Physical Activity Levels in U.S. Latino/Hispanic Adults: Results From the Hispanic Community Health Study/Study of Latinos

Elva M. Arredondo, PhD ${ }^{1}$, Daniela Sotres-Alvarez, DrPH ${ }^{2}$, Mark Stoutenberg, PhD 3, Sonia M. Davis, DrPH ${ }^{2}$, Noe C. Crespo, PhD ${ }^{4}$, Mercedes R. Carnethon, PhD ${ }^{5}$, Sheila F. Castañeda, PhD ${ }^{1}$, Carmen R. Isasi, PhD 6, Rebeca A. Espinoza, MPH ${ }^{1}$, Martha L. Daviglus, MD, PhD ${ }^{7}$, Lilian G. Perez, MPH ${ }^{1}$, and Kelly R. Evenson, PhD ${ }^{8}$
${ }^{1}$ Institute for Behavioral and Community Health, Division of Health Promotion and Behavioral Science, Graduate School of Public Health, San Diego State University, San Diego, California
${ }^{2}$ Collaborative Studies Coordinating Center, Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
${ }^{3}$ Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, Florida
${ }^{4}$ School of Nutrition and Health Promotion, Arizona State University, Phoenix, Arizona
${ }^{5}$ Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
${ }^{6}$ Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
${ }^{7}$ Institute for Minority Health Research, University of Illinois at Chicago College of Medicine, Chicago, Illinois
${ }^{8}$ Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina

Abstract

Introduction-Physical activity (PA) prevalence among U.S. Latino/Hispanic adults of diverse backgrounds is not well known. This study describes PA among a representative sample of U.S. Latino/Hispanic adults.

Methods—A population-based cohort of Hispanic/Latino adults (aged 18-74 years) participating in the Hispanic Community Health Study/Study of Latinos from March 2008 to June 2011 $(\mathrm{N}=16,415)$ was recruited in four urban areas from Miami, the Bronx, Chicago, and San Diego.

[^0]Participants wore an Actical hip accelerometer for 1 week $(n=12,253)$ and completed the Global Physical Activity Questionnaire ($n=15,741$). Data were analyzed in 2015.

Results—Based on accelerometry, Hispanics/Latinos engaged in $23.8 \mathrm{~min} /$ day ($10.3 \mathrm{~min} /$ day when only considering minutes from sustained 10 -min bouts) of moderate to vigorous PA (MVPA). Individuals of Puerto Rican and Dominican background had the most min/day of MVPA (32.1 and 29.1, respectively), whereas those of Cuban background had the fewest (15.3). Based on the Global Physical Activity Questionnaire, 65% of Hispanic/Latinos met the aerobic component of 2008 Physical Activity Guidelines for Americans. Men and individuals of Puerto Rican background had the most min/day of leisure-time MVPA (30.3 and 30.2, respectively). Individuals of Puerto Rican and Dominican background had the most min/day of transportation-related PA (48.7 and 39.7, respectively). Individuals of Mexican and Central American background had the most min/day of work-related MVPA (90.7 and 93.2, respectively).

Conclusions-Among Hispanics/Latinos, self-reported data provided information on the type of PA and helped explain variability identified from accelerometer-assessed PA. These findings highlight variability in PA among Hispanics from diverse ethnic backgrounds.

Introduction

Regular physical activity (PA) is associated with many health benefits. People who are physically active have lower risk of chronic diseases (e.g., heart disease, stroke, Type 2 diabetes, depression, and some cancers) and live longer than those who are inactive. ${ }^{1}$ The 2008 Physical Activity Guidelines for Americans (2008-PAG) recommend that adults engage in $\geq 150 \mathrm{~min} / \mathrm{wk}$ of moderate-intensity aerobic activity, $\geq 75 \mathrm{~min} / \mathrm{wk}$ of vigorousintensity aerobic activity, or an equivalent combination of the two. ${ }^{1}$ Self-reported measures of PA including active transportation, leisure, and household PA indicate that only half of adults (51.6%) are meeting aerobic activity guidelines, ${ }^{2}$ and accelerometer-measured amount of moderate to vigorous PA (MVPA) is much lower. ${ }^{3,4}$ Thus, measures of PA vary considerably depending on the instrument used, with each offering different advantages and disadvantages.

National data suggest that PA patterns vary by race/ethnicity. Data collected through selfreport indicate that fewer Hispanic/Latino adults are meeting the 2008-PAG compared with non-Hispanic whites (33.4% vs 47.6%, respectively). ${ }^{5}$ On the other hand, accelerometerbased measures suggest that individuals of Mexican American background engage in higher amounts of MVPA compared with blacks and non-Hispanic whites. ${ }^{3,6}$ One explanation for this discrepancy is that a large percentage of Mexican Americans have occupations requiring higher-intensity PA. ${ }^{7,8}$ Self-reported and accelerometry-assessed PA data yield different types of information; therefore, collecting both provides a comprehensive picture of the type, duration, and intensity of performed PA. ${ }^{9}$ The current study examines the PA patterns of U.S. Hispanic/Latino adults of different backgrounds using accelerometry-assessed and self-reported PA.

