures. Antibodies against MAVS 

(1:1000, Santa Cruz), IRF3, pho-IRF3 (1:1000, Abcam), NLRC3, NLRX1 (1:2000, Ting 

Lab (17)), TRAF3 (1:200, Santa Cruz), TRAF6, Stat1 (1:500, Santa Cruz), PCBP2 and 

ARCH5 (1:500, Abcam), gC1qR (1:1000, Santa Cruz), β-actin (1:200,000, Abcam) were 

used.

Statistics

Western blot data were analyzed using the ImageStudio software (Li-Cor, Lincoln, NE). 

Intensity differences between groups were tested using the Mann-Whitney U test. A p value 

of less than 0.05 was considered to be significant. Data are shown as median with 

interquartile range. Chi square with Yates correction was used to compare prevalence of 

autoantibodies between groups.

RESULTS

MAVS aggregates in the PBMCs of SLE patients

SLE patients fulfilled American College of Rheumatology (ACR) criteria. We analyzed 

MAVS aggregation status in PBMCs of 67 SLE patients and 33 controls. Mitochondria-

enriched P5 samples were lysed and separated by vertical semi-denaturing agarose gel 

electrophoresis (SDD-AGE) to detect prion particles (Figure 1) (14). To our initial surprise, 

over a third of patients with SLE showed aggregation of the MAVS protein when analyzed 

using the SDD-AGE method. The aggregation was usually marked, with most of the MAVS 

protein present in aggregate form. To judge whether individual samples were aggregate-

positive or negative, we arbitrarily considered a ratio of ≥10 for relative intensity (compared 

to β-actin protein levels) as positive aggregation (Figure 1). To confirm our initial 

observation, we measured the protein levels of MAVS with conventional, fully denatured 

SDS-PAGE and compared MAVS levels to those of the housekeeping gene β-actin. We 

found no correlation between the total levels of MAVS protein and the presence of MAVS 

aggregation (Figure 1B and C). We also detected MAVS aggregation using multiple anti-

MAVS antibodies from different sources and obtained consistent results (Figure 1B and C). 

Cells from 32.8% (22 out of 67) SLE patients had a prion-like high molecular weight form 

of MAVS, compared to 9% (3 out of 33) of normal controls (Figure 1A, B, C, and data not 

shown). None of PBMC from six RA patients meeting ACR/EULAR criteria showed the 

high-molecular weight smear indicating MAVS aggregation (Figure 1D).

We had the opportunity to examine additional samples from nine SLE patients over the 

course of about a year to address the question of whether MAVS aggregation was a stable 

characteristic or if it changed over time. For three MAVS aggregation positive patients, only 

one remained positive when assayed a second time. Four MAVS aggregation negative 

Shao et al. Page 4

Arthritis Rheumatol. Author manuscript; available in PMC 2017 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



patients remained negative when sampled a second time, and two negative patients showed 

MAVS aggregation when examined at a later time. Thus, MAVS aggregation is not a stable 

phenotype for lupus patients, but changes over time.

To visualize MAVS aggregation in cells, we stained PBMCs with MitoTracker-PE, rabbit 

anti-MAVS, and then Alexa-488 anti-rabbit IgG. Confocal fluorescence microscopy revealed 

that Alexa-MAVS formed clusters that partially overlapped with MitoTracker from MAVS-

aggregates positive PBMCs detected by SDD-AGE, but not from MAVS-aggregates negative 

samples. Mitochondria from MAVS aggregates positive PBMCs tended to cluster together, 

suggesting a role of mitochondrial membrane association (Figure 1E). In Sendai virus-

infected fibroblasts, disulfide bonds were required for the aggregated form of MAVS (14). 

We found that incubation with β-mercaptoethanol reduced the high-molecular weight MAVS 

aggregates to the low-molecular weight range (Figure 1F), confirming this requirement for 

SLE patients.

