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Abstract

Purpose—Air pollution epidemiology traditionally focuses on the relationship between 

individual air pollutants and health outcomes (e.g., mortality). To account for potential copollutant 

confounding, individual pollutant associations are often estimated by adjusting or controlling for 

other pollutants in the mixture. Recently, the need to characterize the relationship between health 

outcomes and the larger multipollutant mixture has been emphasized in an attempt to better protect 

public health and inform more sustainable air quality management decisions.

Methods—New and innovative statistical methods to examine multipollutant exposures were 

identified through a broad literature search, with a specific focus on those statistical approaches 

currently used in epidemiologic studies of short-term exposures to criteria air pollutants (i.e., 

particulate matter, carbon monoxide, sulfur dioxide, nitrogen dioxide, and ozone).

Results—Five broad classes of statistical approaches were identified for examining associations 

between short-term multipollutant exposures and health outcomes, specifically Additive Main 

Effects, Effect Measure Modification, Unsupervised Dimension Reduction, Supervised Dimension 

Reduction, and Nonparametric methods. These approaches are characterized including advantages 

and limitations in different epidemiologic scenarios.

Discussion—By highlighting the characteristics of various studies in which multipollutant 

statistical methods have been employed, this review provides epidemiologists and biostatisticians 

with a resource to aid in the selection of the most optimal statistical method to use when 

examining multipollutant exposures.

*Corresponding author: National Center for Environmental Assessment, Office of Research and Development, U.S., Environmental 
Protection Agency, Mailcode B-243-01, RTP, NC 27711, Ph: (919) 541-9729, Fax: (919) 541-2985, sacks.jason@epa.gov. 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Disclaimer
The views expressed in this manuscript are those of the authors and do not necessarily represent the views or policies of the U.S. 
Environmental Protection Agency

HHS Public Access
Author manuscript
Ann Epidemiol. Author manuscript; available in PMC 2018 February 01.

Published in final edited form as:
Ann Epidemiol. 2017 February ; 27(2): 145–153.e1. doi:10.1016/j.annepidem.2016.11.016.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Carolina Digital Repository

https://core.ac.uk/display/304662108?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Keywords

Air pollution health effects; joint effects; multipollutant; dimension reduction; nonparametric 
methods; interactions; differential effects

Introduction

The results of epidemiologic studies that examine the association between individual air 

pollutants and health effects have contributed enormously to understanding how air pollution 

impacts health and the dramatic improvement in air quality that has occurred since the 

inception of the Clean Air Act. Although understanding the independent effects of exposure 

to a single pollutant is essential, scientists also recognize that under normal ambient 

conditions, humans are not exposed to individual pollutants in isolation, but to a complex 

mixture of air pollutants. Recent publications convey this point by calling for research aimed 

at understanding the health effects of multipollutant exposures (i.e., the joint effect of two or 

more pollutants on a health outcome) with the aim of developing a catalogue of statistical 

methods to support multipollutant analyses [1] that can inform the development of more 

sustainable air quality regulations [2, 3].

Traditionally, epidemiologists examine whether there is evidence of an independent 

association between an individual pollutant on a health outcome (e.g., mortality) by 

including two or more air pollutants in a regression model and estimating the association 

attributable to each individual air pollutant after accounting for (or adjusting for) other 

measured pollutants co-occurring in the ambient air mixture. However, these types of 

models can become highly unstable when incorporating two or more pollutants that are 

highly correlated [2].

To examine the relationship between multipollutant exposures and health, new and 

innovative statistical methods are being developed and applied in epidemiologic studies. The 

purpose of this review is to highlight the variety of statistical methods currently available to 

examine the relationship between short-term exposures (i.e., single- or multi-day lags up to 

one week) to multipollutant mixtures and health effects. A number of these methods, 

specifically receptor modeling, have been used extensively to try and identify health risks 

associated with components and sources of fine particulate matter (PM2.5), itself a 

multipollutant mixture. The multipollutant nature of PM2.5 highlights a difficulty 

encountered when evaluating the current literature base of epidemiologic studies: the limited 

number of studies that focus specifically on examining the combined effect of multipollutant 

exposures to more than one criteria air pollutant (i.e., PM, O3, NO2, SO2, and CO) on health. 

