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Abstract

Purpose—Air pollution epidemiology traditionally focuses on the relationship between
individual air pollutants and health outcomes (e.g., mortality). To account for potential copollutant
confounding, individual pollutant associations are often estimated by adjusting or controlling for
other pollutants in the mixture. Recently, the need to characterize the relationship between health
outcomes and the larger multipollutant mixture has been emphasized in an attempt to better protect
public health and inform more sustainable air quality management decisions.

Methods—New and innovative statistical methods to examine multipollutant exposures were
identified through a broad literature search, with a specific focus on those statistical approaches
currently used in epidemiologic studies of short-term exposures to criteria air pollutants (i.e.,
particulate matter, carbon monoxide, sulfur dioxide, nitrogen dioxide, and ozone).

Results—Five broad classes of statistical approaches were identified for examining associations
between short-term multipollutant exposures and health outcomes, specifically Additive Main
Effects, Effect Measure Modification, Unsupervised Dimension Reduction, Supervised Dimension
Reduction, and Nonparametric methods. These approaches are characterized including advantages
and limitations in different epidemiologic scenarios.

Discussion—BY highlighting the characteristics of various studies in which multipollutant
statistical methods have been employed, this review provides epidemiologists and biostatisticians
with a resource to aid in the selection of the most optimal statistical method to use when
examining multipollutant exposures.
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Introduction

The results of epidemiologic studies that examine the association between individual air
pollutants and health effects have contributed enormously to understanding how air pollution
impacts health and the dramatic improvement in air quality that has occurred since the
inception of the Clean Air Act. Although understanding the independent effects of exposure
to a single pollutant is essential, scientists also recognize that under normal ambient
conditions, humans are not exposed to individual pollutants in isolation, but to a complex
mixture of air pollutants. Recent publications convey this point by calling for research aimed
at understanding the health effects of multipollutant exposures (i.e., the joint effect of two or
more pollutants on a health outcome) with the aim of developing a catalogue of statistical
methods to support multipollutant analyses [1] that can inform the development of more
sustainable air quality regulations [2, 3].

Traditionally, epidemiologists examine whether there is evidence of an independent
association between an individual pollutant on a health outcome (e.g., mortality) by
including two or more air pollutants in a regression model and estimating the association
attributable to each individual air pollutant after accounting for (or adjusting for) other
measured pollutants co-occurring in the ambient air mixture. However, these types of
models can become highly unstable when incorporating two or more pollutants that are
highly correlated [2].

To examine the relationship between multipollutant exposures and health, new and
innovative statistical methods are being developed and applied in epidemiologic studies. The
purpose of this review is to highlight the variety of statistical methods currently available to
examine the relationship between short-term exposures (i.e., single- or multi-day lags up to
one week) to multipollutant mixtures and health effects. A number of these methods,
specifically receptor modeling, have been used extensively to try and identify health risks
associated with components and sources of fine particulate matter (PM, s), itself a
multipollutant mixture. The multipollutant nature of PM, 5 highlights a difficulty
encountered when evaluating the current literature base of epidemiologic studies: the limited
number of studies that focus specifically on examining the combined effect of multipollutant
exposures to more than one criteria air pollutant (i.e., PM, O3, NO,, SO,, and CO) on health.
As such, for the purposes of this review, we focus on epidemiologic studies of multipollutant
exposures that conduct a simultaneous evaluation of at least two criteria air pollutants, not
studies focusing only on PM, 5. Overall, this review is not intended to be a systematic
evaluation of all available multipollutant statistical methods intended for use in short-term
exposure epidemiologic studies, but instead is meant to highlight the broad classes of
statistical approaches available to epidemiologists and statisticians as they continue to
design, conduct and interpret multipollutant air pollution studies.
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We conducted a broad literature search for studies including at least two criteria air
pollutants (i.e., PM, O3, NOx, SOx, CO). The broad literature search was a multistep
process in which search strings were composed and then run through the PubMed and Web
of Science® databases. The search strings used for each pollutant are provided in
Supplemental Table S1.