Methods

This study investigated PA patterns of U.S. Hispanic/Latino adults using data from the population-based cohort study Hispanic Community Health Study/Study of Latinos (HCHS/ SOL). ${ }^{10,11}$ From March 2008 to June 2011, 16,415 self-identified Hispanic/Latino men and women aged 18-74 years were recruited and enrolled from randomly selected households through a multistage area probability design in four U.S. urban communities (Bronx, NY; Chicago, IL; Miami, FL; San Diego, CA). Informed consent was obtained from all participants and IRBs at each site approved the study. The sample design and cohort selection have been described previously. ${ }^{10}$

Measures

The HCHS/SOL used the Actical accelerometer (version B-1, model 198-0200-03) for an objective measure of PA. A detailed description on accelerometer adherence and performance has been described elsewhere. ${ }^{12}$ Briefly, at the baseline clinic visit, participants were fitted with a belt and left the clinic wearing the accelerometer above the right iliac crest. They were told to undertake their usual activities while wearing the accelerometer, and to remove it only for swimming, showering, and sleeping.

The Actical was programmed to capture accelerations (in counts) in 1-minute epochs. The authors included time beginning at 5:00 $\mathrm{AM}^{\mathrm{Am}}$ the morning following the clinic visit and truncated data at midnight on Day 6, providing a consistent, 6-day wear period across all participants. Non-wear was defined as consecutive zero counts for at least 90 minutes (Window 1), allowing for short time intervals with nonzero counts lasting up to 2 minutes if no counts were detected during both the 30 minutes (Window 2) upstream and downstream from that interval. ${ }^{13}$ Adherence was defined as ≥ 10 hours/day of wear time for at least 3 days of wear. The thresholds used to define active intensity levels were: light, 100-1,534 counts/minute; moderate, 1,535-3,961 counts/minute; and vigorous, $\geq 3,962$ counts/ minute. ${ }^{14-16}$

Time spent in PA by intensity level (light, moderate, or vigorous) was calculated by summing the minutes in a day where the counts were within each threshold, and then averaging across adherent days. PA duration was also calculated counting only min/day from sustained bouts. A bout was defined as ≥ 10 consecutive minutes above the relevant threshold, with allowance of interruptions of 1 or 2 minutes below the threshold or with one missing count within any rolling 10-minute segment of the bout. A bout was terminated when there were 3 minutes below the threshold. The authors assessed whether a participant engaged in $\geq 150 \mathrm{~min} / \mathrm{wk}$ of MVPA, defined as $\geq 150 \mathrm{~min} / \mathrm{wk}$ of moderate PA, $\geq 75 \mathrm{~min} / \mathrm{wk}$ of vigorous PA , or $\geq 150 \mathrm{~min} / \mathrm{wk}$ of a combination of the two (multiplying time in vigorous PA by two and summing). ${ }^{12}$ Minutes per week was calculated as the average daily minutes of the adherent days multiplied by seven. All values are reported in min/day, as this is the original unit in both instruments. However, $\mathrm{min} / \mathrm{wk}$ is provided when needed for comparison to other studies and the 2008-PAG.

The HCHS/SOL assessed self-reported PA in a typical week using an intervieweradministered, modified Global Physical Activity Questionnaire that included questions on
three activity domains (work, transport, and leisure) available at www.who.int/chp/steps/ GPAQ/en. Other studies indicate evidence for validity and reliability of the instrument. ${ }^{17,18}$ Participants were asked to think about activities that lasted at least 10 minutes in a typical week. For the work and leisure domains, the questionnaire separately queried participants about the number of hours/day and days/wk that they engaged in MVPA. For transport, participants were asked the number of hours/day and days/wk that they walked or bicycled for at least 10 minutes at a time to get to and from work places (paid and volunteer work), without distinguishing the intensity.

Self-reported moderate PA was calculated by summing the minutes in moderate activity from the three domains (work, leisure, and transport). By contrast, self-reported vigorous PA (min/day) only included minutes from work and leisure domains. MVPA was calculated by adding min/day in moderate and vigorous activity. Meeting the 2008-PAG was operationalized as either having $\geq 150 \mathrm{~min} / \mathrm{wk}$ of moderate $\mathrm{PA}, \geq 75 \mathrm{~min} / \mathrm{wk}$ of vigorous PA , or $\geq 150 \mathrm{~min} / \mathrm{wk}$ of a combination of the two (multiplying time in vigorous PA by two and summing). ${ }^{12}$

At baseline, HCHS/SOL participants were interviewed in Spanish or English. Anthropometry and other assessments were collected in a standardized manner. ${ }^{19} \mathrm{BMI}$ was categorized as underweight ($<18.5 \mathrm{~kg} / \mathrm{m}^{2}$), normal weight (≥ 18.5 and $<25 \mathrm{~kg} / \mathrm{m}^{2}$), overweight (≥ 25 and $<30 \mathrm{~kg} / \mathrm{m}^{2}$), and obese ($\geq 30 \mathrm{~kg} / \mathrm{m}^{2}$). Age, sex, marital status, education, annual household income, employment status, and years lived in the U.S. were queried. Participants self-identified into the following Hispanic/Latino backgrounds: Central American, Cuban, Dominican, Mexican, Puerto Rican, South American, more than one Hispanic background, or other.