As such, for the purposes of this review, we focus on epidemiologic studies of multipollutant 

exposures that conduct a simultaneous evaluation of at least two criteria air pollutants, not 

studies focusing only on PM2.5. Overall, this review is not intended to be a systematic 

evaluation of all available multipollutant statistical methods intended for use in short-term 

exposure epidemiologic studies, but instead is meant to highlight the broad classes of 

statistical approaches available to epidemiologists and statisticians as they continue to 

design, conduct and interpret multipollutant air pollution studies.
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Methods

We conducted a broad literature search for studies including at least two criteria air 

pollutants (i.e., PM, O3, NOX, SOX, CO). The broad literature search was a multistep 

process in which search strings were composed and then run through the PubMed and Web 

of Science® databases. The search strings used for each pollutant are provided in 

Supplemental Table S1.

To the references retrieved by the broad literature search, a machine learning algorithm was 

applied to segregate references into domains of epidemiologic or other (e.g., experimental) 

studies (see [4] for details). The algorithm, developed from a seed of known relevant 

references that focused on studies of air pollution and health, had recall greater than 90% but 

lower precision, meaning the bins contained some references not relevant for this review. As 

a result, a title screen was then performed to exclude non-relevant references that were 

identified by the machine learning algorithm. Finally, an abstract review was conducted to 

exclude any non-relevant references that were not identified during the title screen. If we 

could not conclusively determine whether inclusion criteria were met from reviewing an 

abstract, we reviewed the reference’s methods section. In addition, papers were identified for 

inclusion in several ways: specialized searches on specific topics, review of tables of 

contents for journals in which relevant papers may be published, identification of relevant 

literature by expert scientists, and review of citations in included studies. This is not 

intended to be a systematic review of the literature, but rather a broad overview of statistical 

methods and the feasibility and utility of their use to identify the combined effect of air 

pollutants in epidemiologic studies.

Results

Within this review, statistical methods are categorized according to the mixture effect 

assumptions (pollutant mixture relationship (PMR) specification) in the regression analysis. 

Based on the literature evaluated, five broad classes of statistical approaches were identified: 

additive main effects (AME), which are those methods that assume each pollutant within the 

mixture has an additive effect; effect measure modification (EMM), which are regression-

based methods to examine whether the level of one or more pollutants modify the health 

effect associated with another pollutant or group of pollutants; unsupervised dimension 

reduction (UDR) that transform multiple pollutants into a different set of variables 

independently of a health outcome of interest; supervised dimension reduction (SDR) where 

mixture transformation is dependent on the health outcome; and nonparametric methods, 

which are highly flexible methods that relax parametric assumptions of the interactive 

pollutant effects. Here, we use the language “effect” to refer to a general parameter of 

interest; we do not intend for the word “effect” to imply a necessarily causal association 

between exposure and outcome. The following sections provide a more detailed discussion 

of each broad class of multipollutant approaches along with the specific methods currently 

available.
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Additive Main Effects (AME)

AME approaches, which consist of multipollutant or joint effects models with no 

multiplicative pollutant interaction terms, may be used to estimate joint associations of 

multiple air pollutants. The statistical methods within this category have appeal due to the 

intuitive construction of regression models, allowing for the straightforward inclusion of 

terms to examine the potential immediate, delayed, or prolonged association between air 

pollution and health through either single or multi-day (e.g., distributed) lags.

Given the relative ease of construction and interpretability of AME models, surprisingly few 

air pollution studies utilize AME models to examine the combined association between 

multiple pollutants and health. Gold et al. [5] were one of the first to consider examining the 

combined effect of two pollutants (PM2.5 and O3) in a study of air pollution and lung 

function. They assessed pollutant specific differences in the temporal relationship with lung 

function by including differing lag structures for each pollutant. Unlike Gold et al. [5], 

Schildcrout et al. [6] included the same lag structure for each pollutant (linear 3-day moving 

average) to examine the combined effect of a simultaneous increase in air pollutant 

concentrations on asthma exacerbations. The authors also decomposed the effect of ambient 

concentrations of pairs of pollutants (e.g., CO + NO2, CO + PM10) into a within and 

between subject component. Decomposing effects is a useful tool for revealing intra- and 

inter-individual information, and may be used for any of the other methods described in this 

paper. However, the interpretability of effects and the additional number of coefficients to 

estimate will depend on the method chosen. Instead of focusing on two pollutant joint 

effects models, Winquist et al. [7] examined several pollutant mixtures (ranging from two to 

five pollutants) selected to represent pollutants that commonly occur together in ambient air, 

or that might have common mechanisms leading to pediatric asthma emergency department 

(ED) visits. Collinearity was acknowledged as an issue in the pairwise CO + NO2 model [6] 

and multipollutant models explored by Winquist et al [7]. The AME specification does not 

in itself address multicollinearity and requires effect estimation procedures that can handle 

correlated variables in order to stabilize estimate precision, otherwise, estimates may not be 

obtainable or yield unreliable results.