To the references retrieved by the broad literature search, a machine learning algorithm was
applied to segregate references into domains of epidemiologic or other (e.g., experimental)
studies (see [4] for details). The algorithm, developed from a seed of known relevant
references that focused on studies of air pollution and health, had recall greater than 90% but
lower precision, meaning the bins contained some references not relevant for this review. As
a result, a title screen was then performed to exclude non-relevant references that were
identified by the machine learning algorithm. Finally, an abstract review was conducted to
exclude any non-relevant references that were not identified during the title screen. If we
could not conclusively determine whether inclusion criteria were met from reviewing an
abstract, we reviewed the reference’s methods section. In addition, papers were identified for
inclusion in several ways: specialized searches on specific topics, review of tables of
contents for journals in which relevant papers may be published, identification of relevant
literature by expert scientists, and review of citations in included studies. This is not
intended to be a systematic review of the literature, but rather a broad overview of statistical
methods and the feasibility and utility of their use to identify the combined effect of air
pollutants in epidemiologic studies.

Within this review, statistical methods are categorized according to the mixture effect
assumptions (pollutant mixture relationship (PMR) specification) in the regression analysis.
Based on the literature evaluated, five broad classes of statistical approaches were identified:
additive main effects (AME), which are those methods that assume each pollutant within the
mixture has an additive effect; effect measure modification (EMM), which are regression-
based methods to examine whether the level of one or more pollutants modify the health
effect associated with another pollutant or group of pollutants; unsupervised dimension
reduction (UDR) that transform multiple pollutants into a different set of variables
independently of a health outcome of interest; supervised dimension reduction (SDR) where
mixture transformation is dependent on the health outcome; and nonparametric methods,
which are highly flexible methods that relax parametric assumptions of the interactive
pollutant effects. Here, we use the language “effect” to refer to a general parameter of
interest; we do not intend for the word “effect” to imply a necessarily causal association
between exposure and outcome. The following sections provide a more detailed discussion
of each broad class of multipollutant approaches along with the specific methods currently
available.
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Additive Main Effects (AME)

AME approaches, which consist of multipollutant or joint effects models with no
multiplicative pollutant interaction terms, may be used to estimate joint associations of
multiple air pollutants. The statistical methods within this category have appeal due to the
intuitive construction of regression models, allowing for the straightforward inclusion of
terms to examine the potential immediate, delayed, or prolonged association between air
pollution and health through either single or multi-day (e.g., distributed) lags.

Given the relative ease of construction and interpretability of AME models, surprisingly few
air pollution studies utilize AME models to examine the combined association between
multiple pollutants and health. Gold et al. [5] were one of the first to consider examining the
combined effect of two pollutants (PM5 5 and Os) in a study of air pollution and lung
function. They assessed pollutant specific differences in the temporal relationship with lung
function by including differing lag structures for each pollutant. Unlike Gold et al. [5],
Schildcrout et al. [6] included the same lag structure for each pollutant (linear 3-day moving
average) to examine the combined effect of a simultaneous increase in air pollutant
concentrations on asthma exacerbations. The authors also decomposed the effect of ambient
concentrations of pairs of pollutants (e.g., CO + NO,, CO + PMy) into a within and
between subject component. Decomposing effects is a useful tool for revealing intra- and
inter-individual information, and may be used for any of the other methods described in this
paper. However, the interpretability of effects and the additional number of coefficients to
estimate will depend on the method chosen. Instead of focusing on two pollutant joint
effects models, Winquist et al. [7] examined several pollutant mixtures (ranging from two to
five pollutants) selected to represent pollutants that commonly occur together in ambient air,
or that might have common mechanisms leading to pediatric asthma emergency department
(ED) visits. Collinearity was acknowledged as an issue in the pairwise CO + NO, model [6]
and multipollutant models explored by Winquist et al [7]. The AME specification does not
in itself address multicollinearity and requires effect estimation procedures that can handle
correlated variables in order to stabilize estimate precision, otherwise, estimates may not be
obtainable or yield unreliable results.

