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Abstract

Understanding how distinct parts of proteins produce coordinated behavior has driven and 

continues to drive advances in protein science and enzymology. However, despite consensus about 

the conceptual basis for allostery, the idiosyncratic nature of allosteric mechanisms resists general 

approaches. Computational methods can identify conformational transition states from structural 

changes, revealing common switching mechanisms that impose multistate behavior. 

Thermodynamic cycles use factorial perturbations to measure coupling energies between side 

chains in molecular switches that mediate shear during domain motion. Such cycles have now 

been complemented by modular cycles that measure energetic coupling between separable 

domains. For one model system, energetic coupling between domains has been shown to be 

quantitatively equivalent to that between dynamic side chains. Linkages between domain motion, 

switching residues, and catalysis make nucleoside triphosphate hydrolysis conditional on domain 

movement, confirming an essential yet neglected aspect of free energy transduction and suggesting 

the potential generality of these studies.
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INTRODUCTION

In spite of the extreme diversity of these systems, it may be possible to formulate 

certain generalizations concerning the functional structures responsible for the 

regulatory competence of the controlling proteins, allowing them to act as specific 

mediators….

—Jacques Monod, Jean-Pierre Changeux, and François 

Jacob (78, p. 306)

The earliest use of the term allosteric described the control of enzymes “by a metabolite 

acting apparently as a physiological ‘signal’ rather than as a chemically necessary 

component of the reaction itself” (78, p. 306). In a second paper, Monod et al. (79) 
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formulated a two-state molecular model for allosteric enzymes, in particular, the hemoglobin 

heme–heme interaction. That model implied switching mechanisms, in which alternative 

packing minima suppress intermediate conformational states, thereby limiting the number of 

discrete states. Equilibria between discrete states are conceptually important to mechanisms 

in a wide variety of molecular machines (3–6, 46, 80, 104). To date, however, little has been 

done to identify coupled side chains, measure their energetic impact on structural equilibria 

and catalysis (2, 106), or determine how they participate in free energy transduction.

Relevant Previous Reviews

Jencks (57, 59, 61) recognized the challenge of understanding how nucleoside triphosphate 

(NTP) hydrolysis drives vectorial processes. Astumian (3–5) summarized relationships 

between conformation and ligand-binding specificity necessary for free energy transduction 

by diffusive molecular machines. Hilser, Nussinov, and others (46, 80, 85, 104, 107) 

reviewed the consensus conceptual basis for allostery. The contractility community analyzed 

the statistical thermodynamic basis for free energy transduction [e.g., Hill and colleagues 

(31, 49, 50) and Dill and colleagues (27, 43, 89)]. Sweeney and Houdusse (94, 101, 102) 

detailed the myosin VI cross-bridge cycle, and Vanden-Eijnden and Karplus and colleagues 

(82, 105) described structural changes responsible for the energetics of rigor to prepower 

stroke conformational change of the myosin VI converter domain.

Purposes of This Review

The foregoing studies suggest neither how to overcome idiosyncratic mechanistic diversities 

by systematically identifying the “certain generalizations” of Monod et al. (78) nor how to 

experimentally map the coupling of ligand-dependent conformational energetics to catalysis 

of nucleotide triphosphate hydrolysis. Here, I attempt to (a) define molecular switches and 

conformational transition states (60, 61, 109); (b) emphasize how higher-dimensional 

thermodynamic cycles constructed between side chains within modules (96, 109, 111, 112) 

and between modules (67) connected by molecular switches deepen our understanding of 

allosteric phenomena; and (c) relate long-range coupling to conformational equilibria and 

catalysis by transducing enzymes (52). A second goal is to introduce experimental studies of 

the voltage-gated K channel and Bacillus geostearothermophilus tryptophanyl-tRNA 

synthetase (TrpRS) to a wider audience. Experimental coupling energies from the two 

systems furnish new understanding of free energy transduction mechanisms important in 

channels, NTP-dependent motors, synthetases, polymerases, and signaling GTPases that 

exhibit multistate, vectorial behavior (4, 5, 57, 60, 61, 83, 96), enabling them to convert 

energy sources into work and information (27, 53, 90).

Allostery, Cooperativity, Linkage, and Switching

Discussions of allostery often conflate it with cooperativity and linkage in describing 

molecular transduction. The terms are not interchangeable and should be distinguished.

Allostery is intramolecular communication—This definition retains the original 

insight that binding at remote sites induces active-site changes affecting thermodynamic 

and/or kinetic behavior (78). Newer studies suggest expanding the definition to include more 

general phenomena that do not require binding remotely. Chemical changes in active-site 
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ligands produce conformational changes surrounding and remote from the active site and 

alter the reactivity of remote side chains (42); transducing systems couple such allosteric 

effects to changes in the affinity for macromolecular partners (31, 50, 74, 75).

