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Abstract

Background—Whereas several longitudinal metabolomics studies have been conducted in 

individuals with normal eGFR at baseline, disease progression among individuals with established 

CKD has not been rigorously examined.

Methods—We performed a nested case-control study of rapid CKD progression in the Chronic 

Renal Insufficiency Cohort (CRIC) Study, profiling baseline plasma from 200 individuals each 

with eGFR slope < −3 ml/min/1.73m2/yr (cases) or between −1 and +1 ml/min/1.73m2/yr 

(controls), matched on baseline eGFR and proteinuria. To directly assess how the kidney 

modulates circulating metabolites, we profiled plasma from the aorta and renal vein of 25 hospital-

based individuals.

Results—At baseline, cases and controls had a mean eGFR of 41.7 ± 13.3 and 45.0 ± 14.5 

mL/min/1.73m2, respectively. Ten plasma metabolites were nominally associated with CKD 

progression in logistic regression models adjusted for age, sex, race/ethnicity, hypertension, 

systolic and diastolic blood pressure, diabetes, eGFR, and proteinuria; no metabolite achieved the 

Bonferroni-adjusted significance threshold (p<0.0003). In cross-sectional analysis, all six of the 

metabolites that were higher in cases than controls were significantly associated with eGFR at 

baseline. By contrast, threonine, methionine, and arginine were lower in cases than controls and 
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had no association with baseline eGFR. Further, in the hospital-based cohort that underwent renal 

arteriovenous sampling, these three metabolites were net released from the kidney. Combining 

these metabolites into a panel of markers further strengthened their association with CKD 

progression.

Conclusion—Our results motivate interest in arginine, methionine, and threonine as potential 

indicators of renal metabolic function and markers of renal prognosis.
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INTRODUCTION

Metabolomics, or metabolite profiling, refers to the systematic analysis of metabolites (i.e., 

sugars, amino acids, organic acids, nucleotides, etc) in a biologic specimen [1–3]. Because 

of long-standing interest in small molecules as potential uremic toxins, initial applications of 

metabolomics in nephrology research examined plasma or dialysate from individuals with 

ESRD [4–6]. At the other end of the spectrum of renal health, recent large scale profiling in 

population-based cohorts including the Framingham Heart Study (FHS), the Cooperative 

Health Research in the Region of Augsburg (KORA) Study, the TwinsUK Registry, and the 

Atherosclerosis Risk in Communities Study (ARIC) have identified cross-sectional 

associations between metabolite levels and eGFR within the normal range [7–10]. Because 

longitudinal follow-up is available in these cohorts, these data sets have also permitted 

assessment of the association of these baseline metabolite measures with the future onset of 

CKD.

Whereas studies of incident CKD have compared individuals who do or do not cross an 

eGFR threshold of 60 ml/min/1.73 m2, identifying markers of progression among 

individuals with established disease is arguably of greater interest. The relative paucity of 

high-quality cohorts enriched for advanced renal disease, however, presents a challenge. 

Here, we conducted a nested case-control study of disease progression in the Chronic Renal 

Insufficiency Cohort (CRIC) Study, a longitudinal, multi-center cohort study of individuals 

with CKD. Because of the possibility of confounding due to baseline difference in kidney 

function, we tested the cross-sectional association between the markers identified in the 

case-control analysis with baseline eGFR. In addition, in order to provide a physiologic 

understanding of how the kidneys modulate these potential metabolite markers, we analyzed 

metabolite levels in the arterial and renal venous circulation from individuals undergoing 

invasive catheterization.

MATERIALS AND METHODS

CRIC

The CRIC Study was initiated in 2001 by the NIDDK to investigate the natural history of 

kidney disease as well as the risk factors for disease progression and cardiovascular 

complications. Between 2003–2008, 3939 individuals with mild to moderate kidney disease 

were recruited at 13 sites across the US [11,12]. By design, approximately 50% of study 
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participants had diabetes at study entry when they were between the age of 21 and 74 years, 

with an eGFR of 20–70 ml/min/1.73 m2. The institutional review board of the Perelman 

School of Medicine at the University of Pennsylvania approved the study. The study adhered 

to the Declaration of Helsinki and all participants provided written informed consent.