Statistical Analysis

All reported values (means and prevalence rates) were weighted to account for disproportionate selection probabilities ${ }^{20}$ and to at least partially adjust for any bias effects due to differential nonresponse in the selected sample at the household and individual levels. All analyses also accounted for cluster sampling and the use of stratification in sample selection using complex survey procedures in SAS, version 9.3 and SUDAAN, version 10. Data were analyzed in 2015. Sociodemographic characteristics by Hispanic/Latino background were internally adjusted to the HCHS/SOL mean age (41.4 years) and the percentage female (52.3%) of the target population because there were differences across backgrounds. PA prevalence rates and means were age standardized to the year 2010 U.S. Census population ($24 \%, 18-29 \mathrm{yrs} ; 18.6 \%, 30-39 \mathrm{yrs} ; 20.2 \%, 40-49 \mathrm{yrs} ; 19.4 \%, 50-59$ yrs; $13.5 \%, 60-69 \mathrm{yrs}$; and $4.3 \%, 70-74 \mathrm{yrs}$) to allow for comparability with other studies.

Of the 16,415 HCHS/SOL participants, this study excluded 590 participants with mixed/ other Hispanic/Latino background and 9 participants aged >74 years at baseline. It further excluded 75 participants without self-reported PA data, yielding an analytic sample size of 15,741 for PA self-report. By contrast, the analytic sample for accelerometry was limited to individuals who were adherent to HCHS/SOL protocol (i.e., provided ≥ 3 days with ≥ 10 hours of wear/day; $n=12,253$), ${ }^{12}$ and adjusted for missing data using inverse probability weighting (IPW). ${ }^{21}$ An IPW weight was created from a logistic regression model on the full
sample predicting being adherent or not based on a set of covariates including factors for which participation differed ${ }^{12}$ (age, sex, income level, marital status, education, employment status, language preference, immigrant generation, self-reported PA, BMI, and aggregate physical health). Because some participants ($n=917$ of $12,253,5.6 \%$) also had missing data for one or more covariates, and logistic regression requires complete cases, these missing covariates (0.63% of the total number of data items) were first imputed by multiple imputation. Specifically, the authors fit the IPW model for being adherent in five imputed data sets, averaged the five linear predictors, and calculated the probability of being adherent and the IPW weight. ${ }^{22}$ The IPW model had fairly good prediction properties as measured by the C-statistic of 0.71 averaged across the five imputations (0.5 is the same as chance, 1.0 indicates perfect prediction). The sampling weight used in analyses of the accelerometer data was the product of the IPW weight and the HCHS/SOL sampling weight to obtain estimates for the HCHS/SOL target population accounting for the missing accelerometer data. IPW was chosen over multiple imputation owing to complexities of imputing accelerometry data.

Results

Sociodemographic characteristics by Hispanic/Latino background are presented in Appendix Table 1. The mean age was 41.4 years, ranging from a mean of 38.6 years among those of Mexican background to a mean of 46.6 years among those of Cuban background.

On average, women engaged in $18.5 \mathrm{~min} /$ day of MVPA, $11.1 \mathrm{~min} /$ day fewer than men (Table 1). The majority of MVPA, for both men and women, was spent performing moderate PA. Younger Hispanics/Latinos tended to engage in more MVPA compared with their older counterparts. Individuals of Puerto Rican and Dominican background had the highest amount of MVPA (32.1 and $29.1 \mathrm{~min} /$ day, respectively), twice that of individuals of Cuban background, who had the lowest amount of MVPA (15.3 min/day). When considering only minutes of MVPA in bouts, on average women and men engaged in 7.9 and $12.8 \mathrm{~min} /$ day, respectively. Sex, age, and Hispanic/Latino background patterns of MVPA in bouts were similar to patterns seen for all minutes in MVPA. Appendix Table 2 shows mean accelerometry-assessed PA by Hispanic/Latino background within age group by sex.

This study found that 31.3% of women and 51.1% of men engaged in $\geq 150 \mathrm{~min} / \mathrm{wk}$ of MVPA, but the prevalence were lower (10.6% and 16.4% respectively) when only considering MVPA from bouts (Appendix Figure 1). The prevalences tended to be lower by age. In general, individuals of Puerto Rican, Dominican, and South American backgrounds were most likely to engage in $\geq 150 \mathrm{~min} / \mathrm{wk}$ of MVPA, and individuals of Cuban background were less likely (Appendix Figure 2). Overall, Hispanics/Latinos engaged in $221.5 \mathrm{~min} /$ day of light activity, with men engaging in more light activity ($231.3 \mathrm{~min} /$ day) than women (212.4 min/day, Table 2).

When considering work activity, Hispanic/Latinos reported engaging in $77.6 \mathrm{~min} /$ day of MVPA (Table 3). Men reported more than twice as much work activity ($108.0 \mathrm{~min} /$ day) compared with women ($49.0 \mathrm{~min} /$ day), except for the group aged $60-74$ years in which both
sexes had similar duration of work activity. Men and women aged 30-39 years reported the highest work activity duration. Individuals of Mexican and Central American background also reported the highest work activity duration (90.7 and $93.2 \mathrm{~min} /$ day, respectively), whereas individuals of Cuban background reported the least amount of time in work activity ($59.7 \mathrm{~min} /$ day). Overall, individuals reported engaging in $32.1 \mathrm{~min} /$ day of active transport. Men reported engaging in more time in active transport per day than women (36.7 and 27.8 $\mathrm{min} /$ day, respectively). Individuals of Dominican and Puerto Rican background reported the highest amount of active transport (39.7 and $48.7 \mathrm{~min} /$ day, respectively). On average, individuals reported engaging in $22.7 \mathrm{~min} /$ day of leisure MVPA. Men reported engaging in twice as much leisure activity compared with women (30.3 and $15.4 \mathrm{~min} /$ day, respectively). Puerto Rican men and women reported the highest, and women of Dominican background and men of Cuban background the lowest, level of leisure activity. Appendix Table 3 provides mean min/day of self-reported PA by Hispanic/Latino background within age group and sex.

