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We assessed the pharmacokinetics and safety of solithromycin, a fluoroketolide antibiotic, in a phase 1, open-label, multi-
center study of 13 adolescents with suspected or confirmed bacterial infections. On days 3 to 5, the mean (standard devia-
tion) maximum plasma concentration and area under the concentration versus time curve from 0 to 24 h were 0.74 �g/ml
(0.61 �g/ml) and 9.28 �g · h/ml (6.30 �g · h/ml), respectively. The exposure and safety in this small cohort of adolescents
were comparable to those for adults. (This study has been registered at ClinicalTrials.gov under registration no.
NCT01966055.)

Invasive infections due to drug-resistant bacteria are increasingly
common and often fatal. In the United States, approximately 2

million people have drug-resistant infections, resulting in 23,000
deaths annually (1). Solithromycin is a new fluoroketolide antibi-
otic with activity against a wide array of bacteria causing respira-
tory tract infections and other pathogens. Solithromycin is under
investigation for oral and intravenous use in children. We per-
formed a phase 1, open-label, multicenter pharmacokinetics (PK)
and safety study of oral solithromycin in adolescents.

We enrolled male and female adolescents, aged 12 to 17 years
(inclusive), with suspected or confirmed bacterial infections
(ClinicalTrials.gov registration number NCT01966055). Adoles-
cents were enrolled and administered solithromycin (capsules) as
an add-on therapy (12 mg/kg of body weight on day 1 [800-mg
adult maximum] and 6 mg/kg daily on days 2 to 5 [400-mg adult
maximum]) for up to 5 days. Solithromycin was taken without
regard to food. Written informed consent was obtained from the
parent or other legally authorized representative and informed
assent from the patient (if age appropriate according to local re-
quirements). All study sites had the protocol reviewed and ap-
proved by their institutional review boards. The first adolescent
was enrolled on 17 February 2014, and the last adolescent com-
pleted the study on 5 September 2014. An independent data mon-
itoring committee (DMC) assessed the overall study status and
safety of patients. The DMC met prior to the first patient enroll-
ment, after the first four subjects had completed enrollment, and
after the study completion to review the trial data.

Paired plasma and dried blood spot (DBS) PK samples were
collected at 0.5 to 1.5, 2 to 4, 8 to 10, and 23 to 24 h after the first
and multidose administrations of solithromycin. Samples for
both matrices were analyzed for solithromycin by a central labo-
ratory (MicroConstants, San Diego, CA, USA) using validated
liquid chromatography-tandem mass spectrometry (LC-MS/MS)
methods for both matrices. The accuracy and precision were
within the Food and Drug Administration bioanalytical assay val-
idation criteria for both methods (e.g., �15 to 20%). The solithro-

mycin lower limit of quantitation was 0.01 �g/ml, and the calibra-
tion range was 0.01 to 20 �g/ml for both matrices.

A noncompartmental PK analysis was performed with Phoe-
nix WinNonlin (version 6.3; Certara, St. Louis, MO, USA) using
solithromycin plasma concentration versus time data. Following
the first dose and on days 3 to 5, the maximum concentration
(Cmax) and the area under the concentration versus time curve
from 0 to 24 h (AUC0 –24) were determined. The AUC0 –24 was
calculated using the trapezoidal method. The solithromycin con-
centrations in traditional plasma and DBS samples were com-
pared using weighted linear regression, and the overall pres-
ence of bias and imprecision was assessed through the
calculation of the median percentage prediction error (MPPE)
and the median absolute percentage prediction error (MAPE)
(2). MPPE and MAPE values of �15% were considered accept-
able (3, 4). Also, we repeated the analyses after correcting the
DBS concentrations for hematocrit (3).

Thirteen adolescents were enrolled, and all completed the clin-
ical trial. The demographic and clinical laboratory variables are
summarized in Table 1. The most frequently reported primary
medical conditions were cystic fibrosis (3 [23%]), skin infection (3
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[23%]), and systemic infection (2 [15%]). One adolescent (8%)
received oxcarbazepine, and another adolescent received nafcillin
throughout solithromycin treatment.