Hierarchical models with AME specification have been used to study joint air pollution 

effects to overcome some difficulties with collinearity. Hierarchical models impose a 

distribution on effects (i.e., regression coefficients), where the effects can be assumed 

decomposed by a common property and pollutant-specific error resulting in pollutant effects 

being ‘shrunken’ toward the effect of the common property with improved precision. When 

an AME specification is used within a hierarchical model, joint effects are immediately 

obtained upon completion of the estimation procedure without need to aggregate pollutant 

specific effects to obtain a joint effect. Suh et al. [8] demonstrated the use of such models by 

examining the joint impacts of 65 pollutants by nine chemical properties on the odds of daily 

cause-specific hospital admission through a two-stage hierarchical model (i.e., model is fit in 

a two-step procedure). These types of estimates are called shrinkage estimates and can be 

obtained via numerous methods [9, 10].

Penalized regression methods produce another class of shrinkage estimates whose use has 

been proposed with AME specification. These methods impose mathematical constraints on 
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associations that introduce bias into estimates, but improve precision when pollutants are 

highly correlated. Roberts and Martin [11] compared least absolute selection operator 

(LASSO), ridge regression, and non-penalized regression models with five pollutants and 

linear AME specification in examining the relationship between daily changes in air 

pollution and mortality. The main difference between LASSO and ridge regression is that 

LASSO can assign air pollutant effect estimates of exactly zero because specific pollutant 

coefficients can be eliminated during the modeling process. While this is an appealing 

feature of LASSO, ridge regression was recommended over LASSO when the focus of a 

study is to assess the overall mixture effect on a health outcome rather than individual 

pollutant effects. As a result, further developments in penalized methods may be useful; see 

Chadeau-Hyam et al. [12] for a brief overview of recent advancements. One such example is 

elastic net [13], which offers improved effect estimates of highly correlated variables over 

LASSO while preserving its variable selection capability by combining it with ridge 

regression. The performance of elastic net has been studied via simulations within contexts 

similar to those in air pollution epidemiology with moderate correlation between chemical 

mixtures and the relationship with term birth weight [14], and high correlation between 

environmental factors mimicking exposure in mothers during pregnancy [15], both under 

AME specification linear regression.

By assuming a main effects structure, an AME model may not be flexible enough to capture 

key features of the true relationship between a health outcome and air pollutant mixture 

when the potential association with one pollutant may depend on the level of another, which 

may be addressed by EMM approaches.

Effect Measure Modification (EMM)

Studies that assessed associations through effect measure modification by a pollutant (e.g., 

PM2.5 concentrations) or multipollutant joint effects models that include multiplicative 

interaction terms are defined here as EMM approaches. The rationale behind grouping these 

methods together is they have similar properties in their PMR specification and explore a 

multidimensional response surface without assuming pollutant effects are solely additive as 

is done with AME models.

Katsouyanni et al. [16] examined whether there was evidence of EMM for the PM10 and O3 

mortality association. The authors examined whether the mortality association changed 

between the 25th and 75th percentile of the coefficient of variation for NO2 and O3, mean 

SO2, and the ratio of mean NO2 to PM10. Carbajal-Arroyo et al. [17] used a similar 

approach in the examination of potential EMM of the relationship between PM10 exposure 

and infant mortality by O3 quartile concentrations. Few studies have considered a joint 

effects model with interaction terms. One such study, Winquist et al. [7] discussed 

previously, considered all pairwise-interaction pollutant terms as part of sensitivity analysis 

on their primary models where they compared joint effect estimates between their EMM-like 

multiplicative interaction term and AME models.

The studies detailed above showcase the rich toolkit EMM models provide in exploring the 

multidimensional response surface beyond AME under different settings. EMM approaches 

are feasible when assessing the mixture relationship between pairs of pollutants, while the 
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Winquist et al. [7] sensitivity analysis approach is better suited for three or more pollutants. 