Cooperativity implies simultaneous movement—Cooperativity is defined by the 

sharpness of transitions between different states, achieved by near simultaneous, coordinated 

movement of different macromolecular components, that is, different active-site residues, 

packing motifs, separate domains within monomers, or different monomers in an oligomer. 

Cooperativity implies (a) a switching mechanism to suppress intermediate states; (b) a 

conformational transition state, that is, an ensemble in which side chain–side chain 

interactions assume distinctly higher free energies than they do in either initial or final 

states; and (c) three-dimensional interactions that coordinate simultaneous exchanges of 

components between states.

Linkage is a metric for free energy—Linkage refers to the strength of energetic 

coupling between different components whose coordinated movements constitute allosteric 

communication. Linkage is measured experimentally by perturbing each interacting 

component (52). Logarithms of rate constants for a thermodynamic cycle of perturbations 

define coupling free energies in the transition state.

FACTORIAL PERTURBATION AND HIGH-ORDER ENERGETIC COUPLING

Intramolecular energetic coupling implies that free energy sources enforce joint behaviors, 

enabling higher levels of functionality. Coupling energies arise from unexpected 

nonadditivities in experimental measurement and are surprisingly general: The proton spin 

cannot be explained by summing the intrinsic spins of its three constituent quarks (55). 

Inelastic scattering experiments reveal that the quark spins must be coupled to those of the 

gluons that hold them together (44).

Thermodynamic Cycles Measure Coupling Constants Between Perturbed Sites

A 2N factorial experiment, the thermodynamic cycle (Figure 1), tests the impact on 

thermodynamic or kinetic behavior of all combinations of N perturbations. Point mutations 

report on discrete spatial regions, dissecting catalysis in space. Kinetics report on 

interactions along the reaction coordinate, dissecting in time. As in Φ-value analysis (77), 

free energy changes of coupled residues, ΔG‡, are different for one mutant alone as opposed 

to the same mutation in the context of a second mutant. The discrepancy, ΔΔG‡, measures 

the coupling free energy in kcal/mol, where the sign indicates whether coupling is 

synergistic (compensatory) or antisynergistic. Multiple mutations and other kinds of 

perturbations generalize the analysis; substituting Mn2+ for Mg2+ allows measurement of 

coupling to the metal.

Higher-Order Thermodynamic Cycles Are Necessary to Capture Three-Dimensional 
Behavior

Double-mutant cycles were introduced in biochemistry by Jencks (56, 58) and exploited by 

Fersht and colleagues (37, 39, 52) soon after directed mutagenesis made them feasible. A 

Carter Page 3

Annu Rev Biophys. Author manuscript; available in PMC 2017 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



double-mutant cycle has information about only a line, a triple mutant cycle about only a 

triangle. Neither is three-dimensional (103). Four-way perturbations are thus a minimum for 

capturing coordinated three-dimensional behavior implied by cooperative protein behavior. 

Higher-order cycles have not, however, been widely exploited, despite the fact that 

significant four- and five-way interactions with coupling energies (~4–6 kcal/mol) alter 

functionally important equilibria by up to 100,000-fold in examples reviewed herein (9, 35, 

36, 38, 39, 96, 109, 111, 118). These coupling energies are quite distinct from the distributed 

behavior of multi-mutant cycles in other enzyme systems (100a) in which the intrinsic 

effects of individual side chains dominate.

MOLECULAR SWITCHES, MULTISTATE BEHAVIOR, AND HIGH-ORDER 

COUPLING

A molecular switch is a packing arrangement, within a monomer or between monomers in 

an oligomer, that assumes multiple configurations separated by a significant barrier. For 

example, hemoglobin alternates between relaxed (R) and tense (T) conformations in 

different crystal structures without populating intermediate states (79, 84). Alternative 

packing of β97 His occurs either between α38 Thr and α41 Thr in the R state or between 

α41 Thr and α44 Pro in the T state (8, figures 10a and 13). The resulting steric barrier 

precludes intermediate states.

Smith & Ackers (98) measured deviations in ligand-binding affinities from those expected 

from the affinities of monomers for the 10 different liganded forms of hemoglobin–

indirectly from their dissociation into noncooperative α/β dimers. This cooperative free 

energy was 6 kcal/mol (98). Further, α/β dimers operate autonomously in the tetramer: 

Conversion of unliganded T state to high-affinity R state occurs if and only if both dimers 

have bound at least one ligand (51). Hemoglobin behaves as a three-level combinatorial 

switch responding to different ligand chemical potentials.