Study Design

We used a nested case-control design, comparing a subset of the CRIC Study population 

demonstrating rapid progression of their renal disease (cases, n=200) to a subset whose renal 

dysfunction was stable over time (controls, n=200). Cases were randomly chosen from 

individuals with an eGFR slope < −3 ml/min/1.73 m2/yr. Controls were chosen from 

individuals with an eGFR slope between −1 and +1 ml/min/1.73 m2/yr. For each case, a 

control was selected that was in the same eGFR (<30, 30-<40, 40-<50, and ≥50 ml/min/1.73 

m2) and proteinuria (≤0.1, 0.1-<0.5, 0.5-<1.5, and ≥1.5 g/24h) category at study entry. eGFR 

was calculated from serum creatinine and cystatin C using a CRIC Study equation [13] and 

eGFR slope was derived using all available eGFR values using linear regression. Proteinuria 

was measured from 24h urine collections. Cardiovascular disease (CVD) and smoking status 

were self-reported whereas diabetes was defined as a fasting glucose ≥126 mg/dL, a random 

glucose ≥200 mg/dL, or use of insulin or antidiabetic medications. Systolic blood pressure 

(SBP) and diastolic blood pressure (DBP) was measured in triplicate following a 

standardized protocol with the participant seated using a Tycos Classic hand cuff and 

aneroid sphygmomanometer (Welch Allyn, Skaneateles Falls, NY, USA). The baseline 

values were the mean of all three SBP and DBP measurements, separately. Hypertension 

was defined as SBP ≥140 mmHg and/or DBP ≥90 mmHg and/or self-reported 

antihypertensive medication use. Creatinine, glucose, and uric acid were measured using 

coupled enzymatic reactions with spectrophotometric quantification on the Ortho Vitros 950 

(Ortho Clinical Diagnostics, Raritan, NJ, USA). Metabolomics assays were performed on 

fasting plasma samples obtained at study entry and stored at −80°C.

Arterial and Renal Venous Plasma Sampling

Details on this protocol have been published [7]. In brief, we recruited consecutive patients 

referred to the Massachusetts General Hospital Cardiac Catheterization Laboratory for right 

and left heart catheterization. During the procedure, plasma was sampled from catheters 

placed in the ostium of a renal vein and the abdominal aorta. All patients were fasting and all 

samples were obtained prior to coronary artery catheterization (and administration of 

iodinated contrast dye). eGFR for study participants undergoing venous sampling was 

calculated using the MDRD equation [14]. The study protocol was approved by the 

institutional review board of the Massachusetts General Hospital, adhered to the Declaration 

of Helsinki, and all participants provided written informed consent.

Metabolite Profiling

Two liquid chromatography-mass spectrometry (LC-MS) methods were used to measure 

polar plasma metabolites. Amino acids, amino acid metabolites, acylcarnitines, dipeptides, 

nucleotides, and other cationic polar metabolites were measured in 10 μL of plasma using 

hydrophilic interaction liquid chromatography coupled with positive ion mode analysis on a 

Q Exactive Plus Orbitrap MS (Thermo Scientific, Waltham, MA, USA). Sugars, sugar 
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phosphates, organic acids, bile acids, nucleotides and other anionic polar metabolites were 

measured in 30 μL of plasma using hydrophilic interaction liquid chromatography and 

multiple reaction monitoring in the negative ion mode on a 5500 QTRAP MS (AB Sciex, 

Framingham, MA, USA). Details on plasma extraction, isotope internal standards, and 

chromatographic conditions for both methods have been published [4,15]. Metabolite 

identifications were confirmed using synthetic mixtures of reference compounds as well as 

characterized pooled plasma reference samples. All samples for a given study design (i.e. 