Figure 1 (A and B) shows the prevalence of adults meeting the aerobic component of 2008PAG using self-reported PA by age, Hispanic/Latino background, and sex. Men had much higher 2008-PAG prevalence rates compared with women, with the exception of Central American background aged 45-64 years. Overall, 65.4% of Hispanics/Latinos reported meeting the 2008-PAG (Appendix Figure 3). Prevalence was lower among older Hispanics/ Latinos. Cubans also tended to meet the 2008-PAG less than other groups.

Discussion

Accelerometer-assessed PA showed that Hispanics/Latinos from diverse backgrounds engaged in $23.8 \mathrm{~min} /$ day of MVPA on average (equivalent to $166.6 \mathrm{~min} / \mathrm{wk}$). Consistent with other national data, the majority of this PA was of moderate intensity. ${ }^{4}$ Compared with MVPA in bouts for a nationally representative sample of non-Hispanic whites, Hispanics/ Latinos engaged in slightly higher MPVA ($10.3 \mathrm{~min} /$ day, equivalent to $72.1 \mathrm{~min} / \mathrm{wk}$ vs 9.1 $\mathrm{min} /$ day, equivalent to $63.7 \mathrm{~min} / \mathrm{wk}$, a difference of $1.2 \mathrm{~min} /$ day). ${ }^{4}$ This difference may be, in part, from use of different accelerometers (Actical in HCHS/SOL and ActiGraph in National Health and Nutrition Examination Survey). This study found that 40.8\% (or 13.3\% when considering only minutes from bouts) of Hispanics/Latinos were engaging in at least $150 \mathrm{~min} / \mathrm{wk}$ of MVPA as assessed by accelerometer, which is slightly higher than other national reports that include individuals from all races/ethnicities. ${ }^{4}$

Men tended to engage in more MVPA than women: 51.1% of men and 31.3% of women engaged in $\geq 150 \mathrm{~min} / \mathrm{wk}$ of MVPA as assessed by the accelerometer. Consistent with other reports, ${ }^{3,4}$ younger Hispanics/Latinos tended to engage in more MVPA than their older counterparts. Adults of Puerto Rican and Dominican background tended to engage in more MVPA as assessed by the accelerometer compared with other Hispanic/Latino groups, particularly individuals of Cuban background who engaged in the lowest MVPA duration. For individuals with Mexican background, National Health and Nutrition Examination Survey data using the ActiGraph accelerometer show higher levels of MVPA from bouts compared with HCHS $/ \mathrm{SOL}$ ($12.9 \mathrm{~min} /$ day, equivalent to $90.7 \mathrm{~min} / \mathrm{wk}^{4} \mathrm{vs} .10 .0 \mathrm{~min} /$ day, equivalent to $70.0 \mathrm{~min} / \mathrm{wk}$). This trend is consistent across age groups.

This study found that Hispanics/Latinos engaged in approximately $221.5 \mathrm{~min} /$ day of light activity. To the authors' knowledge, this is the first report that characterizes light activity among Hispanics/Latinos from diverse backgrounds. Individuals from Mexican background tended to engaged in more light activity compared with those of other Hispanic/Latino backgrounds. Further studies are needed to investigate types of light activities Hispanics/ Latinos of different backgrounds engage in to evaluate opportunities for increased intensity and duration.

The authors found that Hispanic/Latino adults reported more than twice the amount of total MVPA than that assessed by accelerometer. Consistent with the accelerometer data, younger Hispanics/Latinos self-reported more activity than their older counterparts. In general, Hispanics/Latinos were more likely to report engaging in work-related MVPA than any other type of activity. Compared with non-Hispanic whites and blacks, Troiano and colleagues ${ }^{3}$ found that Mexican American adults had the highest levels of accelerometerassessed MVPA. They hypothesized that this difference might be explained by higher transportation and work-related activity not usually included with self-reported PA data. ${ }^{3}$ The current study found that individuals of Mexican background were one of the top two (along with Central Americans) Hispanic/Latino groups reporting work-related activity; however, they were not necessarily the most active Hispanic/Latino groups overall, as assessed by the accelerometer. It is possible that the accelerometer does not capture workrelated activity well, such as heavy lifting and other activities requiring upper body movements. Measurement error among self-reported measures and accelerometers could also account for the discrepancies in values. ${ }^{23,24}$ The present findings suggest that women and individuals of Cuban background reported the fewest min/day of leisure MVPA. Individuals of Puerto Rican and Dominican background reported the highest amount of active transport. This may be explained by the fact that most individuals of Puerto Rican and Dominican background in this study were from the Bronx and Chicago sites where different forms of commuting (bus, train) are common and accessible.