Even though the focus of the Winquist et al. [7] study was on effect estimation, they 

supplemented joint effect estimate comparison with model building to determine whether 

interaction terms were important via significance testing. If model uncertainty is of concern, 

some model building procedures may be helpful, such as: variable selection algorithms 

(forward, backward, stepwise selection, LASSO) or Bayesian methods (e.g. see 18, 19). In 

particular, a method that may be well suited for air pollution epidemiology is LASSO for 

hierarchical interactions, since it only allows interactions in models if at least one of the 

main effect variables is marginally important [20]. Some automated variable selection 

methods do not take this into account and may yield nonsensical models in terms of 

interpretation (i.e., models that imply absence of one pollutant implies absence of another).

Given the recent push toward multipollutant analyses and the relatively unknown interactive 

behavior between pollutants, model building strategies can be useful tools to account for 

model uncertainty in moving one step forward from AME approaches to including 

multiplicative interaction terms. Thus, there is a need to compare the performance of 

different model building strategies to gain knowledge for the development of optimal 

strategies under varying circumstances. It was surprising to find only one air pollution 

simulation study evaluated the performance of multiple strategies. Sun et al. [21] compared 

two model/variable selection (Bayesian Model Averaging (BMA), LASSO) and two 

dimension reduction (Projection to Latent Structures also known as Partial Least Squares 

(PLS), Supervised Principal Components Analysis (SPCA)) methods, in a time-series 

framework to identify and estimate a true model from a set of pollutants, ranging from four 

to ten, with pairwise–interaction pollutant terms. Briefly, BMA may be defined in multiple 

ways, but the general idea is to apply a prior distribution on a set of candidate models where 

effect estimates are then defined as weighted model-specific posterior estimates by 

corresponding posterior model probabilities for all models [22, 23]. LASSO outperformed 

all other procedures when sample size (N = 400) and number of pollutants (four) was 

smaller. However, BMA performed better when sample size (N = 800) and number of 

pollutants (ten) was increased.

EMM models offer greater flexibility in approximating the data generating mechanism over 

AMEs with similar ease of construction and are analyzed through familiar methods. 

However, model uncertainty may present challenges when the number of pollutants and 

interaction terms is large atop estimation difficulties in the presence of collinearity. In 

preliminary and hypothesis generating work, it may useful to use alternative approaches that 

transform the PMR into a different set of (ideally) lesser correlated variables, termed 

dimension reduction methods.

Unsupervised Dimension Reduction (UDR)

Unsupervised Dimension Reduction (UDR) approaches consist of methods that transform 

pollutant mixture concentrations into a smaller set of variables that are then used to represent 

exposures to various pollutant combinations or sources. These transformations depend upon 

intrinsic natural structures within the data, without regard to the health outcome(s) being 

evaluated, to create clusters, groups, or indices of air pollutant exposures. UDR approaches 
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may be used to simplify multipollutant exposures or address multicollinearity, and may be 

appealing because they can be compared across different outcomes. However, pollutant 

groupings from UDR approaches are often specific to the geographic area being studied. For 

example, principal components computed based on air quality data from the U.S. can differ 

from those based on a European country. UDR approaches are subdivided below into two 

methods to differentiate those that reveal structures within the data according to (1) 

Statistical/Mathematical or (2) Scientific criteria. Note, we do not consider variable 

selection/selection operators (e.g. backward, forward, stepwise variable selection) to be 

dimension reduction methods since variable selection/selection operators are tools used to 

reduce the number of terms of an already specified PMR. Dimension reduction, on the other 

hand, refers to a characterization of the PMR.

Statistically/Mathematically-Based UDR Methods—Statistically/mathematically-

based UDR methods create factor profiles beforehand and use these as the PMR 

specification. Some commonly used methods include chemical mass balance (CMB), 

principal component analysis (PCA), factor analysis (FA), latent class analysis, positive 

matrix factorization, multilinear engine and the EPA UNMIX model. Investigators have 

previously found relative agreement across methods in studies that use similar underlying 

data [24, 25]. Thurston et al [26] state that FA methods, such as PCA, have an advantage 

over mass balance methods in that they can incorporate nontraditional aerosols, such as 

secondary aerosols, and non-PM tracers, such as gaseous pollutants. This has recently been 

reflected in a study conducted by Sacks et al. [27] that used PCA to identify source-based 

factors using a combination of PM components and gaseous pollutants.