MAVS aggregates are associated with down-regulation of the MAVS-regulatory protein 
C1qr and MARCH5, yet levels of NLRC3 and NLRX1 are the same in aggregates-positive 
and aggregates-negative individuals

We asked whether MAVS aggregates might reflect lack of a down-regulatory effect of 

known inhibitors of this protein. MAVS regulating proteins in the cytoplasmic preparation 

(S5) and mitochondria portions (P5) were analyzed by Western blot and the levels of several 

proteins known to affect MAVS were examined. We found that cytoplasmic C1qr, a negative 

regulator of MAVS signaling (18), was significantly reduced in the PBMCs of SLE patients 

with aggregated MAVS, compared to MAVS aggregation-negative SLE patients and normal 

controls (Figure 2A). Down-regulation of C1qr may be one of the mechanisms leading to 

impaired inactivation of MAVS in some SLE patients. MARCH5 and PCBP2 (poly(rC) 

binding protein 2) are recently identified MAVS-linked proteins (19, 20). Association of 

MAVS with either MARCH5 or PCBP2 promotes proteasome-mediated degradation of 

MAVS. Western results revealed a significant decrease of MARCH5 in MAVS aggregation 

positive SLE patients compared to the MAVS aggregation negative SLE patients (Figure 3). 

It is of note that MARCH5 only binds MAVS when it forms aggregates (20). Cytoplasmic 

Stat1 levels were also significantly low in MAVS aggregation positive SLE patients, 

compared to both normal controls and SLE patients without MAVS aggregation (Figure 2A). 

Stat1 activation was associated with translocation into the nucleus (21). Decreased 

cytoplasmic levels of Stat1 in MAVS aggregation positive SLE patients may reflect its 

activation and translocation into nucleus. There was no difference in Stat1 levels in the P5 

samples (Figure 2B).

MAVS activation recruits adaptor proteins (TRAF3 and TRAF6) that activate transcription 

factors. Induction of the NF-κB pathway occurs via the recruitment of TRAF6 (22). Western 

blot results revealed no difference in protein levels of TRAF6 between normal controls and 

SLE patients, but TRAF6 levels were low in the PBMCs of SLE patients with aggregated 

MAVS (Fig. 2A), a trend only observed for the cytoplasmic preparations (S5) but not the 

mitochondria samples (P5). In contrast, TRAF3 levels were significantly higher in the 

mitochondria preparations (P5) from MAVS aggregation positive SLE patients compared to 
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normal controls (Figure 2B). MAVS interacts with TRAF3, which leads to the subsequent 

phosphorylation of IRF3. IRF3 dimers translocate to the nucleus and bind the interferon 

stimulated response elements (ISRE) (22). We noted an increased level of IRF3 in PBMCs 

from SLE patients compared to normal controls, indicating active IFN signaling in SLE 

patients (Figure S1A). However, the activated form of IRF3 (Ser396 phosphorylated IRF3, 

p-IRF3) was no different in SLE patients with or without MAVS aggregation (Figure S1A).

NLRC3 plays inhibitory roles during inflammation. It may interact with the RIG-I-MAVS 

pathway via stimulator of interferon genes (STING) (23). Enhanced NF-κB activation was 

observed in nlrc3−/− macrophages. NLRC3 can also regulate TRAF6 activation by 

modulating its K63-linked ubiquitination (23). K63 ubiquitin chains bind and activate RIG-I 

(3). Furthermore, MAVS aggregation leads to recruitment of TRAF6, promoting an 

inflammatory response. We analyzed protein levels of NLRC3 by Western blot. A slightly 

increased level of NLRC3 seemed to associate with aggregated MAVS, but the difference 

did not achieve statistical significance (Figure S1B). Further experiments will be needed to 

define whether NLRC3 regulates MAVS aggregation/activation. NLRX1 is another negative 

regulator of IFN-I (17) and inhibits the interaction between MAVS and RIG-I. NLRX1 did 

not seem to be involved in MAVS aggregation, as there was no difference in protein levels of 

NLRX1 between MAVS aggregate positive and negative SLE patients (Figure S1B). 

Surprisingly, we found expression of NLRX1 in cytoplasmic preparations from SLE patients 

(Figure S1B), although the majority of the protein does reside in the mitochondria. However, 

previous work was performed in mouse cells and not PBMC, thus this finding will need to 

be followed up with a more complete survey of expression in patients and in normals.