Study Limitations and Strengths

This study has a few limitations worth noting. The accelerometer this study used is likely to underestimate activity that is performed above the waist and during activities such as bicycling. At the same time, self-reported PA involves a cognitive task that suffers from diverse interpretations of moderate intensity or leisure. ${ }^{25}$ Further, self-report methods are limited by recall bias, response bias, and the inability to capture the absolute level of PA. ${ }^{26}$ Although the Global Physical Activity Questionnaire has been found to be an acceptable instrument for assessing PA in diverse populations, ${ }^{18}$ other research involving Hispanics/ Latinos has found that it is valid when assessing vigorous activity, but less so when assessing moderate activity. Though not every participant provided 1 week of accelerometry data, more than three quarters of the analytic sample had 5 or 6 adherent days. ${ }^{12}$ Those with fewer than 3 adherent days were not included in this analysis and were accounted for using IPW such that means and percentages still reflected the underlying population. The number of missing days was similar to other population-based studies. ${ }^{3,14}$

Conclusions

Individuals of Puerto Rican background had the highest accelerometer-assessed MVPA. They also reported the highest leisure- and transportation-time MVPA compared with Hispanics/Latinos from different backgrounds. Future studies can consider new ways to use both self-reported and accelerometry-assessed PA in tandem. ${ }^{9}$ Moreover, research should examine the influence of acculturation and other sociodemographic factors on the PA patterns among Hispanics/Latinos of different backgrounds. Although many factors contribute to population levels of PA, this study was only able to explore a few of these. Findings from these studies will help determine target subpopulations for interventions that aim to increase PA, including light activity given emerging evidence of the benefits of light activity on health. ${ }^{28-30}$

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

The authors thank the staff and participants of Hispanic Community Health Study/Study of Latinos (HCHS/SOL) for their important contributions. Investigators website: http://www.cscc.unc.edu/hchs/.

The HCHS/SOL was carried out as a collaborative study supported by contracts from the National Heart, Lung, and Blood Institute (NHLBI) to the University of North Carolina at Chapel Hill (N01-HC65233), University of Miami (N01-HC65234), Albert Einstein College of Medicine (N01-HC65235), Northwestern University (N01-HC65236), and San Diego State University (N01-HC65237). The following Institutes/Centers/Offices contributed to the HCHS/SOL through a transfer of funds to the NHLBI: National Institute on Minority Health and Health Disparities, National Institute on Deafness and Other Communication Disorders, National Institute of Dental and Craniofacial Research, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Neurological Disorders and Stroke, and the NIH Office of Dietary Supplements.