On day 1, 8 of the 13 adolescents (62%) received an 800-mg
loading dose (adult maximum). The median (range) loading
dose was 800 mg (400 to 800 mg) or 12.3 mg/kg (9.5 to 13.3
mg/kg). Thereafter, all adolescents received a 400-mg daily
maintenance dose except for two patients, who received
200-mg or 300-mg daily doses. The median (range) mainte-
nance dose was 400 mg (200 to 400 mg) or 6.3 mg/kg (4.8 to 6.8
mg/kg). Treatment duration was 3, 4, and 5 days for 46% (6/
13), 23% (3/13), and 31% (4/13) of the adolescents, respec-
tively. A total of 118 plasma and 117 DBS samples were col-
lected, of which 96 and 95 samples (both 81%), respectively,
had quantifiable solithromycin concentrations; 16 (73%) of the
22 samples with concentrations below the quantification limit
were collected from three adolescents. Solithromycin concen-
tration versus time curves are shown in Fig. 1.

Overall, the Cmax, and AUC0 –24 values for solithromycin

were within the range of the observed values (mean [standard
deviation]) in healthy adult subjects (Table 2). Four adoles-
cents in this study had lower than expected day 3 to 5 solithro-
mycin plasma exposures. Two of these adolescents had cystic
fibrosis, and one adolescent (without cystic fibrosis) received
blood transfusions on the day of the PK sampling. One adoles-
cent had therapeutic exposures following a loading dose, but
low exposures after multiple dosing (for both the parent drug
and metabolites); a review of this adolescent’s medical history
and concomitant medications did not provide insight into the
cause of this observation.

A total of 92 matched pairs of plasma and DBS sample soli-
thromycin concentrations from 12 adolescents were included
in the comparability analysis. The median (range) hematocrit
was 38% (22 to 45%). Weighted linear regression showed a
linear relationship between the DBS and plasma sample soli-
thromycin concentrations (slope 0.91 [95% confidence inter-
val, 0.82 to 0.99]) (Fig. 2). Similar results were observed using
nonparametric regression. The MPPE for the comparison of

TABLE 1 Adolescent characteristics and study dosing

Variable Valuea

Dose (mg)
Day 1 800 (400–800)
Days 2–5 400 (200–400)

Dose (mg/kg)
Day 1 12.3 (9.5–13.3)
Days 2–5 6.3 (4.8–6.8)

Age (yr) 16 (12–17)
Weight (kg) 64 (30–84)
Hematocrit (%) 38 (22–45)
Male gender 10 (77)

Race/ethnicity
White 11 (85)
Non-Hispanic or Latino 10 (77)

a Values are median (range) or no. (%).

FIG 1 Solithromycin plasma concentration versus time after dose in adolescents. Each line denotes an individual subject concentration versus time curve.

TABLE 2 Solithromycin exposure in adolescents and historically
healthy adult subjectsa

Day(s) Parameter

Mean (SD) results for:

Adolescents
(n � 13)b

Healthy adults
(n � 5/10)c

1 Cmax (�g/ml) 0.97 (0.73) 1.32 (0.92)
AUC0–24 (�g · h/ml) 11.62 (8.55) 13.67 (9.56)

3–5 Cmax (�g/ml) 0.74 (0.61) 1.09 (0.52)
AUC0–24 (�g · h/ml) 9.28 (6.30) 13.27 (7.36)

a Data are means (SD).
b For the maximum concentration (Cmax), all subjects contributed data. For the area
under the concentration versus time curve from 0 to 24 h (AUC0 –24), 12 and 10
adolescents contributed data on day 1 and days 3 to 5, respectively.
c Day 1 adult estimates were obtained from healthy subjects that received an 800-mg
single dose (n � 5) (5). The area under the concentration versus time curve (AUC)
estimate reported represents AUC from time zero to the last sample time point. The day
3 to 5 adult estimate used for comparison represents observed exposure on day 7 in
healthy adults receiving 400 mg/day (n � 10) (5).
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the DBS to plasma sample solithromycin concentrations was
�6.9%, and the MAPE was 29.0%; the latter is outside our
predefined acceptable cutoff. Correcting for hematocrit did not
provide any additional improvement in the agreement between
plasma and DBS sample concentrations.

Twelve adverse events were reported in eight adolescents;
nine (75%) of these events were unrelated to solithromycin
(Table 3). Two separate episodes of mild headache and one
episode of increased hepatic transaminases (�3� upper limit
of normal) seemed to be related to the study drug in three
subjects. All three drug-related adverse events subsided upon
discontinuation of solithromycin. The adolescent with in-
creased hepatic transaminases had a medical history of cystic
fibrosis and pancreatic insufficiency and received concomitant
medications that might potentially alter hepatic transaminases
(i.e., azithromycin and cefepime).

