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Abstract

Objective—We recently demonstrated that low-density lipoprotein receptor related protein 1 

(LRP1) is required for cardiovascular development in zebrafish. However, what role LRP1 plays 

in angiogenesis remains to be determined. To better understand the role of LRP1 in endothelial 

cell function, we investigated how LRP1 regulates mouse retinal angiogenesis.

Approach and results—Depletion of LRP1 in endothelial cells results in increased retinal 

neovascularization in a mouse model of oxygen-induced retinopathy. Specifically, retinas in mice 

lacking endothelial LRP1 have more branching points and angiogenic sprouts at the leading edge 

of the newly formed vasculature. Increased endothelial proliferation as detected by Ki67 staining 

was observed in LRP1 deleted retinal endothelium in response to hypoxia. Using an array of 

biochemical and cell biology approaches, we demonstrate that poly(ADP-ribose) polymerase-1 

(PARP-1) directly interacts with LRP1 in human retinal microvascular endothelial cells (HRECs). 

This interaction between LRP1 and PARP-1 decreases under hypoxic condition. Moreover, LRP1 

knockdown results in increased PARP-1 activity and subsequent phosphorylation of both 

retinoblastoma protein (Rb) and cyclin-dependent kinase 2 (CDK2), which function to promote 

cell cycle progression and angiogenesis.

Conclusions—Together, these data reveal a pivotal role for LRP1 in endothelial cell 

proliferation and retinal neovascularization induced by hypoxia. In addition, we demonstrate for 

the first time the interaction between LRP1 and PARP-1 and the LRP1-dependent regulation of 

PARP-1 signaling pathways. These data bring forth the possibility of novel therapeutic approaches 

for pathological angiogenesis.
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INTRODUCTION

Angiogenesis is the process of new blood vessel growth from existing vascular networks. It 

occurs during embryonic development and throughout adulthood, and is initiated during 

wound healing and in pathological conditions such as retinopathy1. Pathological retinal 

angiogenesis generates physiologically deficient vessels and results in vision-threatening 

exudation and hemorrhage1. Several factors including vascular endothelial growth factor 

(VEGF), angiopoietins, Notch and Wnt have been shown as critical coordinators for retinal 

angiogenesis2–5. However, the exact molecular mechanisms of pathological retinal 

angiogenesis involved in retinopathy of prematurity and diabetic retinopathy remain elusive.

Low density lipoprotein receptor-related protein 1 (LRP1), a multifunctional member of the 

LDL receptor family, is involved in a variety of biological processes such as lipid 

metabolism, endocytosis and signal transduction6–8. Global deletion of the LRP1 gene in 

mice leads to embryonic lethality, demonstrating an essential role for LRP1 in 

development9. More recent work demonstrates that LRP1 deletion in embryo proper results 

in vascular developmental defects10. Tissue specific knockout mouse models show that 

LRP1 regulates cell proliferation and migration in smooth muscle cells, inflammation and 

efferocytosis in macrophages, suggesting that LRP1 plays important roles in 

atherosclerosis11–15. In endothelial cells, we previously demonstrated that LRP1 regulates 

vascular development through its interaction with BMP binding endothelial regulator 

(BMPER) and affecting BMP signaling16. However, whether LRP1 is involved in other 

signaling pathways in endothelial cells and regulates pathological angiogenesis remains 

unknown.

LRP1 is a heterodimer composed of an extracellular 515-kDa α chain (LRP1α) and an 85-

kDa membrane-anchored cytoplasmic β chain (LRP1β), which remain non-covalently 

associated6–8. There are more than forty different ligands for LRP1, such as proteases, 

growth factors, extracellular matrix proteins and lipoproteins. The intracellular domain of 

LRP1β contains multiple serine, threonine and tyrosine residues that can be phosphorylated 

by PKA or Src8. This domain also associates with adaptor proteins via its two NPXY motifs 

to induce signals7. LRP1 mainly behaves as an endocytic receptor for its ligands. For 

example, we recently discovered that LRP1 modulates the endocytosis of BMP signaling 

complex in endothelial cells16. However, some other ligands, including tPA, α2-

macroglobulin (α2M), apoE, matrix metalloproteinase 9, may activate Src/ERK and 

PI3K/Akt/PKCδ signaling pathways in neuronal cells17–21. Moreover, the LPS-induced 

intramembrane proteolysis of LRP1 enables the translocation of its intracellular domain into 

the nucleus and regulates transcriptional events of inflammatory genes22. Taken together, 

LRP1 may activate and integrate diverse downstream signaling pathways in response to 

different stimuli. Interestingly, LRP1 expression can be induced by hypoxia in smooth 

muscle cells and by fluvastatin and simvastatin in human brain microvascular endothelial 

cells23–25. It is plausible that LRP1 may also mediate endothelial cellular responses to 

diverse stimuli or stress through multiple signaling pathways besides of endocytosis. 