CRIC or renal arterio-venous sampling) were assayed in a single LC-MS run.

Statistical Analyses

We compared demographic and laboratory parameters between cases and controls using 

unpaired t-tests or Chi-squared tests, as appropriate. We compared select metabolites 

measured by LC-MS with spectrophotometric measurements using Pearson correlation 

coefficients. We compared medication levels between individuals with or without CVD and 

cotinine levels between non-smokers and smokers using the Wilcoxon rank-sum test. In the 

primary CRIC analysis, we fit logistic regression models to assess the associations between 

log transformed metabolite levels and rapid progression of CKD. The primary model 

adjusted for age, sex, race/ethnicity, hypertension, SBP, DBP, diabetes, eGFR and 

proteinuria; eGFR, and proteinuria were included as continuous variables. With 160 

endogenous metabolites measured in this cohort, the Bonferroni adjusted significance 

threshold was 0.0003. We considered a p-value <0.05 as nominally significant. In addition, 

we examined the cross-sectional association of log transformed metabolite levels with 

baseline eGFR in linear regression models adjusted for age, sex, race/ethnicity, hypertension, 

SBP, DPB, diabetes, and proteinuria, again with a Bonferroni adjusted significance threshold 

of p<0.0003. For the study of renal arteriovenous metabolite gradients, we compared arterial 

and venous metabolite levels using paired t-tests. Based on these initial analyses highlighting 

threonine, methionine, and arginine as potential markers of renal metabolic function 

independent of baseline GFR, data for these three metabolites were log transformed, 

standardized, and then summed to create a composite score. We hypothesized that this panel 

of metabolites provides a more complete assessment of renal metabolism and hence would 

have a stronger association with case status than any of the three metabolites alone. This 

panel of metabolites was examined in the primary model, as well as models further adjusting 

for CVD and smoking, and for CVD, smoking, hemoglobin, and FGF-23 levels. All analyses 

were performed using SAS software, version 9.4 (SAS Institute, Cary, NC, USA).

RESULTS

CRIC Study

Baseline characteristics of the CRIC study sample are shown in Table 1. Rapid progressors 

(cases) were older (60.1 versus 57.8 years), more likely to be black (55% versus 35%), and 

had a higher prevalence of hypertension (95% versus 87%), diabetes (55% versus 44%), 

active smoking (20% versus 12%), and CVD (47% versus 36%) than individuals with stable 

kidney function (controls). Cases also had lower hemoglobin (12.7 versus 13.3 mg/dL) and 

higher FGF-23 (205.7 versus 159.4 RU/mL) levels, but there was no significant difference in 

bicarbonate, phosphate, cholesterol, insulin, or BMI. Although the groups were matched on 
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the basis of eGFR and proteinuria category, the mean eGFR at baseline was lower among 

cases compared to controls (41.7 ± 13.3 versus 45.0 ± 14.5 mL/min per 1.73 m2). There was 

no difference in proteinuria. The mean eGFR slope was −4.1 ± 1.0 and −0.1 ± 0.6 mL/min/

1.73 m2 per year among cases and controls, respectively. The mean follow-up was 2.84 +/

− 0.44 years, with no difference between cases and controls.

Metabolite Profiling in CRIC

A total of 160 polar metabolites were measured in baseline plasma obtained from cases and 

controls. First, we sought to examine this metabolite data in relation to several cross-

sectional phenotypes captured in CRIC (Figure 1). Figure 1A depicts the correlation for 

three metabolites assayed by our LC-MS methods that had already been measured in CRIC 

using alternative (spectrophotometric) methods. The Pearson correlation coefficients were 

0.86 for creatinine, 0.81 for glucose, and 0.54 for uric acid. Figure 1B shows data on select 

medications (or medication metabolite) monitored by our platform. Individuals with self-

reported CVD had higher plasma levels of metoprolol, carvedilol, lisinopril, warfarin, and 

salicylurate (a metabolite of aspirin) than individuals without CVD. Finally, Figure 1C 

shows plasma levels of the nicotine metabolite cotinine in non-smokers versus smokers, 

demonstrating markedly elevated mean levels in the latter group, albeit with notable overlap 

in the distributions.