Another approach to PMR specification is to create indicator variable profiles by clustering 

exposures with similar properties, then using these clusters in regression models. Zanobetti 

et al. [28] implemented an approach proposed by Austin et al. [29] where daily pollutant 

concentrations were grouped using k-means and subsequently used as EMM variables in 

exploring the association between PM2.5 exposures and mortality. Pearce et al. [30] also 

clustered days, however, they used a Self-Organizing Maps (SOM) algorithm to create day 

types that were then used to assess the effects of the air pollution mixture on ED visits for 

pediatric asthma. SOM differs from the clustering methods in that it is a learning process 

that produces a one- or two-dimensional array by grouping input data through the iterated 

estimation of distinct profiles, with the goal of minimizing information lost via grouping and 

retaining power and precision for statistical analysis [30]. These clustering methods have 

shown they can be used in different ways according to the intention of the study. These 

methods can reveal interesting cluster patterns to generate further investigation. However, 

the information clusters reveal may be limited by using clusters in the regression analysis. 

For instance, when clusters are directly used in regression models, joint effects are only 

obtainable as a comparison among cluster patterns. Also, it is not straightforward to tease 

out the interactive nature of the pollutants.

Scientifically-Based UDR Methods—Alternatively, scientifically-based UDR methods, 

in which the grouping or clustering of pollutant mixtures might be defined by scientific 

rationale, have also been used. For example, Hong et al. [31] developed a combined index of 
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pollutants as the sum of mean scaled pollutant concentrations, to examine the dose-response 

relationship between short-term exposures and mortality in South Korea, with indices 

selected to represent real ambient exposures. In a slightly different approach, Pachon et al. 

[32] proposed a summary indicator variable and demonstrated its use in estimating the 

association between air pollution exposures and cardiovascular disease ED visits. The 

indicator was defined as a sum of weighted normalized pollutant concentrations with 

weights computed as mobile-source-to-total emissions from the National Emission 

Inventory. The indicator was intuitively constructed as the weighted sums corresponding to 

differing sources of exposure. Scientifically-based UDR methods, such as those detailed 

here, are especially important when biological mechanisms support the construction of 

mixture transformation. However, when there is not strong biological evidence of such 

relations, these methods are less defensible.

Supervised Dimension Reduction (SDR)

SDR approaches estimate a mixture transformation/dimension reduction concurrently with 

the regression analysis or with respect to a health outcome of interest. The methods that 

encompass SDR require a general specification of the relationship between the pollutants 

and exposure with specific components to be estimated with respect to a health outcome. 

SDR methods are similar in idea to UDR methods with the exception that pollutant 

groupings are developed specifically for a health outcome. As a result, as mentioned for 

UDR methods, the pollutant groupings identified using SDR methods may also be specific 

to the geographic region(s) examined within the study.

The following supervised methods specify a weighted sum relationship between the 

pollutants and outcome with the weights representing proportions that sum to one. Pachon et 

al. [32] proposed an outcome- or heath-based indicator where weights are a priori specified 

on a range of values and corresponding indicator candidates are defined as weighted sums 

between pairs of standardized pollutant concentrations. Significance testing is performed 

separately on each candidate as a predictor in univariate regression, where the candidate 

with the minimum p-value is defined as the health based indicator. This indicator was 

developed as a sensitivity analysis on the health effect of their UDR emissions-based 

indicator since atmospheric mixtures may differ from emissions-based fractions due to 

meteorological conditions. In a different approach, Roberts and Martin [33] developed a 

model where weights of normalized pollutant concentrations are computed concurrently 

with the regression analysis as they are treated as parameters and estimated via optimization. 

A benefit of this method is that the weighted model is able to address the important question 

of whether there is a biologically relevant pollutant mixture that is related to the health 

outcome. Another similar method has recently been proposed for dealing with highly 

correlated data called weighted quantile sum (WQS) regression [see 34]. In contrast to the 

Roberts and Martin [33] model, WQS regression sums a weighted linear index of quantile 

pollutant concentration categories and estimates the weights through a bootstrap resampling 

procedure on a training data set (random subset of the data). For each bootstrap sample of 

the training dataset, the weighted linear index is included as a predictor in a regression 

model, with the weights estimated via maximum likelihood constrained to sum to one, and 

the corresponding regression coefficient tested for significance. The estimate for the weight 
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of each pollutant category is then defined as the average across all bootstrap estimates with a 

significant regression coefficient.