However, the LRP1-mediated function of these ligands and modulators in endothelial cells 

remain uncharacterized, warranting further investigation.
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In this study, we investigated whether and how LRP1 deletion in endothelial cells regulates 

pathological angiogenesis by using a mouse model of oxygen-induced retinopathy (OIR). 

Our results demonstrate that LRP1 acts as a negative regulator of retinal angiogenesis under 

hypoxic condition. We also demonstrate that the regulatory role of LRP1 in endothelial cell 

proliferation and angiogenesis fulfills, at least in part, through the interaction of LRP1 with 

PARP-1. This interaction between LRP1 and PARP-1 broadens our understanding about the 

functional roles of LRP1 in endothelial cells and for the first time, reveals a novel regulatory 

role of LRP1 in the PARP-1/CDK2/Rb signaling pathway.

MATERIAL AND METHODS

Materials and Methods are available in the online-only supplement.

RESULTS

LRP1 Deletion in Retinal Endothelium Results in Increased Neovascularization in an 
Oxygen-Induced Retinopathy Mouse Model

We recently discovered that LRP1 regulates vascular development in zebrafish16. To further 

determine the roles of LRP1 in pathological angiogenesis and its underlying mechanisms, 

we decided to utilize an oxygen-induced retinopathy (OIR) mouse model because retinal 

vasculature is a highly organized and easily approachable system to study. To elucidate the 

specific role of LRP1 in endothelial cells, we first crossed LRP1flox/flox (LRP1f/f) mice with 

Tie2Cre+ transgenic mice to generate LRP1f/f;Tie2Cre+/− mice. Tie2 promoter directs 

effective Cre expression, and hence LRP1 deletion, in endothelial cells (Figure 1A) as well 

as hematopoietic cells26. Since retinal vascularization begins at the optic nerve head and 

radiates outwards to cover the most superficial retinal layer during the first week of life 

(between postnatal days P0~P7) in mice27, we examined whether there is a difference during 

the development of this superficial retinal vasculature layer in LRP1f/f;Cre+ mice and 

LRP1f/f;Cre− littermate control mice. However, no obvious gross morphological difference 

was observed, indicating that LRP1 is not essential for retinal vasculature development (data 

not shown). We then investigated the role of LRP1 in pathological angiogenesis by using an 

OIR model28, 29. OIR model starts with postnatal day 7 (P7) mice being placed in a cage 

with constant 75% O2 for five days. This constant hyperoxia induces retinal capillary 

obliteration centrally28, 29. Mice were then placed back into room air to mimic relative 

hypoxia and permit retinal and intravitreous neovascularization. This model pathologically 

mimics the ischemia-induced angiogenesis observed in retinopathy of prematurity and 

proliferative diabetic retinopathy and is relevant in general to ischemic vascular diseases1. 

Using this model, we measured the detailed parameters of blood vessel formation following 

the onset of hypoxia. At 48 hours following the onset of hypoxia (P14), LRP1f/f;Cre+ mice 

displayed 29% more retinal vascularization compared to control littermates, and 22% more 

retinal vascularization at 72 hours (P15) (Figure 1B and 1C). This increase in intraretinal 

neovascularization observed in LRP1f/f;Cre+ mice was accompanied by a denser and more 

complex network of newly formed vessels (Figure 1D) as well as more vascularized area, 

greater number of branching points and more sprouts at the leading edge of the newly 

formed vessels in LRP1f/f;Cre+ mice, compared to their control littermates (Figure 1E–G). 
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These observations demonstrate that LRP1 regulates angiogenic responses of retinal 

endothelial cells to the changes of oxygen tension.

LRP1 Depleted Retinal Endothelium Displays Increased Proliferative Response Without 
Changes in the Interaction of Endothelial Cells with Astrocytes and Pericytes

To determine which cellular processes during retinal neovascularization are affected by 

LRP1 depletion in endothelium, we examined endothelial cell proliferation, the interaction 

of endothelial cells with adjacent astrocytes and pericyte recruitment. First, we examined 

whether endothelial proliferation is affected during the increased angiogenic responses in 

LRP1f/f;Cre+ retinas. We stained retinal cells at 3 days following the onset of hypoxia (P15) 

with Ki67, a specific nuclear marker of cell proliferation. In retinas with LRP1 deletion in 

endothelial cells, we observed a significant increase in Ki67 positive endothelial cell number 

(Figure 2A and 2B), indicating that cell proliferation increased in LRP1 deleted vascular 

endothelium. Next, we investigated the interaction of astrocytes and the LRP1-deleted 

endothelial cells. Immunostaining of retinas following the onset of hypoxia (P14) with iso-

lectin (to stain endothelial cells) and glial fibrillary acidic protein (GFAP, to stain 

astrocytes) revealed that the pattern of retinal astrocytic network in LRP1 depleted retinas 

was not obviously different from the control littermates. Moreover, we observed that 

endothelial cell filopodia at the tip of the growing vascular sprouts were similar between 

LRP1f/f;Cre+ and control retinas (Figure 2C). Specifically, both LRP1 depleted endothelial 

cells and control cells interacted with the astrocytic network similarly, suggesting that the 

communication between astrocytes and endothelial cells is not impaired by LRP1 depletion. 

