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Abstract

Purpose—While obesity disparities between racial and socioeconomic groups have been well 

characterized, those based on gender and geography have not been as thoroughly documented. 

This study describes obesity prevalence by state, gender, and race/ethnicity to (1) characterize 

obesity gender inequality, (2) determine if the geographic distribution of inequality is spatially 

clustered and (3) contrast the spatial clustering patterns of obesity gender inequality with overall 

obesity prevalence.

Methods—Data from the Centers for Disease Control and Prevention’s 2013 Behavioral Risk 

Factor Surveillance System (BRFSS) were used to calculate state-specific obesity prevalence and 

gender inequality measures. Global and Local Moran’s Indices were calculated to determine 

spatial autocorrelation.

Results—Age-adjusted, state-specific obesity prevalence difference and ratio measures show 

spatial autocorrelation (z-score=4.89, p-value <0.001). Local Moran’s Indices indicate the spatial 

distributions of obesity prevalence and obesity gender inequalities are not the same. High and low 

values of obesity prevalence and gender inequalities cluster in different areas of the U.S.

Conclusion—Clustering of gender inequality suggests that spatial processes operating at the 

state level, such as occupational or physical activity policies or social norms, are involved in the 

etiology of the inequality and necessitate further attention to the determinates of obesity gender 

inequality.
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INTRODUCTION

Obesity is a preventable cause of premature death among US adults (1) that does not impact 

social groups equally. While obesity prevalence growth among US adults has slowed or 

leveled off in recent years (2), monitoring of obesity prevalence among different social 

groups will continue to be important in designing, targeting and evaluating potential 

intervention strategies that address obesity disparities (3).

While obesity differences among racial/ethnic groups, socio-economic divides, and 

geographic regions have been thoroughly documented (4–7), gender inequalities have not 

been adequately characterized. In the work that has been done, there is little difference in 

obesity prevalence between men and women overall; however, once stratified by race, non-

Hispanic Black women have a 19.5-percentage point higher obesity prevalence than non-

Hispanic Black males (8). This finding has persisted across samples, as multiple studies have 

shown large obesity gender inequality in non-Hispanic Blacks but not in non-Hispanic 

Whites (9–12).

It is unclear what mechanisms cause gender inequalities in obesity, though differential 

responses to environmental or neighborhood contexts have been proposed (13). Recently, 

deprived residential environments have been found to contribute to the gender inequality 

(14). Little work has been done to further explore the distribution of gender inequality using 

spatial units larger than neighborhoods, though geographic inequalities in overall obesity 

prevalence have been well documented at larger geographies (4, 15). Together this evidence 

indicates that spatially influenced processes (e.g. policies, societal norms, etc.) may be 

operating at several geographic levels to influence obesity prevalence, and, potentially 

gender inequality. Spatially describing gender obesity inequalities at the state level is 

appropriate because health and economic policies implemented at this geography are 

potentially influential.

This study uses obesity prevalence by state, gender, and race/ethnicity in order to 1) 

characterize obesity gender inequality, 2) determine whether the geographic distribution of 

inequality is spatially clustered throughout the contiguous US, and 3) contrast spatial 

clustering of gender obesity inequality versus spatial clustering of overall obesity 

prevalence.

MATERIALS & METHODS

Data Source

We used data from the 2013 Behavioral Risk Factor Surveillance System (BRFSS), a 

Centers for Disease Control and Prevention (CDC) annual telephone survey that provides 

state-level prevalence estimates for the leading causes of premature mortality and morbidity 
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among non-institutionalized adults ages 18 and older (n=491,773). Data for this analysis 

were collected in 2013 and excluded US territories, the District of Columbia, Alaska and 

Hawaii.

Statistical Weights and Adjustment

BRFSS data are weighted to account for 1) the probability that a respondent would be 

selected to participate and 2) demographic factors assigned using iterative proportional 

fitting (16). Obesity prevalence measures for each state were age-standardized using direct 

standardization, according to the US Census 2000 projected population. Prevalence and 

difference measures for the four non-White race/ethnicity groups (NH Black, Hispanic, NH 

Multiracial, NH Other, with other including: Asian, Native American, Alaskan Native and 

Pacific Islander) were estimated using pooled data from 2011 to 2013.

Obesity Prevalence and Gender Inequality Measures

The outcome of interest was obesity gender inequality and the covariates were age, state of 

residence, and race/ethnicity. Obesity was defined as body mass index (BMI) of 30.0 kg/m2 

or higher, calculated as self-reported weight (kilograms) divided by height (meters squared). 

In 2013, 25,475 participants (5.4%) were missing BMI data and were excluded from 

analyses. Overall obesity prevalence, and prevalence stratified by interviewer-identified 

gender and self-reported race/ethnicity, were calculated for the 48 contiguous US states. To 

provide both an absolute and relative comparison of obesity prevalence, differences and 

ratios were calculated with males as the referent group. Prevalence, inequality measures, and 

standard errors were calculated using SAS software, version 9.4. Variance estimates 

accounted for the complex BRFSS survey design and weights by using Taylor Series 

Linearization through SAS PROC SURVEYREG software.