Another outcome dependent method, originally developed to address problems where 

predictors greatly exceed observations, is SPCA. Roberts and Martin [35] noted that SPCA 

is an improvement to PCA that can identify which subset of predictors is most highly 

associated in terms of magnitude to estimate standard deviation with the outcome. An added 

benefit is that it constructs a cross-validated best model that reveals important outcome-

specific profiles on a subset of pollutants. The performance of SPCA is useful in variable 

selection when there is “a moderately strong exposure response” in comparison to other 

methods for constructing multipollutant models [21].

The use of latent variables in defining a transformation of pollutant mixtures allows 

incorporating some uncertainty about the mixtures into the model. Latent or “unobserved” 

variables may be associated in numerous ways with pollutant mixtures and their relation 

with a health outcome. For example, PLS iteratively creates linear combinations of latent 

variables that best describe the response and predictor variables jointly [36, 12]. PLS 

regression was utilized to study the chemical composition of PM2.5 with respect to lung 

toxicity [37], but has not been widely employed in epidemiologic studies. In assessing the 

creation of pollutant profiles, PLS has been compared to BMA, SPCA, and LASSO, where it 

was observed to estimate interaction effects with little bias [21]. The interpretation of the 

latent variables in PLS is not straightforward due to its mathematical construction; however, 

they may be used in alternative ways, such as can be done in structural equation modeling 

for example, where latent variables may be assigned a priori meaning. Nikolov et al. [38] 

proposed the use of a Bayesian structural equation model in analyzing the association 

between sources of PM and a cardiovascular outcome in dogs. Their modeling framework 

includes the specification of a receptor submodel, which is assumed dependent on 

unobserved pollution source profiles, and a health submodel where the receptor submodel 

source contributions (latent variables) are specified as the predictors. The Bayesian nature of 

this method allows the incorporation of prior knowledge on sources and their contribution 

through the specification of their respective prior distribution parameters. This method 

requires the number of sources to be fixed a priori; however, Park et al. [39] extended it to 

the case where the number of sources is unknown by incorporating model uncertainty 

through BMA.

Overall, SDR methods provide appealing ways to overcome specific issues with analyzing 

pollutant health effects, but require similar considerations as UDR methods. An appealing 

feature to consider is that SDR methods create mixture transformations that optimize 

associations with outcome by being outcome specific. However, one must carefully consider 

difficulties with interpretation and the possibility of data feature loss with SDR, as with 

UDR methods. It may not be straightforward to quantify pollutant specific or joint effects, or 

tease out the nature of the interactive effects, but these methods are designed to maximize 

the strength of association between a health outcome and mixture transformation.
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Nonparametric Methods

Methods that use nonparametric techniques to summarize the PMR are termed 

Nonparametric methods. The methods described below can be thought of as those with a 

PMR specification that is empirically or data driven. Semi-parametric models or techniques 

are included in this section if the multipollutant mixture relationship is explored via 

nonparametric techniques. Similar to the UDR and SDR methods discussed previously, 

some of the nonparametric methods may identify pollutant groupings that are specific to the 

geographic region being examined in the study. In particular, methods that rely on automated 

significance testing may be especially susceptible to the pollutant mixture characteristics of 

the study region. Investigators should implement these methods with caution and balance 

decision making based on the strengths and limitations of the statistical tool and data, 

despite the lure of robust results with nonparametric methods.

Nonparametric data partitioning methods have been used sparingly in the analysis of air 

pollution health effects, but can provide a wealth of tools for discovering the complex 

relationship between air pollution and health effects. A common technique used is recursive 

partitioning where pollutant concentrations (or the data) are recursively split into mixtures 

containing observations with similar health outcomes [42]. One example is Classification 

and Regression Trees (CART) [40, 41] which requires the specification of regression models 

(i.e., linear for continuous, logistic for binary outcomes, etc) within each partition and 

statistical significance tests determine splits in the data. Gass et al. [42] proposed a modified 

CART method, where an initial subset of data is withheld to represent an a priori selected 

referent mixture of pollutants and the remaining multipollutant exposure mixtures are 

partitioned all while controlling for confounding. The CART method was used to study the 

relationship between air pollution exposures (daily average ambient concentrations of O3, 

NO2, and PM2.5) and pediatric asthma ED visits. Conclusions differed when compared to 

the joint effects in an AME model [43]. The authors suggest that some differences may be 

attributable to a non-synergistic effect between PM2.5 and NO2 because each can be 

correlated with PM2.5 components.

With a slightly different use for CART, Sun et al. [21] proposed it as an initial screening tool 

for reducing the number of terms to be included in a model where interactive effects may be 

further examined. In simulation studies, CART was found to be a beneficial pre-screening 

tool in terms of reducing model dimensions when the number of candidate variables is large. 