Hierarchical models with AME specification have been used to study joint air pollution
effects to overcome some difficulties with collinearity. Hierarchical models impose a
distribution on effects (i.e., regression coefficients), where the effects can be assumed
decomposed by a common property and pollutant-specific error resulting in pollutant effects
being ‘shrunken’ toward the effect of the common property with improved precision. When
an AME specification is used within a hierarchical model, joint effects are immediately
obtained upon completion of the estimation procedure without need to aggregate pollutant
specific effects to obtain a joint effect. Suh et al. [8] demonstrated the use of such models by
examining the joint impacts of 65 pollutants by nine chemical properties on the odds of daily
cause-specific hospital admission through a two-stage hierarchical model (i.e., model is fit in
a two-step procedure). These types of estimates are called shrinkage estimates and can be
obtained via numerous methods [9, 10].

Penalized regression methods produce another class of shrinkage estimates whose use has
been proposed with AME specification. These methods impose mathematical constraints on
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associations that introduce bias into estimates, but improve precision when pollutants are
highly correlated. Roberts and Martin [11] compared least absolute selection operator
(LASSO), ridge regression, and non-penalized regression models with five pollutants and
linear AME specification in examining the relationship between daily changes in air
pollution and mortality. The main difference between LASSO and ridge regression is that
LASSO can assign air pollutant effect estimates of exactly zero because specific pollutant
coefficients can be eliminated during the modeling process. While this is an appealing
feature of LASSO, ridge regression was recommended over LASSO when the focus of a
study is to assess the overall mixture effect on a health outcome rather than individual
pollutant effects. As a result, further developments in penalized methods may be useful; see
Chadeau-Hyam et al. [12] for a brief overview of recent advancements. One such example is
elastic net [13], which offers improved effect estimates of highly correlated variables over
LASSO while preserving its variable selection capability by combining it with ridge
regression. The performance of elastic net has been studied via simulations within contexts
similar to those in air pollution epidemiology with moderate correlation between chemical
mixtures and the relationship with term birth weight [14], and high correlation between
environmental factors mimicking exposure in mothers during pregnancy [15], both under
AME specification linear regression.

By assuming a main effects structure, an AME model may not be flexible enough to capture
key features of the true relationship between a health outcome and air pollutant mixture
when the potential association with one pollutant may depend on the level of another, which
may be addressed by EMM approaches.

Effect Measure Modification (EMM)

Studies that assessed associations through effect measure modification by a pollutant (e.g.,
PM, 5 concentrations) or multipollutant joint effects models that include multiplicative
interaction terms are defined here as EMM approaches. The rationale behind grouping these
methods together is they have similar properties in their PMR specification and explore a
multidimensional response surface without assuming pollutant effects are solely additive as
is done with AME models.

Katsouyanni et al. [16] examined whether there was evidence of EMM for the PM1g and O3
mortality association. The authors examined whether the mortality association changed
between the 25 and 75™ percentile of the coefficient of variation for NO, and O3, mean
SOy, and the ratio of mean NO», to PMqq. Carbajal-Arroyo et al. [17] used a similar
approach in the examination of potential EMM of the relationship between PMyg exposure
and infant mortality by O3 quartile concentrations. Few studies have considered a joint
effects model with interaction terms. One such study, Winquist et al. [7] discussed
previously, considered all pairwise-interaction pollutant terms as part of sensitivity analysis
on their primary models where they compared joint effect estimates between their EMM-like
multiplicative interaction term and AME models.

The studies detailed above showcase the rich toolkit EMM models provide in exploring the
multidimensional response surface beyond AME under different settings. EMM approaches
are feasible when assessing the mixture relationship between pairs of pollutants, while the
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Winquist et al. [7] sensitivity analysis approach is better suited for three or more pollutants.
Even though the focus of the Winquist et al. [7] study was on effect estimation, they
supplemented joint effect estimate comparison with model building to determine whether
interaction terms were important via significance testing. If model uncertainty is of concern,
some model building procedures may be helpful, such as: variable selection algorithms
(forward, backward, stepwise selection, LASSO) or Bayesian methods (e.g. see 18, 19). In
particular, a method that may be well suited for air pollution epidemiology is LASSO for
hierarchical interactions, since it only allows interactions in models if at least one of the
main effect variables is marginally important [20]. Some automated variable selection
methods do not take this into account and may yield nonsensical models in terms of
interpretation (i.e., models that imply absence of one pollutant implies absence of another).