Metabolite Associations with Rapid CKD Progression

Endogenous metabolites with a nominal association (p < 0.05) with CKD progression in 

logistic regression, adjusted for age, sex, race/ethnicity, hypertension, SBP, DBP, diabetes, 

baseline eGFR and proteinuria, are shown in Table 2 (full results are shown in 

Supplementary data, Table S1). No metabolite met the Bonferroni-adjusted threshold for 

significance. Of the ten metabolites nominally associated with CKD progression, six (uric 

acid, glucuronate, 4-hydroxymandelate, 3-methyladipate/pimelate, cytosine, and 

homogentisate) were higher in cases than controls, whereas four (threonine, methionine, 

phenylalanine, and arginine) were lower in cases than controls. Because many circulating 

small molecules (including metabolites) accumulate with falling GFR, we also examined the 

cross-sectional association between metabolite levels and baseline eGFR in linear regression 

models adjusted for age, sex, race/ethnicity, hypertension, SBP, DBP, diabetes, and 

proteinuria. Notably, all six of the metabolites that were higher in cases than controls had a 

significant (p<0.0003) association with baseline eGFR, with an inverse correlation between 

metabolite level and eGFR (Table 2). These findings raise the possibility that the association 

between these metabolites and subsequent GFR decline is confounded by baseline 

differences in renal function not fully captured by one-time GFR estimation. By contrast, 

threonine, methionine and arginine – three metabolites that were lower in cases than controls 

– had no association with eGFR at baseline (Table 2).

Renal Arterio-Venous Metabolite Gradients

We have previously reported metabolomics data on a pilot study of nine individuals who 

underwent aortic and renal venous sampling, thus providing an initial view of how 

metabolites are modulated at the organ level [7]. Here, we present data from the complete set 

of 25 individuals enrolled in the protocol. Clinical characteristics of this hospital-based 
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cohort are shown in Supplementary data, Table S2. Two individuals had ESRD and were on 

hemodialysis. The remaining 23 individuals had a mean eGFR of 68.1 ± 19.2 mL/min/1.73 

m2. Whereas creatinine levels did not change from aorta to renal vein in the two individuals 

with ESRD, they fell in all the others. Figure 2 shows the ratio of renal venous to arterial 

creatinine in each individual. As expected, the decrement in creatinine was lower in 

individuals with lower eGFR (and negligible in the two individuals with ESRD). The mean 

venous to arterial ratio (V/A) for creatinine was 0.81. Table 3 shows the mean V/A for the 

metabolites with nominal associations with CKD progression in CRIC (full results are 

shown in Supplementary data, Table S3). Of these ten metabolites, seven had a V/A ratio ≤1. 

By contrast, three metabolites had a mean V/A >1, indicating net renal release of these 

metabolites. Notably, in CRIC all three of the metabolites – threonine, methionine, and 

arginine – were lower at baseline among individuals with rapid CKD progression compared 

to individuals with stable CKD and had no association with baseline eGFR.

A Panel of Markers of Renal Metabolic Function

Next, we created a panel of markers comprised of the three metabolites with V/A ratio >1 

highlighted by our invasive catheterization studies above. The association between this panel 

of markers and eGFR decline in CRIC is shown in Table 4. In the logistic regression model 

adjusted for age, sex, race/ethnicity, hypertension, SBP, DBP, diabetes, eGFR and 

proteinuria (Model 1), the panel of markers had an OR of 0.87 (0.79–0.96) per SD (P = 

0.004). Individuals in the second tertile had an OR of 0.81 (0.48–1.37) and individuals in the 

third tertile had an OR of 0.44 (0.26–0.76) compared to individuals in the first tertile of the 

marker panel (P = 0.003 for trend). Results were unchanged when the model was further 

adjusted for CVD and smoking status at baseline (Model 2) or CVD, smoking status, 

hemoglobin, and FGF-23 levels (Model 3).