Furthermore, we examined whether the recruitment of pericytes to the wall of the new 

vessels was abnormal in retinas with LRP1-depleted endothelium. Immunostaining of 

retinas with iso-lectin and NG2 (to stain pericytes) indicated that both LRP1f/f;Cre+ and 

control retinas displayed appropriate coverage of new vessels with pericytes, in a ratio of 

~3:1 (endothelial cell: pericyte), suggesting that the process of pericyte recruitment is not 

disturbed in new vessels lacking LRP1 (Figure 2D). Based on our observation of these 

endothelial cellular processes, this infers that endothelial cell proliferation is regulated by 

LRP1, which may partly contribute to the increased angiogenic activity observed in 

LRP1f/f;Cre+ retinas.

LRP1 Knockdown in Human Retinal Microvascular Endothelial Cells (HRECs) Increases 
Angiogenesis, Endothelial Proliferation and Cell Cycle Progression in Response to 
Hypoxia

Our in vivo data (Figure 1 and 2) indicate that LRP1 depletion in retinal endothelium 

increases endothelial cell proliferation and retinal neovascularization. To identify the precise 

molecular and cellular events involved, we first tested whether LRP1 inhibits angiogenesis 

in cultured primary endothelial cells- Human Retinal Microvascular Endothelial Cells 

(HRECs). LRP1 is endogenously expressed in HRECs, and transfection of its specific 

siRNAs dramatically decreased its protein level (Figure 3A). In a Matrigel tubulogenesis 

assay, mild hypoxia (2% oxygen) predictably increased tube formation compared to 

normoxia. LRP1 knockdown in HRECs results in an additional ~2-fold increase in tube 

formation in mild hypoxia (Figure 3B and 3C). We also observed a similar increase in 

sprouting angiogenesis in response to hypoxia in LRP1 knockdown HRECs (Figure 3D and 

Mao et al. Page 4

Arterioscler Thromb Vasc Biol. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3E). These in vitro data confirm our observations with LRP1f/f;Cre+ mouse retinas (Figure 

1) and suggest that LRP1 is a negative regulator of angiogenesis. Since retinal angiogenesis 

and endothelial cell proliferation increases in LRP1f/f;Cre+ mice, we investigated the role of 

LRP1 in endothelial cell growth in HRECs. The growth curve of HRECs following LRP1 

knockdown clearly shows that LRP1 knockdown in HRECs increases cell number during 

hypoxia, compared to control siRNA-transfected HRECs (Figure 3F). Lastly, we 

investigated whether LRP1 regulates endothelial proliferative response by affecting cell 

cycle progression. Significantly more HRECs lacking LRP1 progress into S phase from 

G1/G0 stage, compared to control cells in response to hypoxia (Figure 3G and 3H). These 

data establish that LRP1 is a negative regulator of retinal angiogenesis, at least in part 

through cell cycle arrest and the inhibitory effect on endothelial cell proliferation.

LRP1 Interacts with Poly(ADP-Ribose) Polymerase-1 (PARP-1) in HRECs

To elucidate how LRP1 regulates the cell cycle and endothelial cell proliferation, we used 

immunoprecipitation combined with liquid chromatography-mass spectrometry/mass 

spectrometry (LC-MS/MS) as an inductive unbiased method of identifying LRP1-associated 

proteins in HEK 293 cells. We identified Poly(ADP-Ribose) polymerase (PARP-1), a well 

defined stress sensor, as a candidate binding partner of LRP1 in HEK 293 cells (Figure SI, 

Table SI). PARP-1 is a nuclear enzyme that uses NAD+ as a substrate to catalyze the 

covalent attachment of ADP-ribose units on nuclear acceptor proteins or on PARP-1 itself30. 

In response to stress signals, PARP-1 is activated and plays key roles in DNA repair31–33, 

apoptosis34, 35, chromatin modulation and transcription36, 37 and cell cycle regulation38–41. 

Many reports demonstrate that PARP-1 inhibition by genetic deletion or chemical inhibitors 

decreases angiogenesis during melanoma tumor growth, a transplanted lung cancer model or 

other pathological conditions42–45. Due to its role in cell cycle control and angiogenesis, and 

our data suggesting PARP-1 could be a novel interactive protein of LRP1, we tested whether 

PARP-1 regulated the LRP1-mediated effects of endothelial cell cycle progression, 

proliferation and angiogenesis. First, we investigated the subcellular localization of LRP1 

and PARP-1. Confocal imaging of HRECs revealed that PARP-1 and LRP1 (detected by 

LRP1 C-terminal antibody) substantially co-localize in the nucleus and some in the 

cytoplasm of HRECs (Figure 4A). Next, we confirmed their interaction by performing 

immunoprecipitation experiments. Immunoprecipitating for Flag-tagged LRP1 and 

immunoblotting for PARP-1 demonstrated that PARP-1 associates with LRP1 in HEK 293 

cells (Figure 4B). We then performed GST pull down assay to compare the binding of 

PARP-1 with purified GST-tagged LRP1 intracellular C-terminal domain (GST-ICD; a.a. 