Identifying switching interactions in hemoglobin required an exhaustive catalog of 

differences between the R and T quaternary structures (8), a task unlikely to promote 

identifying switches in other multistate systems. However, the following examples illustrate 

that many conformational transitions proceed by rigid-body molecular motions, substantially 

reducing the number of dynamic packing interactions and facilitating automation of their 

identification.

Voltage-Gated K+ Channel

The first determination of four-way residue coupling came from work on the voltage-gated 

K channel (9, 96, 118). Channel function is measured from a current versus voltage curve. 

Fitting to a Boltzmann sigmoid, assuming a two-state equilibrium between open and closed 

states (115), gives two parameters: the midpoint voltage, V1/2, and the slope at the midpoint, 

Z. Scanning mutagenesis identified side chains whose mutation shifted this curve, changing 

the closed–open equilibrium. Residues with significant effects (Figure 2) were filtered by 

double-mutant cycles to detect long-range coupling (115).
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Exhaustive double- and higher-order mutant cycles (96) clarified how the voltage-

gated conformational change opens the pore to K+ flux. The earlier study (115) 

discussed above identified four important properties: (a) mutations at many sites 

have little effect on the activation curve, highlighting mutationally sensitive 

positions above an insensitive background; (b) fitting parameters are correlated 

such that left-shifted activation curves exhibit steeper slopes; (c) residues in the 

activation gate are coupled to those in the selectivity filter; and (d) mutational 

perturbations of the activation curve parameters are linearly related to the free 

energy change of gating computed from a two-state model. The distance (up to 18 

Å) between layers of coupled residues implied a large conformational change, as 

was observed (9, 96). Subsequent examination of higher-order coupling reinforced 

these preliminary conclusions in three ways (96).

A well-defined boundary exists between gating-sensitive and gating-
insensitive sites—Yifrach & MacKinnon (115) defined the sensitive set as an allosteric 

trajectory. Average pairwise coupling free energies within the trajectory (Figure 2) were 

more than twice those measured between these residues and neighboring residues outside 

the trajectory. Coupling to a third residue is enhanced if the third residue is also within the 

trajectory (96). The high coupling energies are impressive because they occur between 

residues more than twice as far apart, on average, as the weakly coupled neighboring 

residues (48, 115). They demarcate the allosteric trajectory experimentally with remarkable 

precision.

Allosteric trajectories are highly cooperative—High synergy along the allosteric 

trajectory was confirmed by measuring four-way coupling free energies between the four 

residues comprising the trajectory, A391, E395, A465, and T469. In contrast to the a priori 

expectation that the higher-order interactions should decrease (12), mean n-way coupling 

energies increase approximately as n2. The sign of ΔΔGopen for the four-way interaction 

implies that it contributes ~5 kcal/mol to the stability of the closed pore (96). Changes in 

membrane potential weaken these interactions, opening the pore.

The progressive increase in coupling energy is characteristic of cooperativity. The 

measured coupling free energy for a variant pore varies linearly with the steepness 

of the Boltzmann approximation to the voltage-activation curve. Yifrach (114) 

previously derived a relationship between that approximation and the Hill equation, 

in which the slopes of each curve have comparable meaning. As ΔΔGopen = 

−ΔΔFZV1/2), where Z is the slope of the voltage-activation curve, Sadovsky & 

Yifrach (96) asked whether the nonlinearity of changes in the Hill coefficient arose 

from nonlinearity in Z or V1/2. The large number of pore variants provided an 

unambiguous answer: ΔΔGopen is directly proportional to Z but unrelated to the 

midpoint voltage (96); the stronger the magnitude of high-order coupling, the more 

cooperative is the channel’s gating transition.

General features of long-range coupling occur in other proteins—Observations 

relating results of combinatorial mutagenesis to experimental determinations of high-order 

coupling in staphylococcal nuclease (21, 22, 45) are of broader interest. Aliphatic side 
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chains within van der Waals contact behave differently, according to whether the perturbed 

residues belong to the allosteric trajectory. Neighboring residues outside the trajectory 

exhibit significantly reduced higher-order coupling than those within the trajectory (96). 

Trajectory-lining residues therefore exhibit a coupling behavior more similar to that 

observed between distant surface residues in staphylococcal nuclease (45), which interact 

via large coupling energies over large physical distances. Conversely, hydrophobic core 

interactions exhibit much reduced higher-order coupling. Similar conclusions emerged from 

related observations in the TrpRS system described below.