This approach highlights that when the PMR is not well understood or the number of 

pollutants is high, pre-screening tools may be useful when combined with EMM and model 

building, UDR, or SDR methods to refine understanding of the PMR to suit the study 

objective. For instance, LASSO for hierarchical interactions may be useful to supplement 

CART to refine multipollutant joint effect estimates. Other methods that might be extended 

in a similar manner could include combining multiple tree models such as Bayesian 

Additive Regression Trees [44].

An alternative to data partitioning tools are regression methods that attempt to smooth a 

response surface. Kernel Machine Regression (KMR) is one such method where a response 

is regressed on a weighted sum of measures between subject exposure mixtures. The 

function used to define the measure is called a kernel and its specification in turn defines the 
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properties and form of the response surface. Kernels may introduce specific parameters that 

may be tuned or estimated. The weights are treated as parameters in the model and estimated 

along with the other regression parameters. Bayesian KMR was used by Bobb et al. [45] to 

estimate the health effects of multipollutant mixtures with a focus on exploring the 

exposure-response surface. It was showcased in both epidemiologic and toxicological 

studies that examined the effect of metals mixtures (including Pb) on neurodevelopment and 

exposure to air pollution mixtures on hemodynamics, respectively. The interplay between 

statistical techniques and machine learning with respect to model and variable selection 

within the KMR framework, is an area of active research that is in its infancy [46]. Thus, an 

exciting feature of this method, due to its Bayesian nature, is simultaneous health effect 

estimation and variable selection which allows it to account for model uncertainty. Because 

of this, it was shown to outperform frequentist methods [46, 47] in approximating exposure-

response relationships via simulations. Another KMR variable selection method that may be 

useful was illustrated by Liu et al. [46], where kernel machine AIC and BIC values were 

proposed as model selection criteria. The authors illustrated its use while examining the 

complex joint effect of multiple genes within a pathway in the analysis of microarray data, 

by implementing an all-possible-subset procedure on a set of cell growth genes and selecting 

the combination producing the smallest AIC and BIC values.

Another way of exploring interactive joint effects is to model the joint distribution between 

multiple pollutants and the health outcome of interest where the multipollutant components 

are modeled non-parametrically. Bayesian Profile Regression is an example of a semi-

parametric method that has been used to study air pollution health effects [48], where the 

joint distribution is characterized by multipollutant profile assignment and health effect 

submodels. The multipollutant profile assignment submodel is assumed to be a Gaussian-

Dirichlet Process Mixture where the profiles are jointly assumed to follow a multivariate 

normal distribution and its parameters (i.e., mean and covariance) are assumed to follow a 

Dirichlet process prior. The Gaussian-Dirichlet Process Mixture specification inherently 

imposes an unknown random distribution on the multipollutant profiles which renders the 

estimation of their joint distribution a nonparametric procedure. By the parameter prior 

assumption, profiles are effectively assigned to clusters where then the health effect 

submodel is defined as a random effects model with a profile cluster assignment random 

effect. Molitor et al. [48] used this method in analyzing census block group multipollutant 

profile exposures and their association with term low birth weight. The exposure cluster 

random effect formulation allows the estimation of profile mixture cluster effects while 

controlling for relevant fixed effects such as confounders. Note, the Gaussian assumption 

does not limit the form of the pollutants as the authors suggest the use of latent continuous 

variables for categorical pollutant measures [49, 50]. When pollutant measures are solely 

categorical, other random distributions have been proposed that can accommodate 

multivariate discrete data [51, 52, and 53 for sparse data].

Nonparametric methods are promising alternatives to more traditional approaches for 

exploring complex non-linear interactions. The relaxing of PMR assumptions allows these 

methods to pick up interesting patterns of the PMR-response relationship especially when 

non-linear patterns exist. These can be invaluable tools during exploratory analyses or 

hypothesis-generating exercises. With recent extensive efforts in developing these methods 
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(e.g., machine learning, nonparametric Bayes), they are becoming feasible tools to be used 

in assessing health effects as computational and model assessment difficulties are addressed. 

However, currently, readily available software that incorporates these methods is limited and 

the interpretation of results may be difficult. Specifically, it may be difficult to estimate 

effects attributable to specific mixture components.