4445-4544 of human LRP1) or the truncated intracellular C-terminal domain shortened 

(GST-ICDs; a.a. 4445-4511 of human LRP1). The binding of PARP-1 with GST-ICDs 

decreased significantly, compared to that with GST-ICD (Figure 4C). It indicates that the 

LRP1 C-terminal domain containing last 33 amino acids is required for its interaction with 

PARP-1. The interaction between endogenous LRP1 and PARP-1 was also observed in 

HRECs (Figure 4D–E). Next, we determined how hypoxia affects the subcellular 

localization of LRP1 and PARP-1 and their interaction. Interestingly, when HRECs were 

exposed to hypoxia for 0.5~2 hours, both LRP1 and PARP-1 signals increased in cytoplasm 

but decreased in nucleus, suggesting that they translocate from nucleus to cytoplasm in 

response to hypoxia (Figure SIIIA–C). We also observed that the interaction between LRP1 
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and PARP-1 dramatically decreased in response to hypoxia, compared to normoxia (Figure 

4F), confirmed by our confocal imaging data (Figure SIIID). Together, these data suggest 

that PARP-1 directly associates with LRP1, and their association is dynamically regulated 

by oxygen tension.

LRP1 intracellular domain (~12 kDa) released by intramembrane proteolysis can translocate 

into nucleus and regulate signaling events22, 46. This processing of LRP1 is dependent on 

the presenillin-dependent γ-secretase activity. We asked whether hypoxia regulates the 

processing of this LRP1 intracellular domain. Using subcellular fractionation analysis, we 

observed that under normoxic condition, a fragment at ~12 kDa in the nucleus was detected 

with LRP1 C-terminal antibody (Figure SIV). When DAPT, an inhibitor of presenillin-

dependent γ-secretase activity, was administrated, the ~25 kDa processed form of LRP1 was 

detected in the cytosolic fraction (Figure SIV). This confirms previous reports that the 

intracellular domain of LRP1 (~12 kDa) is processed from the ~25 kDa fragment by the 

presenillin-dependent γ-secretase activity22, 46. However, the protein level of the ~12 kDa 

fragment was not dramatically affected by hypoxia compared to normoxia, suggesting that 

hypoxia does not regulate the presenillin-dependent γ-secretase activity and the processing 

of the ~12 kDa LRP1 fragment. The association of LRP1 and PARP-1 is likely regulated 

through other unknown mechanisms.

PARP-1 is known to be associated with HIF1α47, which is a well-known regulator of 

hypoxia-dependent VEGF induction and angiogenesis48. Is the regulatory role of LRP1 in 

angiogenesis mediated through HIF1α-VEGF pathway? To answer this question, we 

determined the effect of LRP1 knockdown on the induction of HIF1α. As expected, hypoxia 

for 2 and 6 hours induced HIF1α protein in HRECs. Surprisingly, hypoxia-induced HIF1α 

protein decreased dramatically in LRP1 siRNA-transfected HRECs, compared to control 

siRNA-transfected cells (Figure SV). This observation indicates that the angiogenic effect 

resulted from LRP1 knockdown is not likely mediated through HIF1α-VEGF signaling 

pathway.

LRP1 Knockdown Increases the Phosphorylation of CDK2 and Rb by Enhancing PARP-1 
Activity

Progression through the cell cycle is coordinated by the expression and activation of 

multiple components including cyclins, cyclin-dependent kinases (CDKs) and CDK 

inhibitors49. It has been reported that LRP1 depletion in MEFs increases the 

phosphorylation of retinoblastoma (Rb) and cyclin-dependent kinase 2 (CDK2)50, which are 

critical regulators for G1-S transition during cell cycle51, 52. Given that LRP1 knockdown 

increases the number of HRECs entering into S-phase (Figure 3G–H), we tested whether 

LRP1 affected cell cycle progression by modulating Rb and CDK2 activity. LRP1 

knockdown in HRECs significantly increased CDK2 activity, detected by the specific 

phosphorylation at Thr 160 (Figure 5A and 5B). Similarly, LRP1 knockdown increased Rb 

phosphorylation at Ser 807/811 (Figure 5A and 5C), which represents the inactivation of Rb 

that is required for the release of sequestered E2F transcription factors. Given the activation 

of CDK2 and E2F induces the transcription of genes encoding proteins that are required for 

S-phase DNA synthesis51, 52, the enhanced G1-S transition and cell cycle progression due to 
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LRP1 knockdown is likely mediated through the increase in CDK2 and Rb phosphorylation. 