Given the recent push toward multipollutant analyses and the relatively unknown interactive
behavior between pollutants, model building strategies can be useful tools to account for
model uncertainty in moving one step forward from AME approaches to including
multiplicative interaction terms. Thus, there is a need to compare the performance of
different model building strategies to gain knowledge for the development of optimal
strategies under varying circumstances. It was surprising to find only one air pollution
simulation study evaluated the performance of multiple strategies. Sun et al. [21] compared
two model/variable selection (Bayesian Model Averaging (BMA), LASSO) and two
dimension reduction (Projection to Latent Structures also known as Partial Least Squares
(PLS), Supervised Principal Components Analysis (SPCA)) methods, in a time-series
framework to identify and estimate a true model from a set of pollutants, ranging from four
to ten, with pairwise—interaction pollutant terms. Briefly, BMA may be defined in multiple
ways, but the general idea is to apply a prior distribution on a set of candidate models where
effect estimates are then defined as weighted model-specific posterior estimates by
corresponding posterior model probabilities for all models [22, 23]. LASSO outperformed
all other procedures when sample size (N = 400) and number of pollutants (four) was
smaller. However, BMA performed better when sample size (N = 800) and number of
pollutants (ten) was increased.

EMM models offer greater flexibility in approximating the data generating mechanism over
AMEs with similar ease of construction and are analyzed through familiar methods.
However, model uncertainty may present challenges when the number of pollutants and
interaction terms is large atop estimation difficulties in the presence of collinearity. In
preliminary and hypothesis generating work, it may useful to use alternative approaches that
transform the PMR into a different set of (ideally) lesser correlated variables, termed
dimension reduction methods.

Unsupervised Dimension Reduction (UDR)

Unsupervised Dimension Reduction (UDR) approaches consist of methods that transform
pollutant mixture concentrations into a smaller set of variables that are then used to represent
exposures to various pollutant combinations or sources. These transformations depend upon
intrinsic natural structures within the data, without regard to the health outcome(s) being
evaluated, to create clusters, groups, or indices of air pollutant exposures. UDR approaches
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may be used to simplify multipollutant exposures or address multicollinearity, and may be
appealing because they can be compared across different outcomes. However, pollutant
groupings from UDR approaches are often specific to the geographic area being studied. For
example, principal components computed based on air quality data from the U.S. can differ
from those based on a European country. UDR approaches are subdivided below into two
methods to differentiate those that reveal structures within the data according to (1)
Statistical/Mathematical or (2) Scientific criteria. Note, we do not consider variable
selection/selection operators (e.g. backward, forward, stepwise variable selection) to be
dimension reduction methods since variable selection/selection operators are tools used to
reduce the number of terms of an already specified PMR. Dimension reduction, on the other
hand, refers to a characterization of the PMR.

Statistically/Mathematically-Based UDR Methods—Statistically/mathematically-
based UDR methods create factor profiles beforehand and use these as the PMR
specification. Some commonly used methods include chemical mass balance (CMB),
principal component analysis (PCA), factor analysis (FA), latent class analysis, positive
matrix factorization, multilinear engine and the EPA UNMIX model. Investigators have
previously found relative agreement across methods in studies that use similar underlying
data [24, 25]. Thurston et al [26] state that FA methods, such as PCA, have an advantage
over mass balance methods in that they can incorporate nontraditional aerosols, such as
secondary aerosols, and non-PM tracers, such as gaseous pollutants. This has recently been
reflected in a study conducted by Sacks et al. [27] that used PCA to identify source-based
factors using a combination of PM components and gaseous pollutants.