Exploratory Spatial Analysis and Maps

Global Moran’s Indices (GMI), a tool of spatial exploratory data analysis, were calculated to 

determine spatial autocorrelation of prevalence and inequality values among the entire 

sample (i.e., all race/ethnicities combined) and also once stratified by race/ethnicity. The 

GMI describes, in a single measure, the overall spatial pattern of an attribute over a defined 

geography, in this case prevalence differences and ratios across the contiguous United States 

(US) (17). The GMI statistic provides a test of the null hypothesis that there is complete 

randomness in the spatial distribution of the study attribute (i.e. that the attribute value at one 

location does not depend on the values of neighboring locations). GMI were converted to 

normalized z-scores with associated p-values ≤0.05 considered statistically significant 

(Supplemental Table 1). Statistically significant positive z-scores suggest positive spatial 

autocorrelation (i.e. clustering) and negative z-scores suggest negative spatial autocorrelation 

(i.e. dispersion). Non-significant values are consistent with the null hypothesis of random 

spatial patterning. The neighbor definition used to create the row-standardized spatial 

weights matrix was first-order queen contiguity (neighboring states are all those states 

sharing an immediate border or corner). Sensitivity analysis using both the rook neighbor 

definition (immediate neighboring states sharing a border but not a corner) and the eight-

nearest-neighbors definition (the eight closest neighboring states, measured by distance 

between centroids) did not substantially alter GMI values (results not shown).
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In the presence of statistically significant global spatial autocorrelation, Local Moran’s 

Indices (LMI) decompose the GMI into the contributions made by each individual state. 

Thus, LMI statistics allow us to locate and characterize specific spatial clusters of states with 

similar obesity prevalence and gender inequality values (18). Locations of spatial clustering 

are indicated as high-high (high value state surrounded by high valued states) and low-low 

(low value state surrounded by low valued states), while spatial outliers are indicated by 

high-low (high value state surrounded by low value states) and low-high (Figure 1). Pseudo 

p-values for LMI were calculated (alpha ≤ 0.01 to account for multiple comparisons) using 

permutation inference (999 permutations). States with (nmen + nwomen) < 200 after pooling 

were excluded from spatial analyses. Sensitivity analysis indicated that inclusion of these 

states did not substantively alter GMI values (results not shown). Spatial analyses were 

performed using GeoDa version 1.6.6 and maps were produced using QGIS version 2.4.0.

RESULTS

Overall Obesity Prevalence

Nationally, measures of age-adjusted obesity prevalence did not vary by gender (28.2% vs. 

28.3%) (Table 1). Global spatial autocorrelation statistics indicated spatial clustering for 

state-specific overall obesity prevalence with both genders combined (z-score=5.10, p-value 

<0.001) and among females (z-score=5.82, p-value <0.001) and males (z-score=3.60, p-

value <0.001). In race/ethnicity-stratified analyses of obesity prevalence with both genders 

combined, state-specific obesity prevalences were spatially clustered for all groups except 

among the non-Hispanic, Multi-Racial group (data not shown). Column one of Figure 1 

shows state-specific obesity prevalence and results from LMI analyses of cluster locations: 

states with high obesity prevalence cluster in the South and Midwest.

Gender Inequality - Geographic Variation

State-specific prevalence ratios (Figure 1, column 3) hover closely around the null value of 

one, whereas prevalence differences (Figure 1, column 2) vacillate up to 7 percentage points 

in either direction of the null (i.e. −7 to +7). Gender prevalence differences were spatially 

autocorrelated (z-score=4.89, p-value <0.001) but did not show the same clustering patterns 

as overall obesity prevalence. LMI statistics indicated a cluster of states (Mississippi, 

Tennessee, North Carolina) in the Southeastern US which have higher obesity prevalence 

among females (Figure 1, column 2, row 2: ‘high-high’ indicates high difference values 

among states with similarly high difference values); and a cluster (Montana, North Dakota, 

South Dakota, Minnesota) where males have higher prevalence in the North Central (Figure 

1, column 2, row 2: ‘low-low’ indicates low difference values among states with similarly 

low difference values). Additionally, when states are ordered from lowest to highest obesity 

prevalence, the obesity gender difference does not similarly increase, nor does it decrease, 

but rather shows a seemingly random pattern (data not shown).

Gender Inequality - Racial-Ethnic Variation

When stratified by race-ethnicity, the gender prevalence difference was positively spatially 

autocorrelated among non-Hispanic Whites only (z-score=3.25, p-value <0.001) (Figure 2). 

Additionally, state-specific prevalence difference values tend to group around the null for all 
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race/ethnicities except among the Non-Hispanic Black group, which has a median 

prevalence difference above 10 percentage points.

DISCUSSION

This study used a national- and state-level representative dataset and applied exploratory 

spatial techniques, Global and Local Moran’s Indices, to 1) characterize the distribution of 

obesity gender inequalities among US states, 2) determine whether the geographic 

distribution of obesity gender inequality is spatially clustered throughout the contiguous US, 

and 3) contrast spatial clustering of gender obesity inequality versus spatial clustering of 

overall obesity prevalence. Our results demonstrated the novel findings that gender obesity 

inequalities are spatially clustered and that the clustering pattern differs from that of overall 

obesity prevalence.