Tryptophanyl-tRNA Synthetase

TrpRS activates the tryptophan carboxylate with ATP, forming Trp-5ʹ-adenylate plus 

pyrophosphate (PPi), a reaction that is the sine qua non for protein synthesis. TrpRS crystal 

structures have been solved without ligands (54) and complexed to substrates–-tryptophan, 

ATP (91); nonreactive substrate analog combinations–-tryptophanamide plus ATP (91); 

tryptophan plus AMP plus PPi (66); a transition-state analog—adenosine-5ʹ-tetraphosphate 

(92); and products—Trp-5ʹ-AMP (29, 93), Trp-5ʹ-sulfoamyl-AMP, and Trp-methenyl-AMP 

(116). All structures fall into three clusters that are narrowly defined by two parameters: the 

hinge and twist angles between domains (62, 66). An open conformation is associated with 

the unliganded state; a closed, twisted conformation with the ATP-bound state; and a closed, 

untwisted conformation with the aminoacyl-AMP–bound state. The sequence of relative 

domain positions connects the three canonical stages—induced-fit, catalysis, and product 

release—of enzyme catalysis (16), and corresponds structurally and functionally to the three 

successive stages of ATP hydrolysis by the F1-ATPase β-subunit (1). Carter et al. previously 

suggested that three-state behavior might be necessary and sufficient for free energy 

transduction (16).

Allosteric coupling regulates catalytic assist by Mg2+—Amino acid activation is 

assayed with the enzyme at equilibrium with both amino acid and ATP (24), so Michaelis–

Menten parameters represent thermodynamic ground-state (KM) and transition-state (kcat) 

affinities. Native TrpRS accelerates tryptophan activation ~1014-fold, apparently by 

stabilizing a dissociative transition state (16) in which the Mg2+ ion would help neutralize 

negative charge on the PPi leaving group. Mg2+ accelerates the reaction in water by at most 

fivefold (99). To determine how much Mg2+ accelerates the catalyzed rate, Carter & 

Weinreb rigorously eliminated metals from all solutions and added EDTA 

(ethylenediaminetetraacetic acid) to chelate the remaining metal ions. Mg2+ accelerates the 

TrpRS-catalyzed rate 100,000-fold (108), contributing −6.8 kcal/mol to transition-state 

stabilization, implying ~−6 kcal/mol of metal–enzyme coupling (Figure 3).

Identifying clusters of dynamic side chains—Many algorithms besides scanning 

mutagenesis have identified networks in proteins from correlated motions (13), phylogenetic 

conservation (71, 100), network analysis (11, 23, 26, 119), or NMR (nuclear magnetic 

resonance) relaxation (41). The functional significance of these networks must be validated, 

however, by higher-order thermodynamic cycle analysis. Kapustina identified switching 

regions computationally (Figure 4) using geometric and energetic filters (64) and molecular 

dynamics (62), reducing the number of possible mutants from 20328 to ~20; seven of these 

Carter Page 6

Annu Rev Biophys. Author manuscript; available in PMC 2017 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sites compose the TrpRS D1 switch (18) (Figure 5a), a widely distributed (14) motif of 

conserved, neighboring residues that repack in crystal structures with different domain 

configurations (16, 54, 65, 91–93). These residues are connected to a larger cluster of 

dynamic surface residues.

High-order combinatorial variants implicate cooperative behavior of TrpRS D1 
switch residues—In the high-energy pretransition state (64), Mg2+ competes with three 

lysine residues for one oxygen atom in each of the three phosphates, coupling it to the active 

site (Figure 6a). Molecular dynamics simulations (62, 63) showed that relaxing lysine–Mg2+ 

interactions allowed the domains to relax rapidly, either to the open or product 

conformations, thereby coupling them to the conformational state. That competition could 

thus account for the metal’s catalytic assist. However, all possible mutations of these three 

lysines to alanine and glutamine showed that although the intrinsic effects of lysines and 

metal favored catalysis, their net coupling did not (112) (Figure 6b). The entire catalytic 

assist must arise from beyond the active site.

The D1 switch contains most of the residues that change packing partners during the shear 

created by induced-fit and catalytic domain motions. My laboratory (109) constructed all 

combinations of four of Rosetta’s suggested mutations, I4V, F26L, Y33F, and F37I. 

Assaying all 16 variant proteins with Mg2+ and Mn2+ in triplicate afforded accurate 

estimation of all possible coupling energies and their uncertainties. By far the largest effect 

was the five-way coupling of all four residues to the metal (109) (Figure 7). The magnitude 

of this coupling energy, −5.0 kcal/mol, is approximately the amount by which Mg2+ 

stabilizes the transition state; the net D1 switch:Mg2 coupling accounts for −6.0 kcal/mol.