Another approach to PMR specification is to create indicator variable profiles by clustering
exposures with similar properties, then using these clusters in regression models. Zanobetti
et al. [28] implemented an approach proposed by Austin et al. [29] where daily pollutant
concentrations were grouped using k-means and subsequently used as EMM variables in
exploring the association between PM> 5 exposures and mortality. Pearce et al. [30] also
clustered days, however, they used a Self-Organizing Maps (SOM) algorithm to create day
types that were then used to assess the effects of the air pollution mixture on ED visits for
pediatric asthma. SOM differs from the clustering methods in that it is a learning process
that produces a one- or two-dimensional array by grouping input data through the iterated
estimation of distinct profiles, with the goal of minimizing information lost via grouping and
retaining power and precision for statistical analysis [30]. These clustering methods have
shown they can be used in different ways according to the intention of the study. These
methods can reveal interesting cluster patterns to generate further investigation. However,
the information clusters reveal may be limited by using clusters in the regression analysis.
For instance, when clusters are directly used in regression models, joint effects are only
obtainable as a comparison among cluster patterns. Also, it is not straightforward to tease
out the interactive nature of the pollutants.

Scientifically-Based UDR Methods—Alternatively, scientifically-based UDR methods,
in which the grouping or clustering of pollutant mixtures might be defined by scientific
rationale, have also been used. For example, Hong et al. [31] developed a combined index of
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pollutants as the sum of mean scaled pollutant concentrations, to examine the dose-response
relationship between short-term exposures and mortality in South Korea, with indices
selected to represent real ambient exposures. In a slightly different approach, Pachon et al.
[32] proposed a summary indicator variable and demonstrated its use in estimating the
association between air pollution exposures and cardiovascular disease ED visits. The
indicator was defined as a sum of weighted normalized pollutant concentrations with
weights computed as mobile-source-to-total emissions from the National Emission
Inventory. The indicator was intuitively constructed as the weighted sums corresponding to
differing sources of exposure. Scientifically-based UDR methods, such as those detailed
here, are especially important when biological mechanisms support the construction of
mixture transformation. However, when there is not strong biological evidence of such
relations, these methods are less defensible.

Supervised Dimension Reduction (SDR)

SDR approaches estimate a mixture transformation/dimension reduction concurrently with
the regression analysis or with respect to a health outcome of interest. The methods that
encompass SDR require a general specification of the relationship between the pollutants
and exposure with specific components to be estimated with respect to a health outcome.
SDR methods are similar in idea to UDR methods with the exception that pollutant
groupings are developed specifically for a health outcome. As a result, as mentioned for
UDR methods, the pollutant groupings identified using SDR methods may also be specific
to the geographic region(s) examined within the study.

The following supervised methods specify a weighted sum relationship between the
pollutants and outcome with the weights representing proportions that sum to one. Pachon et
al. [32] proposed an outcome- or heath-based indicator where weights are a priori specified
on a range of values and corresponding indicator candidates are defined as weighted sums
between pairs of standardized pollutant concentrations. Significance testing is performed
separately on each candidate as a predictor in univariate regression, where the candidate
with the minimum p-value is defined as the health based indicator. This indicator was
developed as a sensitivity analysis on the health effect of their UDR emissions-based
indicator since atmospheric mixtures may differ from emissions-based fractions due to
meteorological conditions. In a different approach, Roberts and Martin [33] developed a
model where weights of normalized pollutant concentrations are computed concurrently
with the regression analysis as they are treated as parameters and estimated via optimization.
A benefit of this method is that the weighted model is able to address the important question
of whether there is a biologically relevant pollutant mixture that is related to the health
outcome. Another similar method has recently been proposed for dealing with highly
correlated data called weighted quantile sum (WQS) regression [see 34]. In contrast to the
Roberts and Martin [33] model, WQS regression sums a weighted linear index of quantile
pollutant concentration categories and estimates the weights through a bootstrap resampling
procedure on a training data set (random subset of the data). For each bootstrap sample of
the training dataset, the weighted linear index is included as a predictor in a regression
model, with the weights estimated via maximum likelihood constrained to sum to one, and
the corresponding regression coefficient tested for significance. The estimate for the weight
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of each pollutant category is then defined as the average across all bootstrap estimates with a
significant regression coefficient.

Another outcome dependent method, originally developed to address problems where
predictors greatly exceed observations, is SPCA. Roberts and Martin [35] noted that SPCA
is an improvement to PCA that can identify which subset of predictors is most highly
associated in terms of magnitude to estimate standard deviation with the outcome. An added
benefit is that it constructs a cross-validated best model that reveals important outcome-
specific profiles on a subset of pollutants. The performance of SPCA is useful in variable
selection when there is “a moderately strong exposure response” in comparison to other
methods for constructing multipollutant models [21].