References

1. U.S. DHHS. 2008 physical activity guidelines for Americans. Washington, DC: 2008.
2. Adult participation in aerobic and muscle-strengthening physical activities--United States, 2011. MMWR Morb Mortal Wkly Rep. 2013; 62(17):326-330. [PubMed: 23636025]
3. Troiano RP, Berrigan D, Dodd KW, Mâsse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008; 40(1):181-188. http:// dx.doi.org/10.1249/mss.0b013e31815a51b3. [PubMed: 18091006]
4. Tucker JM, Welk GJ, Beyler NK. Physical activity in U.S. adults: Compliance with the physical activity guidelines for Americans. Am J Prev Med. 2011; 40(4):454-461. http://dx.doi.org/10.1016/ j.amepre.2010.12.016. [PubMed: 21406280]
5. Carlson SA, Fulton JE, Schoenborn CA, Loustalot F. Trend and prevalence estimates based on the 2008 Physical Activity Guidelines for Americans. Am J Prev Med. 2010; 39(4):305-313. http:// dx.doi.org/10.1016/j.amepre.2010.06.006. [PubMed: 20837280]
6. Ham SA, Ainsworth BE. Disparities in Data on Healthy People 2010 Physical Activity Objectives Collected by Accelerometry and Self-Report. Am J Public Health. 2010; 100(S1):S263-S268. http://dx.doi.org/10.2105/AJPH.2009.180075. [PubMed: 20147669]
7. Nicaise V, Marshall S, Ainsworth BE. Domain-specific physical activity and self-report bias among low-income Latinas living in San Diego County. J Phys Act Health. 2011; 8(7):881-890. [PubMed: 21885878]
8. Troiano R, Dodd K. Differences between objective and self-report measures of physical activity: what do they mean? The Korean Journal of Measurement and Evaluation in Physical Education and Sport Science. 2008; 10(2):31-42.
9. Troiano RP, Pettee Gabriel KK, Welk GJ, Owen N, Sternfeld B. Reported physical activity and sedentary behavior: why do you ask? J Phys Act Health. 2012; 9(Suppl 1):S68-S75. [PubMed: 22287450]
10. Lavange LM, Kalsbeek WD, Sorlie PD, et al. Sample design and cohort selection in the Hispanic Community Health Study/Study of Latinos. Ann Epidemiol. 2010; 20(8):642-649. http:// dx.doi.org/10.1016/j.annepidem.2010.05.006. [PubMed: 20609344]
11. Sorlie PD, Aviles-Santa LM, Wassertheil-Smoller S, et al. Design and implementation of the Hispanic Community Health Study/Study of Latinos. Ann Epidemiol. 2010; 20(8):629-641. http:// dx.doi.org/10.1016/j.annepidem.2010.03.015. [PubMed: 20609343]
12. Evenson KR, Sotres-Alvarez D, Deng Y, et al. Accelerometer Adherence and Performance in a Cohort Study of US Hispanic Adults. Med Sci Sports Exerc. 2014; 47(4):725-734. http:// dx.doi.org/10.1249/MSS.0000000000000478. [PubMed: 25137369]
13. Choi L, Liu Z, Matthews CE, Buchowski MS. Validation of accelerometer wear and nonwear time classification algorithm. Med Sci Sports Exerc. 2011; 43(2):357-364. http://dx.doi.org/10.1249/ MSS.0b013e3181ed61a3. [PubMed: 20581716]
14. Colley R, Garriguet D, Janssen I, Craig C, Clarke J, Tremblay M. Physical activity of Canadian adults: Accelerometer results from the 2007 to 2009 Canadian Health Measures Survey. Health Rep. 2011; 22(1):7-14. [PubMed: 21510585]
15. Colley RC, Tremblay MS. Moderate and vigorous physical activity intensity cut-points for the Actical accelerometer. J Sports Sci. 2011; 29(8):783-789. http://dx.doi.org/ 10.1080/02640414.2011.557744. [PubMed: 21424979]
16. Wong SL, Colley R, Connor Gorber S, Tremblay M. Actical accelerometer sedentary activity thresholds for adults. J Phys Act Health. 2011; 8(4):587-591. [PubMed: 21597132]
17. Bull FC, Maslin TS, Armstrong T. Global physical activity questionnaire (GPAQ): nine country reliability and validity study. J Phys Act Health. 2009; 6(6):790-804. [PubMed: 20101923]
18. Hoos T, Espinoza N, Marshall S, Arredondo EM. Validity of the Global Physical Activity Questionnaire (GPAQ) in adult Latinas. J Phys Act Health. 2012; 9(5):698-705. [PubMed: 22733873]
19. Sorlie PD, Avilés-Santa LM, Wassertheil-Smoller S, et al. Design and implementation of the Hispanic Community Health Study/Study of Latinos. Ann Epidemiol. 2010; 20(8):629-641. http:// dx.doi.org/10.1016/j.annepidem.2010.03.015. [PubMed: 20609343]
20. Lavange LM, Kalsbeek WD, Sorlie PD, et al. Sample design and cohort selection in the Hispanic Community Health Study/Study of Latinos. Ann Epidemiol. 2010; 20(8):642-649. http:// dx.doi.org/10.1016/j.annepidem.2010.05.006. [PubMed: 20609344]
21. Seaman SR, White IR. Review of inverse probability weighting for dealing with missing data. Stat Methods Med Res. 2013; 22(3):278-295. http://dx.doi.org/10.1177/0962280210395740. [PubMed: 21220355]
22. Schafer JL, Olsen MK. Multiple Imputation for Multivariate Missing-Data Problems: A Data Analyst's Perspective. Multivariate Behav Res. 1998; 33(4):545. http://dx.doi.org/10.1207/ s15327906mbr3304_5. [PubMed: 26753828]
23. Matthews CE, Moore SC, George SM, Sampson J, Bowles HR. Improving self-reports of active and sedentary behaviors in large epidemiologic studies. Exerc Sport Sci Rev. 2012; 40(3):118126. http://dx.doi.org/10.1097/jes.0b013e31825b34a0. [PubMed: 22653275]
24. van Poppel MNM, Chinapaw MJM, Mokkink LB, van Mechelen W, Terwee CB. Physical activity questionnaires for adults: a systematic review of measurement properties. Sports Med (Auckland, N Z). 2010; 40(7):565-600. http://dx.doi.org/10.2165/11531930-000000000-00000.
25. Sallis JF, Saelens BE. Assessment of Physical Activity by Self-Report: Status, Limitations, and Future Directions. Res Q Exerc Sport. 2000; 71(2):1. http://dx.doi.org/ 10.1080/02701367.2000.11082780. [PubMed: 25680007]
26. Prince SA, Adamo KB, Hamel ME, Hardt J, Connor Gorber S, Tremblay M. A comparison of direct versus self-report measures for assessing physical activity in adults: a systematic review. Int J Behav Nutr Phys Act. 2008; 5:56-56. http://dx.doi.org/10.1186/1479-5868-5-56. [PubMed: 18990237]
27. Samitz G, Egger M, Zwahlen M. Domains of physical activity and all-cause mortality: systematic review and dose-response meta-analysis of cohort studies. Int J Epidemiol. 2011; 40(5):13821400. http://dx.doi.org/10.1093/ije/dyr112. [PubMed: 22039197]
28. Dowd KP, Harrington DM, Hannigan A, Donnelly AE. Light-intensity physical activity is associated with adiposity in adolescent females. Med Sci Sports Exerc. 2014; 46(12):2295-2300. http://dx.doi.org/10.1249/MSS.0000000000000357. [PubMed: 24797308]
29. Buman MP, Hekler EB, Haskell WL, et al. Objective light-intensity physical activity associations with rated health in older adults. Am J Epidemiol. 2010; 172(10):1155-1165. http://dx.doi.org/ 10.1093/aje/kwq249. [PubMed: 20843864]
30. Blair CK, Morey MC, Desmond RA, et al. Light-intensity activity attenuates functional decline in older cancer survivors. Med Sci Sports Exerc. 2014; 46(7):1375-1383. http://dx.doi.org/10.1249/ MSS.0000000000000241. [PubMed: 24389524]

Figure 1.
Prevalence of meeting 2008-PAG from self-report (N=15741) by age group, Hispanic/ Latino background, and sex (HCHS/SOL 2008-2011).
PAG, Physical Activity Guidelines
Bars are prevalence for meeting 2008-PAG for Americans with 95% CI from self-report data. Using PA self-report (from GPAQ), we operationalized meeting the 2008-PAG as either having $\geq 150 \mathrm{~min} / \mathrm{wk}$ moderate PA , or $\geq 75 \mathrm{~min} / \mathrm{wk}$ of vigorous PA , or $\geq 150 \mathrm{~min} / \mathrm{wk}$ for a combination of the two (multiplying vigorous by 2 and summing). Self-reported moderate PA ($\mathrm{min} /$ day) was calculated by summing the minutes in moderate activity from the three domains (work, leisure, and transport). In contrast, self-reported vigorous PA (min/ day) only included minutes from work and leisure domains.
łdurosnuew ıOułn