Since PARP-1 is an important cell cycle regulator by interacting with p53 and affecting the 

expression and/or activation of cell cycle modulators including cyclin-dependent kinases 

CDKs and Rb53, 54, we tested whether PARP-1 is a mediator for LRP1 to regulate CDK2 

and Rb activity. First, we determined whether PARP-1 activity is regulated by LRP1 in 

HRECs by performing PAR activity assay. As a stress signal, hypoxia dramatically 

enhanced PARP-1 activity (Figure 5D). Interestingly, LRP1 knockdown further increased 

PAR activity significantly (Figure 5D). Next, we tested whether the inhibition of PARP-1 

enzymatic activity decreases the phosphorylation of CDK2 and Rb, and more importantly, 

‘rescues’ the increase in the phosphorylation of CDK2 and Rb resulted from LRP1 

knockdown. By using an inhibitor of PARP-1 activity- PJ-34 (Figure SVI), we demonstrated 

that the inhibition of PARP-1 activity indeed decreased phosphorylation of CDK2 and Rb at 

both normoxic and hypoxic conditions (Figure 5E–G). Interestingly, PJ-34 inhibited the 

increased phosphorylation of CDK2 and Rb induced by LRP1 knockdown (Figure 5H–J). 

Taken together, we conclude that LRP1 knockdown likely promotes cell cycle progression 

by regulating PARP-1 activity.

In summary, our data indicate that LRP1 is a critical regulator of pathological angiogenesis 

and proliferation in the retinal endothelium. Importantly, we identify that LRP1 acts as a 

direct negative regulator of PARP-1, mediating CDK2 and Rb activity in the endothelium. 

We establish for the first time, this novel mechanism of explaining how LRP1, in part, 

negatively regulates endothelial cell proliferation and neovascularization in the hypoxic 

retina.

DISCUSSION

In this study, we have identified a regulatory role for LRP1 in pathological retinal 

angiogenesis. LRP1f/f;Cre+ mice with LRP1 depleted in endothelial cells display 

significantly more neovascularization response in the retina under hypoxic stress. This 

increase in vessel formation is, at least in part, contributed by the enhanced endothelial 

proliferative responses. We also uncover that PARP-1, a regulator of cell cycle progression, 

is negatively regulated by LRP1 through their dynamic interaction in response to hypoxia. 

These observations establish the notion that LRP1 is a critical regulator of angiogenesis and 

broaden our understanding of the functions that LRP1 exhibits in endothelial cells.

LRP1 is recognized as a multi-functional receptor that is involved in a variety of biological 

processes such as lipid metabolism, endocytosis and signal transduction6–8. In our previous 

study, LRP1 was discovered to be a novel regulator of zebrafish vascular development by 

regulating BMP signaling pathway16. BMP and BMPER are known as critical regulators of 

angiogenesis during development and disease conditions16, 28, 55–59. Our data demonstrate 

that LRP1 depletion in endothelial cells, similar to BMPER haploinsufficiency28, leads to 

increased retinal neovascularization in an OIR mouse model, suggesting that LRP1 might be 

a mediator for BMPER to regulate cell cycle progression and angiogenesis during OIR. 

Since multiple cellular events are involved in retinal angiogenesis, such as proliferation, 

apoptosis and migration, it is likely that LRP1 is also involved in other cellular processes. 

Our data clearly demonstrate that LRP1 negatively regulates proliferative angiogenesis in 
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mouse retina at least in part through regulating cell cycle progression. Interestingly, the 

induction of HIF1α, a well-known angiogenic regulator, is not enhanced by LRP1 

knockdown, suggesting that HIF1α is not likely a mediator of LRP1 depletion-dependent 

angiogenic effect. Further work is needed to elucidate how LRP1 regulates HIF1α-VEGF 

pathway and downstream effects. Although our proposed working model (Figure 5K) is 

oversimplified, it provides an initial framework into the role of LRP1 in endothelial 

function. We propose that, under normoxic conditions, LRP1 is associated with PARP-1 in 

endothelial cells. In response to mild hypoxia, the interaction of LRP1 and PARP-1 

decreases. This dissociation, mimicked by our LRP1f/f;Tie2Cre+/− mice, may result in an 

increase in the PARP-1 enzymatic activity, which in turn leads to the hyperphosphorylation 

of Rb and activation of CDK2, and thereby promoting cell cycle progression. Combined, 

these molecular and cellular changes coordinately contribute to the proliferative and 

angiogenic effects in response to hypoxia.