The use of latent variables in defining a transformation of pollutant mixtures allows
incorporating some uncertainty about the mixtures into the model. Latent or “unobserved”
variables may be associated in numerous ways with pollutant mixtures and their relation
with a health outcome. For example, PLS iteratively creates linear combinations of latent
variables that best describe the response and predictor variables jointly [36, 12]. PLS
regression was utilized to study the chemical composition of PM, 5 with respect to lung
toxicity [37], but has not been widely employed in epidemiologic studies. In assessing the
creation of pollutant profiles, PLS has been compared to BMA, SPCA, and LASSO, where it
was observed to estimate interaction effects with little bias [21]. The interpretation of the
latent variables in PLS is not straightforward due to its mathematical construction; however,
they may be used in alternative ways, such as can be done in structural equation modeling
for example, where latent variables may be assigned a priori meaning. Nikolov et al. [38]
proposed the use of a Bayesian structural equation model in analyzing the association
between sources of PM and a cardiovascular outcome in dogs. Their modeling framework
includes the specification of a receptor submodel, which is assumed dependent on
unobserved pollution source profiles, and a health submodel where the receptor submodel
source contributions (latent variables) are specified as the predictors. The Bayesian nature of
this method allows the incorporation of prior knowledge on sources and their contribution
through the specification of their respective prior distribution parameters. This method
requires the number of sources to be fixed a priori; however, Park et al. [39] extended it to
the case where the number of sources is unknown by incorporating model uncertainty
through BMA.

Overall, SDR methods provide appealing ways to overcome specific issues with analyzing
pollutant health effects, but require similar considerations as UDR methods. An appealing
feature to consider is that SDR methods create mixture transformations that optimize
associations with outcome by being outcome specific. However, one must carefully consider
difficulties with interpretation and the possibility of data feature loss with SDR, as with
UDR methods. It may not be straightforward to quantify pollutant specific or joint effects, or
tease out the nature of the interactive effects, but these methods are designed to maximize
the strength of association between a health outcome and mixture transformation.
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Nonparametric Methods

Methods that use nonparametric techniques to summarize the PMR are termed
Nonparametric methods. The methods described below can be thought of as those with a
PMR specification that is empirically or data driven. Semi-parametric models or techniques
are included in this section if the multipollutant mixture relationship is explored via
nonparametric techniques. Similar to the UDR and SDR methods discussed previously,
some of the nonparametric methods may identify pollutant groupings that are specific to the
geographic region being examined in the study. In particular, methods that rely on automated
significance testing may be especially susceptible to the pollutant mixture characteristics of
the study region. Investigators should implement these methods with caution and balance
decision making based on the strengths and limitations of the statistical tool and data,
despite the lure of robust results with nonparametric methods.

Nonparametric data partitioning methods have been used sparingly in the analysis of air
pollution health effects, but can provide a wealth of tools for discovering the complex
relationship between air pollution and health effects. A common technique used is recursive
partitioning where pollutant concentrations (or the data) are recursively split into mixtures
containing observations with similar health outcomes [42]. One example is Classification
and Regression Trees (CART) [40, 41] which requires the specification of regression models
(i.e., linear for continuous, logistic for binary outcomes, etc) within each partition and
statistical significance tests determine splits in the data. Gass et al. [42] proposed a modified
CART method, where an initial subset of data is withheld to represent an a priori selected
referent mixture of pollutants and the remaining multipollutant exposure mixtures are
partitioned all while controlling for confounding. The CART method was used to study the
relationship between air pollution exposures (daily average ambient concentrations of Os,
NO,, and PM,, 5) and pediatric asthma ED visits. Conclusions differed when compared to
the joint effects in an AME model [43]. The authors suggest that some differences may be
attributable to a non-synergistic effect between PM> 5 and NO, because each can be
correlated with PM, 5 components.