In this study, due to impending hospital discharge, �50% of
the adolescents in our study had multiple-dose PK assessments
on day 3, which limited the ability to compare these data to
adult solithromycin exposures collected in healthy volunteers
after at least 5 days of dosing. Despite the early PK sampling
(day 3 of therapy), on average, the solithromycin exposures in
the adolescents with quantifiable PK data after multiple doses
were within the range of exposures observed in these healthy
adult volunteers. In adults, exposures in the epithelial lining
fluid were approximately 10-fold higher (6), and similar pen-
etration may be seen in adolescents although this was not di-
rectly measured. Therefore, these data support the use of a
12-mg/kg loading dose (up to 800 mg) and 6-mg/kg mainte-
nance doses (up to 400 mg) in future safety studies of solithro-
mycin in adolescents.

Notably, the range of solithromycin exposures on day 1 and
days 3 to 5 varied substantially between adolescents. This effect is
likely multifactorial and might be related to the inherent intersub-
ject variability in drug concentrations characteristic of macrolides

(7–9), underlying disease (e.g., cystic fibrosis) (10), concomitant
medications (e.g., CYP3A4 inducers and pH modifiers), limita-
tions of our sparse sampling approach, and/or timing of PK sam-
pling (e.g., sampling on day 3 versus day 5). In the three patients
with cystic fibrosis, there was a trend toward lower solithromycin
exposure with multiple dosing compared with that in patients
without cystic fibrosis and with adult values. This finding may be
due to the drug absorption limitations of cystic fibrosis (10, 11).
Nonetheless, the current sample size limits our ability to make
robust conclusions with regard to the comparison between cystic
fibrosis and non-cystic fibrosis patients. Another potential con-
founding variable may have been the concomitant exposure to
oxcarbazepine and nafcillin, which are CYP3A4-inducing drugs,
in two adolescents. Although clinical data available to evaluate the
effect of nafcillin on the PK of CYP3A4 substrates are limited,
in vitro data suggest that nafcillin may induce the protein expres-
sion of CYP3A4 (12).

The solithromycin concentrations in DBS and plasma samples
were comparable, albeit with substantial variability, particularly at
the low end of the concentration range (see Fig. S1 in the supple-
mental material). This variability may have resulted from variabil-
ity in red blood cell partitioning, nonhomogeneous distribution
across the blood spot sample, inherent physicochemical proper-
ties of the molecule, or sample hematocrit (13). However, ac-
counting for sample hematocrit in our study did not improve
agreement between the two matrices. A slope near unity of the
DBS to plasma concentration ratio indicates that significant red
blood cell partitioning occurs, which is in agreement with previ-
ously observed data (�75% whole blood/plasma partitioning
based on total radioactivity; sponsor data [Cempra, Inc., Chapel
Hill, NC] on file) (14).

We found solithromycin to be well tolerated in a small sample
of adolescents. Although we concluded that these three adverse
events were related to the study drug, these adolescents were re-
ceiving a variety of concomitant medications, which might also
account for the adverse events. The favorable safety profile of so-
lithromycin is consistent with that in phase 1 and 2 adult studies,
where reports of headache were mild, and mean changes in labo-
ratory parameters were not deemed clinically significant. A he-
patic impairment study found no difference in safety relative to
healthy adults (15) and reported that no dosage adjustment is
needed in patients with mild, moderate, or severe disease. A future
phase 2/3 study will be performed to assess the safety of solithro-

FIG 2 Dried blood spot versus plasma solithromycin concentrations are
displayed. The solid and dashed black lines denote the line of unity and
linear fit, respectively.

TABLE 3 Reported adverse eventsa

Adverse event
No. (%) in all
patients (n � 13)

Total no. 8 (61.5)
Serious (limb abscess not related to treatment) 1 (7.7)
Fatal outcome 0
Resulting in permanent treatment discontinuation 0

Related to study treatment 3 (23.1)
Headache (mild severity) 2 (15.4)
Increased transaminases (�3� ULNa) 1 (7.7)

Severe 0
a ULN, upper limit of normal.
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mycin in children with community-acquired bacterial pneumo-
nia (CABP).
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