A modular variant cycle implicates domain movement in D1 switch residue 
coupling—A key innovation was to deconstruct TrpRS into functionally distinct modules 

derived from making aaRS Urzymes (15) —minimal invariant cores within the catalytic 

domain (68, 69, 86, 87) —by removing an insertion (connecting peptide 1, or CP1) and the 

anticodon-binding domain (ABD) (Figure 5b). The TrpRS Urzyme’s activity allows it to 

serve as a molecular knockout anchoring a modular thermodynamic cycle involving the 

domains that move relative to one another during catalysis (Figure 8a). Each construct was 

catalytically active, leading to measurement of the intrinsic contributions to catalysis and 

specificity of CP1 and the ABD, and their energetic coupling (67). Neither catalysis nor 

specificity for tryptophan versus tyrosine benefitted from either module alone (Figure 8). 

Enhanced catalysis by Mg2+ (109) and specificity (111) arose only from their energetic 

coupling, ~−5 kcal/mol, in quantitative agreement with the five-way allosteric coupling 

described in the previous section. Given the quantitatively equivalent free energy coupling of 

D1 switch residues with Mg2+ and domain movement in the transition state, it is also 

reasonable that the domain motions are the simultaneous movements required for catalytic 

assist by Mg2+.

PATH simulations: D1 switching is rate-limiting for domain movement—The 

computer program PATH (18, 20, 40) finds the sequence of structures that minimizes an 

action functional suggested by Onsager and Machlup (30, 81) that embeds a stochastic 

process in an overdamped, viscous medium governed by a Langevin equation. The algorithm 
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approximates the molecular physics as an elastic network. The resulting path is most 

probable because it has the least integrated difference between kinetic and potential energies, 

wasting the least energy. Energies are estimated for each structure; the highest energy 

structure is the conformational transition state.

PATH faithfully reproduces conformational transition-state structures found by 

other algorithms (7, 25), notably those produced by the string method (82). The 

transition-state structures it identifies are close to the stationary points of free 

energy surfaces (20) evaluated by discrete molecular dynamics (28, 97) on the two-

dimensional conformational surface (66). TrpRS D1 switch residues F26, Y33, and 

F37 rearrange during the induced-fit transition. Unexpectedly similar aromatic side 

chain repacking imposes the barriers to two other, unrelated conformational 

changes (20). Thus, the D1 switch is not a unique switching mechanism.

The PATH program is fast enough for high-throughput studies. At convergence 

(20), PATH produces a four-tuple of approximate thermodynamic and kinetic 

parameters that influence catalysis: ΔG, the energy difference between initial and 

final conformations; tF_opt, an asymptotic optimum total time; U‡
trans, the 

conformational barrier height; and tl, the time to the transition state. PATH 

produces significantly different values for computational models of the 16 TrpRS 

structural D1 switch variants, facilitating quantitative comparison with 

experimental rates. Computational estimates correlate well with the experimental 

ΔGkcat values for the same variants (19) (Figure 9), further tying experimental 

energetic coupling to conformational transition states.

CONCLUSIONS

Enzymes that couple free energy sources—electrostatic potentials, NTP hydrolysis, and so 

on—to work and/or information use sophisticated dynamic networks to transduce active-site 

chemistry into domain motions that change ligand and macromolecular binding affinities. To 

exhibit multistate behavior, a protein’s conformation must have distinct potential energy 

wells, separated by saddle points with high conformational free energy. My laboratory and 

others have identified three-dimensional switching networks and used high-order 

combinatorial mutagenesis to map side chains responsible for equilibrium free energy 

differences (K channel) and rates of conformational changes (TrpRS) enabling transduction. 

TrpRS measurements were cross-validated by using modular cycles and identifying 

conformational transition-state structures computationally. The TrpRS conformational 

barrier closely resembles those in several unrelated systems. It is unclear whether a similar 

barrier keeps the voltage-gated K channel closed, because substate structures and allosteric 

coupling energies have yet to be determined for the same protein. Several themes 

nevertheless unify the two systems.

K Channel Coupling Energies Are Anisotropic and Highly Cooperative

Although the combinatorial thermodynamic cycles for the two model systems discussed here 

are equivalent in principle, their uses differ. Yifrach (9, 96, 115) carefully compared 

coupling energetics for on- and off-trajectory interactions, revealing what he calls the 
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“anisotropic boundaries” of the allosteric trajectory. This conclusion justifies, post hoc, the 

assumption that dynamic coupling within rigid bodies can be ignored, as Kapustina (64) did 

with TrpRS. High-order coupling free energies and cooperativity are also more carefully 

connected for the K pore opening. However, as the readout is thermodynamic rather than 

kinetic, the link between cooperativity and coordinated motion is less secure than in the 

TrpRS studies (18, 19, 64, 67, 108–111), in which the readout, ΔG‡, necessarily implies 

coordinated motion of all four side chains from the D1 molecular switch with the active-site 

Mg2+ in the transient state for amino acid activation, and in which the most probable path 

ensemble has been characterized.