MAVS aggregates are associated with increased circulating IFN-I

Next, we examined the clinical significance of MAVS aggregates in SLE. We postulated that 

persistent MAVS aggregates might upregulate type I IFN production in SLE patients and 

consequently influence disease pathogenesis and clinical phenotype. To evaluate levels of 

IFN-I in the lupus cohort with positive MAVS aggregates, we first aligned our RNA-seq data 

to the human genome hg19 (24). Patients were clustered based on the expression of 27 

interferon signature genes (25). Three major clusters were detected: high, moderate/medium, 

and low interferon signature. Frequency of MAVS aggregation positive patients was higher 

in the high interferon signature cluster (60% (6/10) of Agg+ in the high signature cluster 

compared to 30% (6/20) of Agg- in the same signature cluster) (Figure 4A). We then 

measured the IFN-β levels in plasma samples collected along with the PBMCs. We found 

significantly elevated IFN-β levels in MAVS Agg+ patients compared to both the Agg- SLE 

patients and the normal controls (Figure 4B). Taken together, MAVS aggregates showed a 

correlation with type I IFN responses in SLE.

A characteristic gene expression pattern in MAVS aggregates positive SLE patients

To identify a possible gene expression signature unique to MAVS aggregates positive SLE 

patients, we analyzed PBMCs from 27 MAVS SLE patients and 21 age, ethnicity, and sex-

matched controls. We performed clustering analysis using the RNA-seq data. Patients with 

PBMC MAVS aggregation clustered together, suggesting that MAVS aggregation led to a 

specific differential gene expression pattern. 20 genes were up-regulated and 10 genes were 
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down-regulated in MAVS Agg+ SLE patients, compared with MAVS Agg- SLE patients 

(Figure 5). The most commonly up-regulated transcripts corresponded to DNA/protein 

binding and organelle trafficking (Sdcbp2, Klc4, Kncn, and Cnnm3). Pias2, a member of the 

protein inhibitor of activated STATs (PIAS) family, was down-regulated. Pias2 encodes a 

transcriptional co-regulator in the STAT pathway and p53 pathway, both playing roles in 

SLE pathogenesis. Notably, three genes (Fkbp1a, Gimap1, and Sox4) classified by gene 

ontology analysis are involved in T-cell activation, lymphocyte activation and leukocyte 

activation.

Disease Phenotype in MAVS-aggregate positive vs. negative SLE patients

We looked at disease activity and at the spectrum of organ involvement in patients with and 

without MAVS-aggregation. We compared demographics, drug therapy, and clinical features 

of disease between the two groups and found no significant differences, nor were there 

differences in SLEDAI (not shown) between groups. We analyzed serological data from 

MAVS aggregates-positive SLE patients and compared them to the MAVS aggregates 

negative SLE patients. Data are shown in Table I. All SLE patients were positive for anti-

nuclear antibodies (ANA). Autoantibodies are recorded as positive or negative as recorded in 

the medical record (Table I). Using this measure, patients with MAVS aggregation were 

significantly more likely to have had antibodies to U1RNP and Sm. They were significantly 

less likely to have antibodies to cardiolipin. All of the stored plasma samples (from blood 

samples taken at the time MAVS aggregation was assessed) were subsequently re-analyzed 

by a commercial laboratory (RDL, Santa Monica, CA). As seen in Table I bottom, when this 

cohort of samples was analyzed, there were no significant differences in the prevalence of 

the panel of autoantibodies when aggregate positive patients were compared to aggregate-

negative patients.

DISCUSSION

The connection between infections and autoimmunity has been known for decades. 

Microbial invasion is detected by cellular sensors and initiates immune responses through 

cytokine production. Cytosolic RIG-I-like helicases (RIG-I and MDA5) specifically bind 

viral RNAs and trigger a robust antiviral response through MAVS (26). Active MAVS 

undergoes significant biochemical changes, leading to its aggregation into large prion-like 

fibers, resistant to detergents and proteinases (22). Prion-like MAVS catalyzes further 

polymerization of native MAVS proteins, mediating downstream signaling and IFN 

production (27). Structural and biophysical analyses of MAVS indicate its respective prion 

conversion involves an all-or-none transition from monomers to polymers (10, 28, 29). 