DISCUSSION

Current blood markers of CKD, i.e. serum creatinine and blood urea nitrogen, are unable to 

identify which individuals will progress and do not provide insight on underlying causal 

pathways. Increasing interest in CKD biomarker research has been directed towards 

metabolomics-based discovery because of the broad impact kidney function has on 

circulating metabolites and because metabolites may themselves play functional roles in 

CKD pathogenesis. In a nested case-control analysis in the CRIC Study, we found several 

metabolite alterations nominally associated with subsequent disease progression. Although 

these metabolite associations were not significant after adjusting for multiple testing, our 

data on renal arteriovenous gradients coupled with an analysis of cross-sectional metabolite 

associations with eGFR nominate select markers of renal metabolic function for future 

investigation.

In order to illustrate the value of metabolite profiling in the context of a well characterized 

clinical cohort, we examined metabolite measures in relation to several phenotypes 

ascertained in CRIC. For metabolites that had been assayed previously, the correlation with 

our LC-MS measures ranged from excellent (creatinine) to modest (uric acid). Given the 

multiplex nature of the LC-MS methods, it is possible that the individualized measures 
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provide more precise results. However, we do note that our LC-MS data were generated in a 

single sample run, thus circumventing any issues with batch effect or inter-laboratory 

variability that may have affected the spectrophotometric data. In this regard, it is interesting 

that the association between uric acid and CKD progression is stronger for data generated by 

LC-MS (OR 9.72 [2.17–43.45], P = 0.003) than enzymatic assay (OR 2.13 [0.80–5.69], P = 

0.13, not shown). In other studies, uric acid has been found to have a variable association 

with incident CKD and CKD progression, and whether it is a modifiable risk factors remains 

an area of controversy [16–20]. In addition to overlap with previously examined endogenous 

metabolites, our platform provides an objective read-out of medication and nicotine input; in 

the case of smoking our data indicate that some self-reported non-smokers are in fact subject 

to considerable nicotine exposure, either directly or as a result of second-hand smoke. By 

integrating both endogenous and exogenous (i.e. pharmaceutical or environmental) inputs, 

metabolomics has the potential to more finely subtype study participants and risk factors in 

epidemiologic studies.

Our primary analysis, a case-control examination of metabolites and CKD progression in 

CRIC, builds on and extends a growing body of literature. Several large studies have 

examined baseline metabolite levels in >1000 subjects each from FHS, KORA, TwinsUK, 

and ARIC in relation to the subsequent development of CKD, i.e. crossing below an eGFR 

of 60 mL/min/1.73m2 [7–10]. Niewczas et al. examined 80 individuals with diabetic 

nephropathy at the Joslin Diabetes Center, 40 of whom progressed to ESRD [21]. 

Acknowledging that incomplete overlap of platform coverage significantly limits 

comparison across studies, no dominant signal has emerged. In general, however, each of 

these prior studies have identified robust statistical associations between select metabolites 

and eGFR decline even after adjusting for multiple testing. Two major differences in our 

study warrant mention. First, unlike the prior studies we matched cases and controls on 

baseline eGFR and proteinuria. Second, we examined individuals starting at a much lower 

mean eGFR. The studies cited above had mean eGFRs of 93.6 (FHS), 81.0 (KORA), 93.8 

(Twins UK), 105.3 (ARIC), and 81.0 mL/min/1.73 m2 (Joslin), whereas individuals in our 

study started with a mean eGFR of 43.3 mL/min/1.73 m2. It is possible that as kidney 

function declines, nonspecific accumulation dilutes the risk signal attributable to select 

metabolite alterations, particularly metabolite elevations.