TrpRS Multistate Behavior Is Coupled to Catalysis and Hence Implies Motion

TrpRS coupling energies for kcat represent interactions that form only transiently in the 

transition state. Hence, TrpRS modules must move relative to one another to generate them, 

as noted above for directed mutagenesis of the TyrRS active site (32–34, 39). Combinatorial 

point and modular thermodynamic cycles give similar energetics. Both catalysis and 

specificity in full-length TrpRS are therefore coupled by ~5 kcal/mol to the switching region 

where domain movement generates shear and to the simultaneous motion of the two 

domains relative to the Urzyme.

Single-turnover experiments indicate that the intrinsic chemical step proceeds in 

milliseconds, consistent with domain motion, and is strongly correlated with the pattern of 

point mutations in the switching region remote from the active site (Figure 9), validating the 

conclusion that the 105-fold catalytic acceleration by Mg2+ requires domain motion. 

Energetic coupling thus reinforces earlier suggestions (16, 91, 92, 117) that differences 

observed between TrpRS crystal structures are relevant to the catalytic cycle. Simultaneous 

motions of CP1 and the ABD are necessary for fully functional TrpRS catalysis and specific 

tryptophan recognition: In the absence of either domain, the overall rate acceleration falls by 

~10−5-fold and the free energy of discriminating between tryptophan and tyrosine falls from 

~6 kcal/mol to 1 kcal/mol (67), which is almost exactly as the Urzyme alone behaves.

Domain Motions Cannot Contribute Directly to Transition-State Stabilization

Warshel & Bora (106) note that domain motions are far too slow, leading to dissipation of 

their kinetic energies, and the molecular forces generated too weak to couple directly to 

catalysis. Thus, domain movement itself cannot actually lower the transition-state energy. 

Rather, TrpRS domain motion appears to contribute to transient active-site preorganization 

(88), actually slowing the chemistry relative to that possible in a static active site. 

Deceleration thus ensures coupling of catalysis to conformational change. This hypothesis 

accounts for two observations that previously seemed unrelated: (a) single-turnover rates 

show that the chemical step occurs in milliseconds, that is, the time frame of domain 

motions, and (b) the rate of the chemical step, kchem, is closely correlated (PF < 0.0001) to 

the D1 switch mutations and their higher-order interactions (Figure 9). Structural 

perturbations thus influence only the chemical step of the reaction. Turnover is uncorrelated, 

reinforcing the conclusion that the catalytic step is coupled to domain motion.
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TrpRS domain motions appear to constitute a timing mechanism for active-site 

preorganization. Each TrpRS conformation has distinctive ligand affinities (66, 91, 92), 

including configurations associated with the transition state. Catalysis cannot occur unless 

the domains change orientation (109). Preorganization of the catalytic metal ion is thus 

orchestrated to couple differential affinity changes associated with ATP binding, hydrolysis, 

and product release to the domain configuration, ensuring that ATP hydrolysis occurs if and 

only if the conformation changes (110).

The TrpRS catalytic domain movement becomes thermodynamically favorable only after 

PPi release (20). This behavior resembles that observed for myosin, as its power stroke is 

initiated by orthophosphate release, whereas release of ADP happens only as the power 

stroke proceeds toward the rigor state (73–75). Orthophosphate and PPi are much more 

strongly solvated than is ATP (113). Using differential solvation free energies to shift 

conformational equilibria appears to be another important mechanism ensuring that catalysis 

is coupled to (subsequent) domain movement. Early release of phosphoryl/pyrophosphoryl 

groups may exemplify even more widely used mechanisms contributing to vectorial domain 

motion in transducing enzymes.

Conformational Coupling, Vectorial Behavior, and Free Energy Transduction

Jencks (60, 61) outlined how sequential changes in ligand affinity lead to changes in the 

overall free energy of ATP hydrolysis within an active site, and recognized the need for 

coupling rules. However, as structural landscapes were then unknown, Jencks was mute 

about what mechanisms actually linked conformational changes to catalysis. Identifying (62, 

64) and mutating (110, 112) key molecular switching residues and modular thermodynamic 

cycles (67) that measure energetic coupling between domains have now clarified how 

idiosyncratic structural and mechanistic details implement coupling rules.

Molecular machines work by stochastic diffusive processes—In contrast to 

macrolevel machines, directionality in molecular machines arises from processes that, by 

microscopic reversibility, operate at mechanical equilibrium and require coupling domain 

movements to an energy source (3–6). Motor proteins must therefore couple conformational 

equilibria fully to catalyzed NTP hydrolysis.