Indeed, all MAVS aggregates in our study are essentially in the high-molecular form. The 

initial activation of the RIG-I pathway in SLE may be provoked by viral infection. The 

persistence of MAVS aggregates may reflect a decreased ability to degrade poorly soluble 

prion-like aggregates resulting from RIG-I signaling. Degradation of MAVS aggregates 

occurs by several mechanisms and may be required to shut down the IFN antiviral response. 

Delayed or impaired clearance of aggregated MAVS may represent a disease mechanism 

leading to increased steady-state IFN-I pathway activation.
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MAVS aggregation was found in over a third of patients with SLE. Data regarding disease 

phenotype in MAVS-aggregate positive versus MAVS-aggregate negative patients were 

inconclusive. There was no apparent difference between aggregate positive and negative 

patients in disease manifestations, nor in disease activity as measured by SLEDAI. Clinical 

laboratory testing suggested an increased prevalence of anti-Sm and U1RNP antibodies; yet 

this was not seen when patient samples obtained at a different time were analyzed as a 

cohort. There was a trend toward statistical significance of the anti-Sm and U1RNP findings. 

Methodological differences between the two sets of autoantibody assays may explain results, 

as well as the fact that they were from samples taken at different times. Further study of the 

clinical significance of MAVS aggregation is needed.

It is of note that a few apparently normal individuals had evidence of MAVS aggregation. 

These people might be responding abnormally to common minor viral illnesses or might 

have constitutive MAVS aggregation that might predispose them to autoimmune disease. 

Further study of MAVS aggregation in these normal individuals might reveal an increased 

tendency to develop autoimmune disease.

Mutations in RIG-I like receptors may also provoke IFN-I secretion. The RLRs are usually 

expressed at very low levels. The sensitive and robust switch of MAVS to its prion state 

perpetuates downstream MDA5-mediated antiviral signaling (27). The constitutively 

activated form of MDA5 exerts a strong phenotype of autoimmunity in mice without viral 

infection. The autoimmune phenotype is MAVS and IFN-I dependent, as deficiencies of 

IFN-I receptor and MAVS abrogated the lupus-like clinical manifestations, respectively (10). 

Remarkably, human alleles of the same MDA5 mutation exhibited similar downstream 

effects, including constitutive IFN production. In MRL/lpr mice, exposure to 5′-triphosphate 

RNA aggravates autoimmunity and lupus nephritis (9). MAVS aggregates observed in our 

lupus patients may be triggered by the upstream RLRs.

Our patients showed a characteristic pattern of gene activation by microarray analysis of 

47,000 genes. Principal Component Analysis revealed altered expression of genes involved 

in protein-protein interaction, vesicular trafficking, E3 ligase binding, and Stats inhibition. 

KLHL23 is an E3 ligase binding protein. E3 ligase mediated MAVS degradation is an 

important mechanism in regulating MAVS aggregates. Increased KLHL23 in MAVS 

aggregates patients may suggest a compromised mechanism toward the impaired 

degradation of MAVS polymer. The ability of mitochondria to fuse properly and maintain an 

adequate membrane potential is crucial for MAVS signaling. Of 20 genes showing enhanced 

expression, five (Cyth4, Cyp4b1, Hoxc9, Kncn, and Klc4) mediate the regulation of protein 

sorting and membrane trafficking. Interestingly, expression of Pias2 (encoding a member of 

the protein inhibitor of activated Stat) was down regulated in MAVS aggregates positive 

patients. PIAS2 has a critical role as a transcriptional regulator of Stat-signaling (30). C1qr 

was significantly low in the MAVS aggregation positive SLE patients, compared to normal 

controls and MAVS aggregation negative SLE patients. Since C1qr plays an inhibitory role 

in MAVS activation/aggregation, lower C1qr may indicate a defect in controlling MAVS 

aggregation. We are particularly interested in the significantly decreased protein levels of 