Gender Inequality Measures

When characterizing obesity gender inequality, we found different patterns than overall 

obesity prevalence. As in previous work, we found that high overall obesity prevalence 

clusters in the South and Midwest, whereas the Southwest and Northeast include locations 

with relatively low obesity prevalence. The patterns for gender inequality were different: 

LMI statistics indicated that the Southeast is marked by a cluster of states with higher female 

obesity prevalence, while the North Central is marked by a cluster of states where males 

have relatively higher obesity prevalence. This evidence indicates that, at the state level, 

spatial drivers of overall obesity prevalence and gender obesity inequality likely differ.

Spatial Clustering

The geographic distribution of gender obesity inequality is spatially clustered throughout the 

contiguous US indicating that it may be driven by state or regional level policies or social 

norms. Clustering patterns seen in this study may be driven by occupational, physical 

activity, transportation, or nutrition policies with differential impacts among genders. 

Unfortunately, the determinants of obesity in rural areas - those states showing clustering in 

this study - are poorly understood (19). Potential determinants include gendered household 

or work roles, food and beverage taxes, SNAP/WIC options, menu labeling efforts, access to 

recreational or health-focused amenities, and transportation and commuting patterns. The 

clustering may also be a reflection of historical patterns of residential segregation by race/

ethnicity as the cluster of states with higher female obesity prevalence overlaps with an area 

of the US that has a high proportion of non-Hispanic Black residents. Therefore, the high 

prevalence of obesity among non-Hispanic Black women in this area may be the driving 

force behind this clustering pattern.

Once stratified by race/ethnicity, spatial clustering of the prevalence difference is only 

present among non-Hispanic Whites (Figure 2: a cluster of states in the Southeast and a 

cluster of states in the Southwest is driving the autocorrelation). The lack of clustering 

among non-Whites could result from several factors: limited statistical power, absence of 

spatial correlates that relate to the inequality among non-Whites, or that spatial drivers may 

differ by race/ethnicity or operate at other spatial levels (e.g. county or neighborhood). 
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Additional research is needed to clarify spatial patterns of gender inequalities among non-

Whites.

Limitations

Our study used self-reported BRFSS data which have been shown to underestimate 

objectively measured obesity prevalence by up to 9.5 percentage points (20). Further, self-

reported weights and heights show differential reporting by gender, race/ethnicity (21), and 

US region (22). Even after pooling, small sample sizes among non-White race/ethnic groups 

make it difficult to adequately characterize spatial clusters or outliers. Finally, as with other 

geographic research, it is unclear what geographic level of analysis is most appropriate for 

the study of obesity or gender obesity inequality (23).

CONCLUSION

This study used exploratory spatial analyses to determine that the spatial distribution of 

gender obesity inequalities differ from that of overall obesity prevalence. The presence of 

spatial clustering of gender obesity inequalities suggests there is spatial structure to this 

phenomenon. Further investigation of policies implemented at the state level may provide 

insight into the etiology of this inequality. Understanding and reducing obesity gender 

inequalities will require explicit research exploring the intersectionality of geography and 

gender.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Age-adjusted US obesity prevalence, obesity gender difference and ratio, & 
corresponding local moran’s indices
Data source: 2013 Behavioral Risk Factor Surveillance System. Data were age-standardized 

to US 2000 projected population. Obesity prevalence, gender prevalence difference and 

gender prevalence ratio show global spatial autocorrelation (z-score = 5.10, 4.89, 4.72 

respectively (p-values < 0.001)). Bottom row represents Local Moran’s Indices (LMI) (p-

value ≤ 0.01) with ‘high-high’ indicating states with high values near other states with high 

values, ‘low-low’ indicating states with low values near other states with low values, ‘low-

high’ and ‘high-low’ indicating spatial outliers, with all other states having non-significant 

LMI. The cluster of states with higher female obesity prevalence (high-high) includes 

Mississippi, Tennessee, and N. Carolina. The cluster of states with higher male obesity 

prevalence (low-low) includes Montana, North Dakota, South Dakota, and Minnesota. 

Florida and Arkansas are spatial outliers.
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Figure 2. Age-adjusted obesity gender difference, by race/ethnicity
Data source: 2013 Behavioral Risk Factor Surveillance System, data pooled across 2011–13 

for the four non-White racial/ethnic groups. Data were age-standardized to US 2000 

projected population. The darkest color represents states with higher female prevalence and 

the lightest represents states with higher male prevalence. States patterned with diagonal 

lines were excluded from spatial analysis due to small sample sizes (n <200). Gender 

difference among all race/ethnicities combined (z-score = 4.89, p-value < 0.001) and among 

non-Hispanic Whites (z-score = 3.25, p-value < 0.001) show positive global spatial 
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autocorrelation; GMI of prevalence differences among non-NH White races/ethnicities are 

not significant at the 0.05 level.. Other races include: Asian, Native American, Alaskan 

Native and Pacific Islander.
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