In addition to filtering and secreting many plasma metabolites, the kidneys are also 

responsible for the net release of some metabolites back into circulation. For example, prior 

studies have firmly established the kidney as an important source of circulating arginine via 

the intra-renal transamination of citrulline to arginine [22,23]. Our data in CRIC raise the 

possibility that impairment of this metabolic function is associated with subsequent CKD 

progression. Interestingly, we found that two additional amino acids nominally associated 

with CKD progression in CRIC were both depleted in cases relative to controls and were net 

released across the kidney. None of these three metabolites were correlated with baseline 

eGFR, and a panel of markers comprised of all three metabolites had a stronger association 

with case status than each individual analyte. Thus, we raise the hypothesis that arginine, 

methionine, and threonine are markers of renal metabolic function and that at advanced 
stages of renal dysfunction their plasma levels provide insight on renal prognosis. Consistent 

with this paradigm, we note that other read-outs of known renal anabolic functions, i.e. 
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hemoglobin (from erythropoietin) and 1,25-hydroxyvitamin D levels are associated with 

renal disease progression [24–27]. In addition to reporting on renal metabolic capacity, we 

do not rule out the possibility that select metabolite depletions could play a causal role in 

disease progression; for example, as the substrate for nitric oxide synthase, limited arginine 

bioavailability could have deleterious vascular effects pertinent to CKD progression.

Our study has several strengths. First, it is the largest metabolomics study to date of disease 

progression in established CKD, utilizing high quality samples from a well-phenotyped, 

racially diverse cohort. Second, our LC-MS based platform has an established record in 

biomarker studies of ESRD, diabetes, and cancer as well as genome-wide association study, 

generating robust associations that in many cases have been confirmed by other investigators 

[4,15,28–31]. Third, to our knowledge the summary of renal arteriovenous metabolite 

gradients we have generated is a unique data set and is provided in full in the Supplement. 

We believe this will be a valuable resource for the interpretation of metabolomics biomarker 

studies, in nephrology and beyond.

Our study also has several limitations. Most important is the lack of a replication cohort. 

Clearly, follow-up studies are required to substantiate the metabolite signals identified in our 

analysis, including the panel of markers of renal metabolic function. Although the 

construction of this panel was informed by physiologic data, we acknowledge that 

combining markers significantly increases the potential number of comparisons, 

necessitating rigorous validation. Our focus on plasma is an additional limitation. Recently, 

Sharma et al. found decreased levels of several metabolites linked to mitochondrial 

metabolism in the urine of individuals with diabetic kidney disease [32]. We focused 

initially on plasma to build on our prior plasma based studies of incident CKD and ESRD 

and in order to integrate our results with our data on arteriovenous gradients. Future studies 

should clearly test urine metabolites as markers of CKD progression as well. Future studies 

should also investigate a wider breadth of metabolites. Whereas we utilized a targeted 

approach to measure a subset of the metabolome, methods capable of measuring thousands 

of metabolite peaks (many of unknown identity) are being increasingly deployed in 

biomarker research.

In conclusion, metabolite profiling in a nested case-control study in the CRIC Study 

revealed modest metabolite associations with CKD progression. The major difference with 

prior renal metabolomics studies demonstrating stronger statistical associations with eGFR 

decline is the considerably lower starting eGFR in our study, which likely results in the 

nonspecific accumulation of many solutes. In conjunction with an examination of renal 

arteriovenous gradients our data nevertheless generate interest in metabolite depletion as a 

potential indicator of renal health. Future efforts will be directed at replicating these 

observations, as well as expanding the scope of metabolites measured, in a larger sampling 

of the CRIC Study. These efforts will also investigate whether metabolite profiling can 

supplement or even clarify other variables captured in CRIC including other biomarkers, 

medication adherence and comorbidities, and differences in dietary habits and the 

microbiome.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Examination of select metabolomics data in relation to CRIC phenotyping
(a) Correlation between LC-MS (y-axis) and spectrophotometric measures (x-axis) of 

creatinine, glucose, and uric acid. (b) Mean medication levels in individuals with (n=166) or 

without (n=234) self-reported CVD at baseline. Bars represent SEM. *p < 0.05, #p < 0.001. 