Author Manuscript

Author Manuscript
Author Manuscrip

	Overall (N=12,253)		Male ($\boldsymbol{n}=\mathbf{4 , 8 7 0})$		Female ($\boldsymbol{n}=\mathbf{7}, \mathbf{3 8 3})$	
	\mathbf{N}	Mean (95\% CI)	\boldsymbol{n}	Mean (95\% CI)	\boldsymbol{n}	Mean (95\% CI)
Overall	12,253	$221.5(218.7,224.4)$	4,870	$231.3(227.1,235.5)$	7,383	$212.4(209.2,215.7)$
Age group (y)						
$\mathbf{1 8 - 2 9}$	1,652	$221.0(214.6,227.4)$	790	$230.3(220.0,240.6)$	862	$211.2(203.8,218.5)$
$\mathbf{3 0 - 3 9}$	1,709	$243.6(237.3,249.9)$	718	$257.0(246.4,267.6)$	991	$230.8(223.8,237.7)$
$\mathbf{4 0 - 4 9}$	3,188	$239.5(234.3,244.7)$	1,233	$252.0(244.8,259.2)$	1,955	$227.7(220.8,234.7)$
$\mathbf{5 0 - 5 9}$	3,433	$221.6(215.5,227.6)$	1,256	$230.5(222.3,238.6)$	2,177	$214.7(206.1,223.4)$
$\mathbf{6 0 - 6 9}$	1,862	$188.7(183.8,193.6)$	719	$194.7(187.1,202.3)$	1,143	$183.5(177.3,189.8)$
$\mathbf{7 0 - 7 4}$	409	$148.0(140.1,156.0)$	154	$147.0(133.4,160.6)$	255	$148.7(139.0,158.3)$
Ethnicity ${ }^{\text {a }}$						
Mexican	5,190	$235.2(230.4,240.1)$	1,936	$253.0(245.7,260.4)$	3,254	$220.2(215.1,225.3)$
Puerto Rican	2,088	$217.7(211.1,224.4)$	862	$222.6(212.7,232.4)$	1,226	$212.7(204.5,221.0)$
Cuban	1,679	$209.0(203.6,214.4)$	799	$215.7(206.8,224.6)$	880	$200.9(194.7,207.2)$
Central American	1,273	$218.5(213.1,223.9)$	517	$226.8(218.0,235.6)$	756	$210.3(203.5,217.1)$
Dominican	1,177	$204.2(196.0,212.3)$	421	$212.8(201.2,224.4)$	756	$200.3(191.7,208.8)$
South American	846	$217.1(208.6,225.5)$	335	$222.0(208.7,235.4)$	511	$212.2(201.4,223.1)$