PARP-1 is the founding and most studied member of the PARP family. It functions as a 

cellular stress sensor, directing cells to specific fates, such as DNA repair, survival, 

proliferation and cell death) based on the type and strength of the stress stimulus. Increasing 

evidence into the role of PARP-1 in the endothelium supports that PARP-1 is involved in 

endothelial dysfunction, atherosclerosis, restenosis and angiogenesis following stress and 

vascular injury30, 37, 54, 60. PARP inhibitors have been developed for therapeutic treatments 

of various cancers since it enhances the death of the malignant cells by interfering with 

cancer cell DNA repair61. Recent findings demonstrating that PARP inhibitors may inhibit 

angiogenesis by decreasing both growth factor expression and cell proliferation make it even 

more attractive cancer drug candidate42–45, 60, 62, 63. Our findings in this report provide 

novel mechanistic insights for PARP’s proliferative and pro-angiogenic roles via LRP1 

regulation. Moreover, it indicates that the PARP-1 inhibitors can not only be applied to 

cancer but also therapeutically against other angiogenesis-related pathologies such as 

proliferative diabetic retinopathy and retinopathy of prematurity.

Poly(ADP-ribosyl)ation (or ‘PARylation’) is a chemical process that is catalyzed by PARP 

whereby PAR polymers are covalent attached on PARP itself and other acceptor proteins, 

including histones, DNA repair proteins, transcription factors, chromatin modulators30. 

Although we observe that LRP1 affects G1-S transition by modulating PARP-1 enzymatic 

activity, the detailed mechanism by which ‘PARylation’ regulates the phosphorylation of 

CDK2 and Rb remains elusive. One possible candidate could be p53 since it regulates 

CDK2 and Rb activity through the regulation of p2153 and the activity of p53 is regulated by 

‘PARylation’ in response to DNA damage64. In addition, PARP-1 is proteolytically cleaved, 

mediating apoptosis. During apoptosis, PARP-1 is cleaved by caspase 3, and possibly other 

proteases, into C-terminal fragment (89 kDa) and N-terminal fragments (24 kDa)65. We 

observed both full length and cleaved PARP-1 at 89 kDa in HRECs in normoxia. However, 

2% oxygen did not increase the amount of cleaved PARP-1 at 89 kDa (Figure 4E), 

indicating that PARP-1 cleavage-mediated apoptosis is not induced by hypoxia at 2% 

oxygen. Instead, HRECs exhibit enhanced cell growth and angiogenic responses (Figure 

3B–E). Therefore, our data indicate that the PARP-1 enzymatic activity, but not the cleavage 

of PARP-1, is required for LRP1-dependent cell cycle regulation. In this study, we have 

determined the role of LRP1 in PARP-1-dependent signaling responses involved in cell 
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cycle progression. In response to various ligands of LRP1, other PARP-1 dependent 

signaling pathways in endothelial cells could also be affected and lead to cellular responses 

such as chromatin structure remodeling and changes in DNA damage response and cell 

viability. The precise roles of LRP1 activity in these pathways remain to be determined. On 

the other hand, how PARP-1 and ‘PARylation’ affect LRP1-mediated cellular processes, 

including lipid metabolism, endocytosis and cellular signaling, becomes another interesting 

focus for the future studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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LRP1 low-density lipoprotein receptor related protein 1 (LRP1)

PARP-1 poly(ADP-ribose) polymerase-1

BMP bone morphogenetic protein

BMPER BMP binding endothelial regulator

OIR oxygen-induced retinopathy

GFAP glial fibrillary acidic protein

HREC human retinal microvascular endothelial cells

BrdU 5-bromo-2′-Deoxyuridine

Rb retinoblastoma

CDK2 cyclin-dependent kinase 2

PARylation Poly(ADP-ribosyl)ation

PJ-34 N-(6-Oxo-5,6-dihydrophenanthridin-2-yl)-(N,N-dimethylamino)acetamide 

hydrochloride
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SIGNIFICANCE

Low density lipoprotein receptor-related protein 1 (LRP1) is a multifunctional member of 

the LDL receptor family, impacting a variety of biological processes such as lipid 

metabolism, endocytosis and signal transduction. However, the role of LRP1 in 

endothelium is almost unknown. Here we studied the functional roles of LRP1 in 

angiogenesis in oxygen-induced retinopathy mouse model. Our data reveal a critical role 

for LRP1 in the regulation of endothelial cell proliferation and neovascularization in the 

hypoxic retina. In addition, these data demonstrate for the first time a dynamic interaction 

of LRP1 and PARP-1 in endothelial cells. These data bring forth the possibility of novel 

therapeutic approaches for pathological angiogenesis such as proliferative diabetic 

retinopathy and retinopathy of prematurity.
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Figure 1. Intraretinal neovascularization increases in retinal endothelium lacking LRP1 during 
hypoxia
A, Loss of LRP1 expression in endothelial cells in LRP1f/f;Cre+ mouse retina. Images are 

sagittal views of mouse retinas at postnatal day P15. Tissue sections were stained with LRP1 

(8G1 Ab, green) and CD31 (an endothelial cell specific marker, red) antibodies. The test for 

the specificity of this 8G1 antibody is shown in Figure SII. INL, inner nuclear layer; IPL, 

inner plexiform layer; SVP, superficial vascular plexus; V, vitreous. B–C, Loss of LRP1 in 

endothelial cells increased intraretinal neovascularization following onset of hypoxia for 48 

hours at P14 and 72 hours at P15. (B) Confocal images of retinal flat mounts from 

LRP1f/f;Cre+/− oxygen-induced retinopathy (OIR) mice were stained with iso-lectin. 