MARCH5 in MAVS aggregation positive SLE patients as MARCH5 only binds to the 

aggregated form of MAVS (20). This decreased MARCH5 protein may account for the 
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persistent MAVS aggregation in our SLE patients. However, this abnormality deserves 

further study. Finally, it would also be important to analyze the signaling proteins with total 

protein extracts instead of cytosol and mitochondria fraction. Western blot with nuclear 

extractions may reveal the importance of IRF3 activation in the SLE Agg+ PBMCs.

Our finding of the aggregated form of MAVS in the PBMCs of SLE patients provides a 

potential mechanism linking innate immunity in the development of autoimmune disease, 

and may explain the elevated type I interferon levels in SLE.

Supplementary Material
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Figure 1. MAVS aggregation in SLE patients
A. MAVS aggregation was assessed by SDD-AGE (“c”. Jurkat T cell control; “+”. 

Aggregate positive; “−”, Aggregate negative). B and C, MAVS aggregation was detected and 

confirmed both in SDD-AGE and SDS-PAGE gel with antibodies from Abcam (B) and 

Santa Cruz (C). β-actin was used to indicate the total protein loading. D. Visualization of 

MAVS aggregates from lupus patients. Normal control (left), aggregate-negative patient 

(SB11 shown in SDD-AGE, right panel), and aggregate-positive lupus patient (arrows, SB17 

shown in SDD-AGE, right panel). MAVS aggregation were shown in yellow clusters (merge 

of MAVS-FITC and MitoTracker-Red) under confocal microscope. E. PBMC samples from 

lupus patients (let) and RA patients (right) were analyzed by SDD-AGE. F. 2 MAVS 

aggregate positive samples were treated with β-mercaptoethanol and analyzed by SDS-AGE 

in parallel. Data are representative of 67 SLE patients and 33 controls.
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Figure 2. Levels of protein involved in MAVS signaling
MAVS associated proteins in the cytoplasm samples (S5, A) and mitochondria samples (P5, 

B) were analyzed by Western blot. Representative Western images are shown (MAVS 

aggregates positive samples were indicated with ‘★’). Densitometry analysis to quantify 

ratio of indicated protein to b-actin is shown at the bottom. Values are expressed as median 

with interquartile range. Statistical test is the Mann-Whitney test, * p<0.05.
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Figure 3. Decreased MARCH5 is associated with MAVS aggregation
MAVS negative regulators PCBP2 and MARCH5 were analyzed by Western blot in the 

cytoplasm samples (S5) and mitochondria samples (P5). Representative Western images are 

shown (MAVS aggregates positive samples were indicated with ‘★’). Densitometry analysis 

to quantify ratio of indicated protein to β-actin is shown at the bottom. Values are expressed 

as median with interquartile range. Statistical test is the Mann-Whitney test, * p<0.05.
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Figure 4. Increased IFN-I signature in MAVS Agg+ SLE patients
A. RNA-seq data (100-bp paired-end reads) were aligned to the human genome hg19 using 

TopHat (24). Libraries normalization was performed and FPKM for each RefSeq gene was 

calculated using Edger, a package in R (31). 27 interferon related genes, used by ARGOS in 

their clinical trial were used to cluster patients based on expression of this interferon 

signature (25). B. IFN-β levels in the plasma samples of SLE patients and normal controls 

were measured using a human IFN-β ELISA kit (Fujirebio Inc. Tokyo, Japan). Results were 

expressed as individual data points with means ±SEM. Statistical test is the unpaired t test, * 

p<0.05.
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Figure 5. Signature gene expression pattern in MAVS aggregation positive patients
Microarray was run on Affymetrix HT-HG-U133-plus (15). A Support Vector Machine 

(SVM) with Recursive Feature Selection was applied to determine which genes divided 

MAVS Agg+ from Agg- samples. The top 30 genes were selected from the SVM analysis 

and clustering analysis was performed using Pearson correlation.
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