With a slightly different use for CART, Sun et al. [21] proposed it as an initial screening tool
for reducing the number of terms to be included in a model where interactive effects may be
further examined. In simulation studies, CART was found to be a beneficial pre-screening
tool in terms of reducing model dimensions when the number of candidate variables is large.
This approach highlights that when the PMR is not well understood or the number of
pollutants is high, pre-screening tools may be useful when combined with EMM and model
building, UDR, or SDR methods to refine understanding of the PMR to suit the study
objective. For instance, LASSO for hierarchical interactions may be useful to supplement
CART to refine multipollutant joint effect estimates. Other methods that might be extended
in a similar manner could include combining multiple tree models such as Bayesian
Additive Regression Trees [44].

An alternative to data partitioning tools are regression methods that attempt to smooth a
response surface. Kernel Machine Regression (KMR) is one such method where a response
is regressed on a weighted sum of measures between subject exposure mixtures. The
function used to define the measure is called a kernel and its specification in turn defines the
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properties and form of the response surface. Kernels may introduce specific parameters that
may be tuned or estimated. The weights are treated as parameters in the model and estimated
along with the other regression parameters. Bayesian KMR was used by Bobb et al. [45] to
estimate the health effects of multipollutant mixtures with a focus on exploring the
exposure-response surface. It was showcased in both epidemiologic and toxicological
studies that examined the effect of metals mixtures (including Pb) on neurodevelopment and
exposure to air pollution mixtures on hemodynamics, respectively. The interplay between
statistical techniques and machine learning with respect to model and variable selection
within the KMR framework, is an area of active research that is in its infancy [46]. Thus, an
exciting feature of this method, due to its Bayesian nature, is simultaneous health effect
estimation and variable selection which allows it to account for model uncertainty. Because
of this, it was shown to outperform frequentist methods [46, 47] in approximating exposure-
response relationships via simulations. Another KMR variable selection method that may be
useful was illustrated by Liu et al. [46], where kernel machine AIC and BIC values were
proposed as model selection criteria. The authors illustrated its use while examining the
complex joint effect of multiple genes within a pathway in the analysis of microarray data,
by implementing an all-possible-subset procedure on a set of cell growth genes and selecting
the combination producing the smallest AIC and BIC values.

Another way of exploring interactive joint effects is to model the joint distribution between
multiple pollutants and the health outcome of interest where the multipollutant components
are modeled non-parametrically. Bayesian Profile Regression is an example of a semi-
parametric method that has been used to study air pollution health effects [48], where the
joint distribution is characterized by multipollutant profile assignment and health effect
submodels. The multipollutant profile assignment submodel is assumed to be a Gaussian-
Dirichlet Process Mixture where the profiles are jointly assumed to follow a multivariate
normal distribution and its parameters (i.e., mean and covariance) are assumed to follow a
Dirichlet process prior. The Gaussian-Dirichlet Process Mixture specification inherently
imposes an unknown random distribution on the multipollutant profiles which renders the
estimation of their joint distribution a nonparametric procedure. By the parameter prior
assumption, profiles are effectively assigned to clusters where then the health effect
submodel is defined as a random effects model with a profile cluster assignment random
effect. Molitor et al. [48] used this method in analyzing census block group multipollutant
profile exposures and their association with term low birth weight. The exposure cluster
random effect formulation allows the estimation of profile mixture cluster effects while
controlling for relevant fixed effects such as confounders. Note, the Gaussian assumption
does not limit the form of the pollutants as the authors suggest the use of latent continuous
variables for categorical pollutant measures [49, 50]. When pollutant measures are solely
categorical, other random distributions have been proposed that can accommodate
multivariate discrete data [51, 52, and 53 for sparse data].

Nonparametric methods are promising alternatives to more traditional approaches for
exploring complex non-linear interactions. The relaxing of PMR assumptions allows these
methods to pick up interesting patterns of the PMR-response relationship especially when
non-linear patterns exist. These can be invaluable tools during exploratory analyses or
hypothesis-generating exercises. With recent extensive efforts in developing these methods
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(e.g., machine learning, nonparametric Bayes), they are becoming feasible tools to be used
in assessing health effects as computational and model assessment difficulties are addressed.
However, currently, readily available software that incorporates these methods is limited and
the interpretation of results may be difficult. Specifically, it may be difficult to estimate
effects attributable to specific mixture components.