(c) Distribution of plasma cotinine levels in self-reported non-smokers and smokers; note y-

axis is log scale.
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Figure 2. Renal venous to arterial creatinine ratio in 25 individuals
Each data point represents one individual, with eGFR (estimated by MDRD) plotted on the 

x-axis and creatinine V/A ratio plotted on the y-axis. The two triangles represent the 2 study 

subjects with ESRD.
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Table 1

Baseline characteristics of the CRIC Study sample

Rapid progressors (cases) Stable CKD (controls) p-value

Clinical characteristics

Age (years) 60.1 ± 10.2 57.8 ± 11.3 0.04

Male sex (%) 57 64

Race/ethnicity

white 31% white 51%

black 55% black 35% <0.001

other 14% other 14%

Hypertension (%) 95 87 0.004

Systolic blood pressure (mmHg) 134.5 ± 21.4 121.9 ± 20.0 <0.001

Diastolic blood pressure (mmHg) 72.1 ± 13.8 70.1 ± 12.7 0.14

Body mass index (kg/m2) 32.5 ± 7.8 32.1 ± 7.1 0.53

Diabetes (%) 55 44 0.03

Cardiovascular disease (%) 47 36 0.04

Smokers (%) 20 12 0.03

Laboratory measures

Serum creatinine (mg/dL) 1.86 ± 0.6 1.82 ± 0.6 0.58

Baseline eGFR (mL/min/1.73 m2)† 41.7 ± 13.3 45.0 ± 14.5 0.02

Follow-up eGFR (mL/min/1.73 m2) 24.7 ± 10.5 45.0 ± 11.2 <0.001

24h urine protein (g) 0.9 ± 1.6 0.8 ± 1.3 0.27

Hemoglobin (mg/dL) 12.7 ± 1.7 13.3 ± 1.9 0.002

Bicarbonate (mmol/L) 24.3 ± 3.4 24.7 ± 2.9 0.12

Phosphate (mg/dL) 3.7 ± 0.7 3.6 ± 0.6 0.05

FGF-23 (RU/mL) 205.7 ± 249.1 159.4 ± 137.0 0.02

Insulin (μIU/mL) 25.7 ± 25.6 26.8 ± 33.4 0.73

Total cholesterol (mg/dL) 177.2 ± 44.3 176.1 ± 38.4 0.78

HDL cholesterol (mg/dL) 47.7 ± 13.0 48.6 ± 15.7 0.55

LDL cholesterol (mg/dL) 95.2 ± 34.4 94.7 ± 29.8 0.89

Triglycerides (mg/dL) 158.2 ± 112.7 154.0 ± 96.6 0.66

†
baseline eGFR using the CKD-EPI equation was 43.9 ± 13.9 for cases and 44.6 ± 13.4 mL/min/1.73 m2 for controls

Conversion factor for units: serum creatinine in mg/dL to mmol/L, x88.4
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Table 3

Renal arteriovenous gradients for metabolites nominally associated with rapid CKD progression in CRIC

Metabolite # of individuals with V/A <1 # of individuals with V/A ≥1 Mean V/A Ratio p-value

homogentisate* 22 0 0.37 <0.001

4-hydroxymandelate* 22 0 0.37 <0.001

3-methyladipate-pimelate 23 0 0.60 <0.001

cytosine 21 2 0.80 <0.001

glucuronate 23 0 0.85 <0.001

uric acid 20 3 0.98 0.02

phenylalanine 10 13 1.00 0.9

threonine 3 20 1.07 <0.001

methionine 2 21 1.10 <0.001

arginine 0 23 1.16 <0.001

creatinine 23 0 0.81 <0.001

Abbreviation: V/A = venous to arterial ratio

*
no data on these metabolites for one study participant
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