Avascularized (yellow outline) areas are shown as a percentage of the total area of the 

retinal superficial vasculature layer (C). *, P<0.05 via two-way ANOVA analysis followed 

by Bonferroni multiple comparison test, n≥4. D–G, Analysis of angiogenic parameters for 

the retinal neovascularization. D, An increase in neovascularization is observed at the 

leading edge of LRP1f/f;Cre+ retinas, compared to LRP1f/f;Cre− littermates. Confocal 

images of retinal flat mounts stained with iso-lectin from P15 LRP1f/f;Cre+/− oxygen-

induced retinopathy mice were used for analysis. Vascularized area (E), branching pints (F) 

and vessel sprout number (G) were quantified within leading edge of neovascularization 

area. *, P<0.05 via unpaired Student’s t-test, n=4 for LRP1f/f;Cre− and n=3 for LRP1f/f;Cre+ 

mice.
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Figure 2. LRP1 deletion in retinal endothelium displays increased proliferation without changes 
in the interaction of endothelial cells with astrocytes and pericytes
A–B, Endothelial cell proliferation increases in LRP1f/f;Cre+ mice. (A) Retinal sagittal 

sections from P15 (72 hours of hypoxia) LRP1f/f;Cre+/− mice were stained with Ki67 (cell 

proliferation marker, green), CD31 (endothelial cell marker, red) and DAPI (blue). The 

percentage of Ki67 positive endothelial cells were counted and presented in B. Arrows, Ki67 

positive endothelial cells. *, P<0.05 via unpaired Student’s t-test, n=6 for LRP1f/f;Cre− and 

n=5 for LRP1f/f;Cre+ mice. C–D, Normal astrocyte-endothelial filopodia interactions and 

pericyte recruitment are observed in both LRP1f/f;Cre+ and LRP1f/f;Cre− mouse retinas. 

Flat-mounted whole retinas from LRP1f/f;Cre+/− mice that were subjected to OIR for 48 

hours were stained with iso-lectin (red), glial fibrillary acidic protein (GFAP; green in C) or 

NG2 (green in D). Arrows, endothelial filopodia.
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Figure 3. LRP1 knockdown in HRECs promotes angiogenesis, endothelial proliferation and cell 
cycle progression
A, LRP1 protein level decreases in HRECs that were transfected with LRP1 siRNA, 

compared to control siRNA. Lysates of LRP1-knockdown or control HRECs treated were 

analyzed by Western blotting to detect LRP1 β chain at 85 kDa. B–C, LRP1 knockdown in 

HRECs increases tube formation. HRECs were incubated in normoxia (21% O2) or hypoxia 

(2% O2) condition for 24 hours on Matrigel coated plates. Phase contrast images were used 

for quantitative measurements of tube numbers per sample and shown in B. *, P<0.05 

compared to the same HRECs at normoxia condition, #, P<0.05 compared to the control 

siRNA-treated HRECs at hypoxia condition, n=3. Analysis was two-way ANOVA followed 

by Bonferroni multiple comparison test. D–E, LRP1 knockdown in HRECs increases 
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sprouting angiogenesis. Spheroid angiogenesis assays were performed with HRECs that 

were transfected with LRP1 or control siRNAs. Hypoxia (2% O2) was used to induce sprout 

formation. Images of HRECs spheroids demonstrate the formation of sprouts following 72 

hours of hypoxia (2% O2) incubation. The number of sprouts per spheroid were counted and 

quantified in E. *, P<0.05 via unpaired Student’s t-test compared to control cells, n=6. F, 

LRP1 knockdown in HRECs increases hypoxia-induced cell growth. Cell numbers were 

counted daily in HRECs that were transfected with LRP1 or control siRNAs, and 

subsequently cultured in normoxia or hypoxia (2% O2) for 4 days. *, P<0.05, compared to 

same HRECs at day 0. #, P<0.05, compared to control siRNA-transfected HRECs that were 

incubated at hypoxia condition. n= 4. Analysis was two-way ANOVA followed by 

Bonferroni multiple comparison test. G–H, LRP1 knockdown increases cell cycle 

progression to S phase from G1/G0 stage. HRECs were transfected with LRP1 or control 

siRNA. Two days later, cells were incubated under normoxia (N, 21% O2) or hypoxia (H, 