Three states enable ratcheting: the verge and Foliot clockwork—Astumian (5) 

uses an ingenious synthetic molecular motor (47) mimicking a peristaltic pump to illustrate 

that two catenated rings are sufficient to capture coupled vectorial behavior in the net 

rotation of both rings (57) coupled either to pH- or redox-induced changes in a catenated 

organic ring system, implementing a ratchet. Because one catenane blocks the reverse 

motion of the other, a ratchet of this sort requires three states. The escapement in a 

mechanical clockwork (95; 109, figure 5) furnishes another metaphor. Transducing 

molecular machines have at least three distinct conformational ensembles (1, 16), 

corresponding to the unliganded, the triphosphate, and the diphosphate complexes. Coupling 

catalysis of NTP hydrolysis to domain motion and exergonic ligand dissociation appear to be 

complementary sources of directionality.

Carter Page 10

Annu Rev Biophys. Author manuscript; available in PMC 2017 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Toward Long-Range Global Coupling Maps for Proteins

The consistency of allosteric coupling energies in three unrelated systems—6 kcal/mol for 

hemoglobin, 5 kcal/mol for the K+ channel, and 5 kcal/mol for combinatorial and modular 

coupling for TrpRS—suggests that long-range coupling may saturate such that interactions 

of order >4 rarely, if ever, exceed such values. Work reviewed here is thus only a snapshot of 

an unexplored but important and accessible landscape. Both Sadovsky & Yifrach (96) and 

Kapustina and colleagues (64) simplify global site–site coupling distributions into binary 

sets with strong versus weak coupling, as suggested by Greed & Shortle (45). As such 

distributions enhance understanding of biological function, it is probably worth reexamining 

Greed & Shortle’s (45) and Chen & Stites’s (21, 22) coupling data for staphylococcal 

nuclease and correlating its approximate, global coupling map to its enzymatic function.

Each TrpRS switching region connects with a cluster of dynamic surface residues (64). It is 

puzzling that the conservative D1 switch mutations suggested by Rosetta should have only 

minimal impact on the relative stability of different state conformations (64). How then do 

those perturbations give rise to coupling energies of −5 kcal/mol? SNAPP (Simplicial 

Neighbor Analysis of Protein Packing) analysis (17, 64) suggests that these peri-core 

networks may use the strength of differential interactions with water to amplify the energetic 

impact of core repacking. High-dimensional analysis of coupling between core and peri-core 

residues could address this question.
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SUMMARY POINTS

1. High-dimensional thermodynamic cycles are necessary to capture three-

dimensional allosteric effects.

2. Rigid-body domain motion simplifies identification of molecular switches 

from the intersection of dynamic Delaunay tetrahedra and energetically 

sensitive sites.

3. TrpRS transition state stabilization increases by ~6 kcal/mol if and only if the 

domains move, changing the configuration of the rate-limiting D1 switch and 

preorganizing the active site.

4. TrpRS side chains that move coordinately with catalysis to ensure catalytic 

assist by Mg2+ are broadly conserved and remote from the active site.

5. A modular thermodynamic cycle confirmed that the same coupling energy 

promotes both catalysis and specificity in full-length TrpRS.

6. PATH parameters correlate with experimental single-turnover rates of 

combinatorial point mutants.

7. Multiple aromatic group repacking creates conformational transition states in 

three unrelated systems.

8. Making ATP hydrolysis conditional to domain motion optimizes efficiency of 

molecular motors.

Carter Page 17

Annu Rev Biophys. Author manuscript; available in PMC 2017 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FUTURE ISSUES

1. TrpRS coupling is ambiguous; inter- and intrasubunit coupling in the 

homodimer can be distinguished by measuring coupling in heterodimeric 

TrpRSs, as noted herein (118).

2. Higher-order cycles can confirm coupling between remote sites and active-

site residues.

3. It is important to determine whether or not coupling energies saturate.

4. Differential surface interactions may well exploit the role of water to amplify 

energy differences triggered by core residue switching. It is worth examining 

how this relates to the proposals of Greed and Shortle (45).
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Figure 1. 
A double-mutant thermodynamic cycle (18). Factorial design measures the impact of 

mutation at one site (green) in the context of mutation at a second site (salmon). As the total 

free energy change is zero for the circuit, nonadditivities of opposite edges are equal and 

estimate coupling energies between perturbed sites. Abbreviation: WT, wild type. Figure 

adapted from Reference 20 with permission from AIP Publishing.
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Figure 2. 
The Shaker Kv channel (72) pore domain (PDB 2A79). C-terminal residues of four 

monomers that form the tetrameric pore are represented in different colors. Spheres are side 

chains identified to have large two-way coupling energies; they occur in the activation gate 

and selectivity filter. Potassium ions from crystal structures are also shown (dark blue 
spheres).
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Figure 3. 
The TrpRS•Mg2+ cycle (18). Native TrpRS is represented by a circled star. (a). Tryptophan 

activation is accelerated differently by TrpRS (109-fold), Mg2+ (fivefold), and their 

combination (1014-fold), so ΔΔGint ≃ −6.4 kcal/mol. (b). Experimental data for the limiting 

rate acceleration in the absence of Mg2+. Shown are catalytic assist by decreasing Mg2+ 