[^1]ıd!ıอsnuew roułn \forall

	Overall ($\mathrm{N}=15,741$)							Male ($n=6,264$)							Female ($n=9,477$)						
	n	$\begin{aligned} & \text { Work } \\ & \text { (MVPA) } \end{aligned}$		$\begin{aligned} & \text { Leisure } \\ & \text { (MVPA) } \end{aligned}$		Transport		$\begin{aligned} & \text { Work } \\ & \text { (MVPA) } \end{aligned}$			Leisure(MVPA)		Transport		$\begin{aligned} & \text { Work } \\ & \text { (MVPA) } \end{aligned}$			$\begin{aligned} & \text { Leisure } \\ & \text { (MVPA) } \end{aligned}$		Transport	
		$\begin{gathered} \text { Mea } \\ \mathbf{n} \end{gathered}$	$\underset{\text { CI) }}{(95 \%}$	$\underset{\mathrm{n}}{\mathrm{Mea}}$	$\begin{gathered} (95 \\ \% \\ \text { CI } \end{gathered}$	$\underset{\mathbf{n}}{\substack{\text { Mea }}}$	$\begin{aligned} & (95 \\ & \% \\ & \text { CI) } \end{aligned}$	n	$\begin{gathered} \text { Mea } \\ \mathrm{n} \end{gathered}$	$\underset{\text { CI) }}{(95 \%}$	$\begin{gathered} \text { Mea } \\ \mathbf{n} \end{gathered}$	$\begin{gathered} (95 \\ \% \\ \text { CI) } \end{gathered}$	$\begin{gathered} \text { Mea } \\ \text { n } \end{gathered}$	$\begin{aligned} & (95 \\ & \% \\ & \text { CI) } \end{aligned}$	n	Mea \mathbf{n}	$\begin{aligned} & (\mathbf{9 5} \\ & \% \\ & \text { CI) } \end{aligned}$	$\underset{\mathbf{n}}{\text { Mea }}$	$\begin{gathered} (95 \\ \% \\ \text { CI } \end{gathered}$	Mea \mathbf{n}	$\begin{gathered} (95 \\ \% \\ \text { CI) } \end{gathered}$
Overall	15,741	77.6	(73.7, 81.5)	22.7	(21.3, 24.2)	32.1	(29.8, 34.4)	6,264	108.0	(101.5, 114.6)	30.3	(28.1, 32.5)	36.7	$(32.6,40.8)$	9,477	49.0	(45.1, 52.9)	15.4	(13.9, 17.0)	27.8	(25.9, 29.8)
Age (y)																					
18-29	2,469	91.0	(81.6, 100.4)	42.6	(38.8, 46.5)	36.6	(32.3, 40.8)	1,139	131.4	(116.4, 146.5)	59.7	(53.5, 65.9)	43.9	(36.9, 50.9)	1,330	50.1	(42.1, 58.1)	25.4	(21.3, 29.5)	29.2	(25.2, 33.1)
30-39	2,277	100.7	(90.1, 111.3)	24.0	(21.3, 26.7)	31.5	(24.6, 38.3)	952	140.3	(122.2, 158.3)	31.1	(26.9, 35.3)	33.2	$(20.8,45.7)$	1,325	63.3	(51.0, 75.6)	17.3	(14.2, 20.3)	29.9	(25.0, 34.7)
40-49	4,063	86.7	(79.1, 94.3)	19.0	(16.0, 22.0)	29.6	(26.4, 32.9)	1,574	125.9	(112.6, 139.1)	25.1	(19.9, 30.2)	32.8	(28.0, 37.6)	2,489	50.1	(44.2, 56.0)	13.3	(10.4, 16.2)	26.7	(22.3, 31.0)
50-59	4,221	71.7	(63.6, 79.8)	11.9	(10.7, 13.1)	34.3	(28.4, 40.2)	1,557	96.7	$(83.6,109.8)$	15.7	$(13.5,17.9)$	40.8	$(29.2,52.4)$	2,664	51.7	$(42.5,60.9)$	8.8	$(7.6,10.0)$	29.0	(24.7, 33.4)
60-69	2,228	38.2	(32.1, 44.4)	10.5	$(8.6,12.4)$	27.4	$(23.8,31.1)$	863	43.7	(34.0, 53.3)	13.0	(9.9, 16.1)	32.4	$(26.2,38.7)$	1,365	33.6	$(25.6,41.5)$	8.4	$(6.1,10.7)$	23.2	(19.2, 27.1)
70-74	483	10.6	(3.3, 18.0)	11.7	$(6.8,16.6)$	25.7	(18.2, 33.3)	179	8.9	(3.3, 14.4)	7.7	(5.0, 10.3)	24.4	(17.7, 31.1)	304	11.8	(0.3, 23.2)	14.2	(6.5, 22.0)	26.6	(15.0, 38.2)
Ethnicity ${ }^{a}$																					
Mexican	6,444	90.7	(83.7, 97.8)	23.6	(21.4, 25.9)	25.3	$(21.8,28.7)$	2,427	132.5	(120.2, 144.8)	29.8	$(26.5,33.1)$	28.9	(22.9, 34.9)	4,017	53.9	(47.7, 60.1)	17.9	$(15.5,20.4)$	21.9	(19.2, 24.6)
Puerto Rican	2,711	69.5	(59.9, 79.0)	30.2	(26.1, 34.3)	48.7	$(42.8,54.7)$	1,131	93.6	$(77.6,109.7)$	40.8	(34.6, 46.9)	56.1	(46.3, 66.0)	1,580	43.3	$(35.4,51.1)$	18.3	$(13.1,23.4)$	41.7	(36.4, 47.0)
Cuban	2,338	59.7	(51.4, 68.0)	19.1	(16.4, 21.8)	25.3	$(21.6,29.0)$	1,092	75.0	(63.5, 86.5)	25.1	(20.6, 29.6)	28.1	$(22.4,33.7)$	1,246	42.1	(32.6, 51.5)	12.2	(9.9, 14.5)	21.9	(17.2, 26.5)
Central American	1,717	93.2	(82.8, 103.5)	20.7	(16.0, 25.3)	32.7	(28.2, 37.3)	676	126.4	(109.6, 143.2)	25.8	(20.5, 31.1)	34.8	$(27.0,42.7)$	1,041	61.4	(51.2, 71.6)	15.0	(8.4, 21.6)	30.0	(25.6, 34.5)
Dominican	1,465	73.0	(58.2, 87.9)	17.9	$(15.0,20.7)$	39.7	$(34.5,44.9)$	505	107.4	(84.7, 130.1)	28.8	(23.5, 34.0)	46.3	(37.0, 55.5)	960	51.2	(32.2, 70.2)	10.3	(7.9, 12.6)	34.9	$(29.5,40.4)$
South American	1,066	68.5	(56.1, 81.0)	23.1	$(19.5,26.7)$	28.0	(23.1, 32.8)	433	100.4	(79.3, 121.6)	33.1	(27.2, 39.0)	31.0	(22.8, 39.2)	633	39.2	(29.3, 49.0)	14.0	$(10.5,17.4)$	26.0	$(20.3,31.7)$

[^2]
[^0]: Address correspondence to: Elva M. Arredondo, PhD, Graduate School of Public Health, San Diego State University, Hardy Tower Room 119, 5500 Campanile Drive, San Diego CA 92182. earredon@mail.sdsu.edu.
 No financial disclosures were reported by the authors of this paper.
 Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

[^1]: ${ }^{a}$ Standardized to U.S. 2010 Census Population.

[^2]: MVPA, moderate or vigorous physical activity
 ${ }^{a}$ Standardized to U.S. 2010 Census Population