2% O2) for 24 hours. Cells were then stained with propidium iodide and analyzed by flow 

cytometry. The representative flow cytometry images are shown in G, and the percentages 

of cells at different cell cycle stages were quantified and present in H. *, P<0.05, compared 

to same cells under normoxia. #, P<0.05, compared to control siRNA-transfected HRECs 

under hypoxia. n=3. Analysis was two-way ANOVA followed Fisher’s LSD multiple 

comparison test.
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Figure 4. LRP1 interacts with PARP-1 in HRECs
A, HRECs were fixed for staining with anti-LRP1 (LRP1-CTD Ab, green) and PARP-1 

antibodies (red) and DAPI (blue), and imaged with confocal microscopy. The test for the 

specificity of this LRP1-CTD antibody is shown in Figure SII. B, Lysates of HEK 293 cells 

with stable exogenously expressing Flag-tagged LRP1 β chain (Flag-LRP1) were 

immunoprecipitated with an anti-Flag resin and blotted with an anti-PARP-1 antibody. C, 

GST pull down assays were performed with HREC lysates. GST-fusion proteins were 

generated for GST-tagged LRP1 intracellular C-terminal domain (GST-ICD; a.a. 4445-4544 

of human LRP1) and a truncated LRP1 intracellular C-terminal domain shortened (GST-

ICDs; a.a. 4445-4511 of human LRP1) constructs, or GST as a negative control. Western 

blotting analysis was performed with anti-PARP-1 antibody. D, Lysates of HRECs were 

immunoprecipitated with anti-LRP1 antibody or control IgG and analyzed by Western 

blotting with an anti-PARP-1 antibody. E, Lysates of HRECs were immunoprecipitated with 

anti-PARP-1 antibody or control IgG and analyzed by Western blotting with an anti-LRP1 

(LRP1-CTD) antibody. F, Hypoxia decreases the interaction of LRP1 and PARP-1 in 

HRECs. Lysates of HRECs following either normoxia (21% O2) or hypoxia (2% O2) 

exposure for 2 hours were immunoprecipitated with anti-LRP1 antibody or control IgG and 

analyzed by Western blotting with an anti-PARP-1 antibody. The associated PARP-1 full-

length protein (PARP-1-FL, 116 kDa) and its cleaved form at 89 kDa (cleaved PARP-1) are 
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quantified as percentages of total PARP-1 protein amount. *, P<0.05 via unpaired Student’s 

t-test, n=4.
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Figure 5. LRP1 knockdown increases PARP-1 activity-dependent phosphorylation of Rb and 
CDK2 in HRECs
A–C, LRP1 knockdown increases CDK2 and retinoblastoma (Rb) phosphorylation. HRECs 

were transfected with LRP1 or control siRNA. Two days later, cells were incubated under 

normoxia (21% O2) or hypoxia (2% O2) for 2 hours. Cell lysates were immunoblotted with 

indicated antibodies. The ratios of the phosphorylated CDK2 and Rb to their total respective 

protein amounts were quantified by Image J (B and C). D, PARP-1 activity increased in 

LRP1 knockdown HRECs in response to hypoxia at 2% O2. ELISA enzymatic assay for 

PARP-1 was performed with PAR as a substrate of PARP-1 coated in the plate. Quantitative 

data were presented as a ratio of relative light unit to protein amount in cell lysates. E–G, 

PARP-1 inhibition decreases CDK2 and retinoblastoma (Rb) phosphorylation. HRECs were 

incubated with PARP-1 inhibitor PJ-34 at 3 μM and under normoxia (21% O2) or hypoxia 
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(2% O2) for 2 hours. Cell lysates were immunoblotted with indicated antibodies. The ratios 

of the phosphorylated CDK2 and Rb to their total respective protein amounts were 

quantified by Image J (F and G). H–J, PJ-34 blocks the increases in CDK2 and 

retinoblastoma (Rb) phosphorylation following LRP1 knockdown. HRECs were transfected 

with LRP1 or control siRNA. Two days later, cells were treated with PARP-1 inhibitor 

PJ-34 at 3 μM and incubated under normoxia (21% O2) or hypoxia (2% O2) for 2 hours. Cell 

lysates were immunoblotted with indicated antibodies. The ratios of the phosphorylated 

CDK2 and Rb to their total respective protein amounts were quantified by Image J (I and J). 

K, Schematic illustration to shown how LRP1 regulates cell cycle progression, endothelial 

proliferation and retinal angiogenesis induced by hypoxia. *, P<0.05, compared to same 

cells under normoxia. #, P<0.05, compared to control HRECs exposed to same oxygen 

level. **, P<0.05, compared to LRP1 siRNA-transfected cells without treatment of PJ-34 

inhibitors. n=3. All data were analyzed with two-way ANOVA analysis followed by the 

Fisher’s LSD or Turkey multiple comparison test.
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