(red) and catalysis by metal-free TrpRS (blue). (c). Nonlinear fitting of the data shown in 

panel b yields KD
‡ for Mg2+ from the transition state (red) and the maximum rate 

acceleration by saturating Mg2+ concentrations (blue). Abbreviations: EDTA, 

ethylenediaminetetraacetic acid; PPi, pyrophosphate; TrpRS, tryptophanyl-tRNA synthetase. 

Figure adapted from References 20 and 108 with permission from AIP Publishing; copyright 

American Chemical Society.

Carter Page 21

Annu Rev Biophys. Author manuscript; available in PMC 2017 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Identifying molecular switches using geometric and energetic filters reduces the number of 

potential interactions involved in conformational transition states (18). (a) Parsing of 

interresidue contacts into dynamic/static and surface/core Delaunay simplices. (b) 

Geometric filtering by differential simplex identification and likelihood scoring. 

Compositions of dynamic simplices at the surface (blue) and in the core (red) change 

between conformations. (c) Energetic filtering. Vertical arrows indicate mutations that would 

stabilize the pretransition state, relative to open and products conformations. The star 

represents the four residues ultimately perturbed by combinatorial mutagenesis. 

Abbreviation: SNAPP, Simplicial Neighbor Analysis of Protein Packing. Figure adapted 

from Reference 20 with permission from AIP Publishing.
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Figure 5. 
Deconstruction of tryptophanyl-tRNA synthetase monomer (18). (a) The D1 switch is a 

tertiary packing domain present in >120 Rossmannoid superfamilies (14). Four residues 

mutated in this work are shown in red. The dark blue ribbon represents the protozyme (76) 

containing the D1 switch and catalytic TIGN (HIGH) signature (teal) at opposite ends of the 

α-helix. Tryptophan (magenta), ATP (green), and Mg2+ are shown as spheres. (b) Functional 

modules: protozyme (dark blue), Urzyme (dark blue plus light blue [**AU: Pls. distinguish 

by also describing relevant shapes**ED: I cannot come up with a graceful way to describe 

the relevant shapes. I hope that changing the way the colors of the Urzyme are stated, plus 

the identification of the N-terminal methionine in both A and B and repositioning these 

labels accomplishes what you seek here.]), connecting peptide 1 (CP1; green), and 

anticodon-binding domain (ABD; amber). Open/products CP1 and ABD configurations are 

indicated by gray curved arrows. Abbreviations: M1, the N-terminal methionine; PPi, 

pyrophosphate.
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Figure 6. 
Tryptophanyl-tRNA synthetase (TrpRS) does not coordinate Mg2+, which is seen only in 

TrpRS pretransition state crystal structures (91), where it is coordinated only by ATP and 

water (70). Electrostatic competition for negative charges between Mg2+ and lysine residues 

weakens TrpRS affinity for ATP (64).
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Figure 7. 
Combinatorial mutagenesis of four D1 switch residues identifies a strong, five-way 

interaction (18, 109). (a) Schematic of the five-way thermodynamic cycle. (b) Combinatorial 

mutagenesis of I4, F26, Y33, and F37 and substitution of Mg2+ with Mn2+ reveal that all 

five moieties move coordinately in the chemical transition state. Native tryptophanyl-tRNA 

synthetase is represented by a circled star.
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Figure 8. 
Modular thermodynamic cycle (18, 67). (a) Schematic of the two-way modular variation. (b) 

Histogram of free energy contributions to ΔGkcat for tRNA aminoacylation. Neither domain 

alone contributes favorably to catalysis; energetic coupling free energy is quantitatively 

equal to that for D1 switch•Mg2+ coupling. Native tryptophanyl-tRNA synthetase is 

represented by a circled star. Abbreviations: ABD, anticodon-binding domain; CP1, 

connecting peptide 1. Reproduced from Reference 20 with permission from AIP Publishing.
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Figure 9. 
Correlation between experimental rates for D1 switch variants and PATH parameters—ΔG, 

the energy difference between initial and final states; Utrans, the conformational barrier 

height; and the rates of forward and reverse reactions tl and tr—and their two-way 

interactions correlate with experimental rates for the 16 variants of the D1 switch. Steady-

state (blue) and single-turnover (red) rates obey the same regression model. Figure adapted 

from Reference 20 with permission from AIP Publishing.
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