Discussion

The growing body of air pollution health effects literature was broadly reviewed to
summarize the numerous statistical methods available to examine health effect associations
due to short-term multipollutant exposures. These methods can be grouped into five broad
categories of statistical approaches according to their PMR specification: Additive Main
Effects (AME), Effect Measure Modification (EMM), Unsupervised Dimension Reduction
(UDR), Supervised Dimension Reduction (SDR), and Nonparametric methods.

The limited knowledge on the health effects associated with multipollutant exposures
supports the need for having different analytical tools for assessing this complex outcome-
mixture relationship. All of the methods reviewed across the five classes of statistical
approaches provide different, possibly complementary, pieces of valuable information in
assessing the health effects attributed to multipollutant air pollution exposures (see Table 1).
For instance, if relatively little is known about how a mixture relates to a health outcome
then nonparametric methods may be important tools since their purpose is to explore the
potentially complex interactive PMR by relaxing parametric assumptions. Alternatively,
UDR approaches are appropriate when the goal is to discover profiles or indices present in
the data to then assess their effect. SDR approaches aim to discover outcome-specific
profiles or indices that may be most appropriate for identifying pathways to disease. EMM
and AME are the most interpretable and easiest to implement approaches for estimating joint
effects when the PMR specification is more or less known. Table 2, provides specific details
on the modeling methods used in the studies detailed throughout this review (i.e., regression
assumptions, estimation method, software availability). The scope of this review was limited
to focus on five criteria pollutants, however it is worth noting that the specific methods
within the five classes of statistical approaches described could be applied more broadly and
can accommodate more than just the five criteria pollutants, such as air toxics.

Despite the method of analysis implemented, exposure misclassification is a potential source
of bias that can greatly impact air pollution health effects studies, but was beyond the scope
of this review. All of the individual methods presented were entirely dependent on the
assumption that exposure classification was appropriate for the subject unit on which a
health outcome was assessed. As such, there was no intention to describe or analyze the
effect of differing forms of exposure assessment or misclassification. It is possible that the
statistical methods presented are sensitive to the different forms of exposure assessment or
degree of misclassification, and obscure results. Some have argued that nonparametric or
“data-driven” methods are especially constrained by data limitations [54]. Thus, it is
recommended that when deciding on a statistical method, one must consider the complexity,
difficulty of interpretation, study intent, and computational cost of the proposed model.
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Furthermore, the overall analysis must be a balancing of data limitations, adequate exposure
assessment, the current body of knowledge of the disease, and confounding.

Moving forward, understanding the independent effects of exposure to a single pollutant is
essential, but research aimed at understanding the health effects of multipollutant exposures
is necessary to potentially develop more sustainable air quality regulations. Epidemiologists
have a clear role to play in this process. For years, copollutant models have been commonly
employed to examine the role of individual pollutants in the complex air pollution mixture,
all the while being recognized as a limited tool. Now is the time to move beyond copollutant
models and take advantage of the multipollutant statistical methods currently available, to
better evaluate the health effects of air pollution. As a first step in this process, it is
beneficial for epidemiologists to familiarize themselves with new multipollutant statistical
methods; specifically understanding when the different methods are best employed, and the
strengths and limitations of each method. This can be accomplished by improving
communication and collaboration between epidemiologists and biostatisticians, preferably
early in the scientific process, beginning with the study design and analysis plan, and
following through to the analysis and interpretation of results. In choosing a statistical
method, it will be important for epidemiologists and biostatisticians to carefully consider the
focus of the research and the limitations in the data. Each multipollutant statistical method
explores the response surface in different ways, anticipates data limitations in the form of
multicollinearity in order to adjust for them accordingly, and will have different implications
for the types of conclusions that can be drawn.

In the end, one of the most important considerations for epidemiologists and biostatisticians,
regardless of the statistical method employed, is the translation and application of results for
use in a policy context. Although informative, not all of the multipollutant methods currently
available can easily be used to inform policy decisions. However, by employing a wide
range of multipollutant statistical methods across an array of epidemiologic study designs,
we will begin to accumulate the scientific base necessary in order to potentially develop
more sustainable, multipollutant air quality regulations.
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