Discussion

The growing body of air pollution health effects literature was broadly reviewed to 

summarize the numerous statistical methods available to examine health effect associations 

due to short-term multipollutant exposures. These methods can be grouped into five broad 

categories of statistical approaches according to their PMR specification: Additive Main 

Effects (AME), Effect Measure Modification (EMM), Unsupervised Dimension Reduction 

(UDR), Supervised Dimension Reduction (SDR), and Nonparametric methods.

The limited knowledge on the health effects associated with multipollutant exposures 

supports the need for having different analytical tools for assessing this complex outcome-

mixture relationship. All of the methods reviewed across the five classes of statistical 

approaches provide different, possibly complementary, pieces of valuable information in 

assessing the health effects attributed to multipollutant air pollution exposures (see Table 1). 

For instance, if relatively little is known about how a mixture relates to a health outcome 

then nonparametric methods may be important tools since their purpose is to explore the 

potentially complex interactive PMR by relaxing parametric assumptions. Alternatively, 

UDR approaches are appropriate when the goal is to discover profiles or indices present in 

the data to then assess their effect. SDR approaches aim to discover outcome-specific 

profiles or indices that may be most appropriate for identifying pathways to disease. EMM 

and AME are the most interpretable and easiest to implement approaches for estimating joint 

effects when the PMR specification is more or less known. Table 2, provides specific details 

on the modeling methods used in the studies detailed throughout this review (i.e., regression 

assumptions, estimation method, software availability). The scope of this review was limited 

to focus on five criteria pollutants, however it is worth noting that the specific methods 

within the five classes of statistical approaches described could be applied more broadly and 

can accommodate more than just the five criteria pollutants, such as air toxics.

Despite the method of analysis implemented, exposure misclassification is a potential source 

of bias that can greatly impact air pollution health effects studies, but was beyond the scope 

of this review. All of the individual methods presented were entirely dependent on the 

assumption that exposure classification was appropriate for the subject unit on which a 

health outcome was assessed. As such, there was no intention to describe or analyze the 

effect of differing forms of exposure assessment or misclassification. It is possible that the 

statistical methods presented are sensitive to the different forms of exposure assessment or 

degree of misclassification, and obscure results. Some have argued that nonparametric or 

“data-driven” methods are especially constrained by data limitations [54]. Thus, it is 

recommended that when deciding on a statistical method, one must consider the complexity, 

difficulty of interpretation, study intent, and computational cost of the proposed model. 
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Furthermore, the overall analysis must be a balancing of data limitations, adequate exposure 

assessment, the current body of knowledge of the disease, and confounding.

Moving forward, understanding the independent effects of exposure to a single pollutant is 

essential, but research aimed at understanding the health effects of multipollutant exposures 

is necessary to potentially develop more sustainable air quality regulations. Epidemiologists 

have a clear role to play in this process. For years, copollutant models have been commonly 

employed to examine the role of individual pollutants in the complex air pollution mixture, 

all the while being recognized as a limited tool. Now is the time to move beyond copollutant 

models and take advantage of the multipollutant statistical methods currently available, to 

better evaluate the health effects of air pollution. As a first step in this process, it is 

beneficial for epidemiologists to familiarize themselves with new multipollutant statistical 

methods; specifically understanding when the different methods are best employed, and the 

strengths and limitations of each method. This can be accomplished by improving 

communication and collaboration between epidemiologists and biostatisticians, preferably 

early in the scientific process, beginning with the study design and analysis plan, and 

following through to the analysis and interpretation of results. In choosing a statistical 

method, it will be important for epidemiologists and biostatisticians to carefully consider the 

focus of the research and the limitations in the data. Each multipollutant statistical method 

explores the response surface in different ways, anticipates data limitations in the form of 

multicollinearity in order to adjust for them accordingly, and will have different implications 

for the types of conclusions that can be drawn.

In the end, one of the most important considerations for epidemiologists and biostatisticians, 

regardless of the statistical method employed, is the translation and application of results for 

use in a policy context. Although informative, not all of the multipollutant methods currently 

available can easily be used to inform policy decisions. However, by employing a wide 

range of multipollutant statistical methods across an array of epidemiologic study designs, 

we will begin to accumulate the scientific base necessary in order to potentially develop 

more sustainable, multipollutant air quality regulations.
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AME additive main effects

ED emergency department

LASSO least absolute selection operator

EMM effect measure modification

BMA Bayesian model averaging
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UDR unsupervised dimension reduction
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PCA principal components analysis
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PLS partial least squares/projection to latent structures
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